large as $\pm K$, then you must append a buffer zone of K zeros at the end of both input data sets. If you want all possible lags from N data points (not a usual thing), then you will need to pad the data with an equal number of zeros; this is the extreme case. So here is the program:

```
SUBROUTINE correl(data1,data2,n,ans)
INTEGER n,NMAX
REAL data1(n),data2(n)
COMPLEX ans(n)
PARAMETER (NMAX=4096)
Waximum anticipated FFT size.
USES realft, twofft
```

Computes the correlation of two real data sets $\mathtt{data1(1:n)}$ and $\mathtt{data2(1:n)}$ (including any user-supplied zero padding). n MUST be an integer power of two. The answer is returned as the first n points in ans stored in wrap-around order, i.e., correlations at increasingly negative lags are in $\mathtt{ans(n)}$ on down to $\mathtt{ans(n/2+1)}$, while correlations at increasingly positive lags are in $\mathtt{ans(1)}$ (zero lag) on up to $\mathtt{ans(n/2)}$. Note that ans must be supplied in the calling program with length at least 2*n, since it is also used as working space. Sign convention of this routine: if $\mathtt{data1}$ lags $\mathtt{data2}$, i.e., is shifted to the right of it, then ans will show a peak at positive lags.

```
INTEGER i,no2
COMPLEX fft (NMAX)
call twofft(data1,data2,fft,ans,n)
                                          Transform both data vectors at once.
no2=n/2
                                          Normalization for inverse FFT.
do 11 i=1.no2+1
    ans(i)=fft(i)*conjg(ans(i))/float(no2)
                                                      Multiply to find FFT of their corre-
enddo 11
                                                         lation
ans(1)=cmplx(real(ans(1)),real(ans(no2+1)))
                                                      Pack first and last into one element.
call realft(ans.n.-1)
                                          Inverse transform gives correlation.
return
END
```

As in convlv, it would be better to substitute two calls to realft for the one call to twofft, if data1 and data2 have very different magnitudes, to minimize roundoff error.

The discrete autocorrelation of a sampled function g_j is just the discrete correlation of the function with itself. Obviously this is always symmetric with respect to positive and negative lags. Feel free to use the above routine correl to obtain autocorrelations, simply calling it with the same data vector in both arguments. If the inefficiency bothers you, routine realft can, of course, be used to transform the data vector instead.

```
CITED REFERENCES AND FURTHER READING:
```

Brigham, E.O. 1974, *The Fast Fourier Transform* (Englewood Cliffs, NJ: Prentice-Hall), §13–2.

13.3 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing that are routinely handled with Fourier techniques. One of these is filtering for the removal of noise from a "corrupted" signal. The particular situation we consider is this: There is some underlying, uncorrupted signal u(t) that we want to measure. The measurement process is imperfect, however, and what comes out of our measurement device is a corrupted signal c(t). The signal c(t) may be less than perfect in either or both of two respects. First, the apparatus may not have a perfect "delta-function" response,

World Wide Web sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America). use. Further reproduction, or any copying of machine-r Numerical Recipes books, diskettes, or CDROMs

so that the true signal u(t) is convolved with (smeared out by) some known response function r(t) to give a smeared signal s(t),

$$s(t) = \int_{-\infty}^{\infty} r(t - \tau)u(\tau) d\tau \quad \text{or} \quad S(f) = R(f)U(f)$$
 (13.3.1)

where S, R, U are the Fourier transforms of s, r, u, respectively. Second, the measured signal c(t) may contain an additional component of noise n(t),

$$c(t) = s(t) + n(t) (13.3.2)$$

We already know how to deconvolve the effects of the response function r in the absence of any noise (§13.1); we just divide C(f) by R(f) to get a deconvolved signal. We now want to treat the analogous problem when noise is present. Our task is to find the $optimal\,filter,\,\phi(t)$ or $\Phi(f)$, which, when applied to the measured signal c(t) or C(f), and then deconvolved by r(t) or R(f), produces a signal $\widetilde{u}(t)$ or $\widetilde{U}(f)$ that is as close as possible to the uncorrupted signal u(t) or U(f). In other words we will estimate the true signal U by

$$\widetilde{U}(f) = \frac{C(f)\Phi(f)}{R(f)} \tag{13.3.3}$$

In what sense is \widetilde{U} to be close to U? We ask that they be close in the least-square sense

$$\int_{-\infty}^{\infty} \left| \widetilde{u}(t) - u(t) \right|^2 dt = \int_{-\infty}^{\infty} \left| \widetilde{U}(f) - U(f) \right|^2 df \quad \text{is minimized.}$$
 (13.3.4)

Substituting equations (13.3.3) and (13.3.2), the right-hand side of (13.3.4) becomes

$$\int_{-\infty}^{\infty} \left| \frac{[S(f) + N(f)]\Phi(f)}{R(f)} - \frac{S(f)}{R(f)} \right|^{2} df$$

$$= \int_{-\infty}^{\infty} |R(f)|^{-2} \left\{ |S(f)|^{2} |1 - \Phi(f)|^{2} + |N(f)|^{2} |\Phi(f)|^{2} \right\} df$$
(13.3.5)

The signal S and the noise N are uncorrelated, so their cross product, when integrated over frequency f, gave zero. (This is practically the definition of what we mean by noise!) Obviously (13.3.5) will be a minimum if and only if the integrand is minimized with respect to $\Phi(f)$ at every value of f. Let us search for such a solution where $\Phi(f)$ is a real function. Differentiating with respect to Φ , and setting the result equal to zero gives

$$\Phi(f) = \frac{|S(f)|^2}{|S(f)|^2 + |N(f)|^2}$$
(13.3.6)

This is the formula for the optimal filter $\Phi(f)$.

Notice that equation (13.3.6) involves S, the smeared signal, and N, the noise. The two of these add up to be C, the measured signal. Equation (13.3.6) does not

contain U, the "true" signal. This makes for an important simplification: The optimal filter can be determined independently of the determination of the deconvolution function that relates S and U.

To determine the optimal filter from equation (13.3.6) we need some way of separately estimating $|S|^2$ and $|N|^2$. There is no way to do this from the measured signal C alone without some other information, or some assumption or guess. Luckily, the extra information is often easy to obtain. For example, we can sample a long stretch of data c(t) and plot its power spectral density using equations (12.0.14), (12.1.8), and (12.1.5). This quantity is proportional to the sum $|S|^2 + |N|^2$, so we have

$$|S(f)|^2 + |N(f)|^2 \approx P_c(f) = |C(f)|^2 \qquad 0 \le f < f_c$$
 (13.3.7)

(More sophisticated methods of estimating the power spectral density will be discussed in §13.4 and §13.7, but the estimation above is almost always good enough for the optimal filter problem.) The resulting plot (see Figure 13.3.1) will often immediately show the spectral signature of a signal sticking up above a continuous noise spectrum. The noise spectrum may be flat, or tilted, or smoothly varying; it doesn't matter, as long as we can guess a reasonable hypothesis as to what it is. Draw a smooth curve through the noise spectrum, extrapolating it into the region dominated by the signal as well. Now draw a smooth curve through the signal plus noise power. The difference between these two curves is your smooth "model" of the signal power. The quotient of your model of signal power to your model of signal plus noise power is the optimal filter $\Phi(f)$. [Extend it to negative values of f by the formula $\Phi(-f) = \Phi(f)$.] Notice that $\Phi(f)$ will be close to unity where the noise is negligible, and close to zero where the noise is dominant. That is how it does its job! The intermediate dependence given by equation (13.3.6) just turns out to be the optimal way of going in between these two extremes.

Because the optimal filter results from a minimization problem, the quality of the results obtained by optimal filtering differs from the true optimum by an amount that is *second order* in the precision to which the optimal filter is determined. In other words, even a fairly crudely determined optimal filter (sloppy, say, at the 10 percent level) can give excellent results when it is applied to data. That is why the separation of the measured signal C into signal and noise components S and N can usefully be done "by eye" from a crude plot of power spectral density. All of this may give you thoughts about iterating the procedure we have just described. For example, after designing a filter with response $\Phi(f)$ and using it to make a respectable guess at the signal $\widetilde{U}(f) = \Phi(f)C(f)/R(f)$, you might turn about and regard $\widetilde{U}(f)$ as a fresh new signal which you could improve even further with the same filtering technique. Don't waste your time on this line of thought. The scheme converges to a signal of S(f) = 0. Converging iterative methods do exist; this just isn't one of them.

You can use the routine four1 (§12.2) or realft (§12.3) to FFT your data when you are constructing an optimal filter. To apply the filter to your data, you can use the methods described in §13.1. The specific routine convlv is not needed for optimal filtering, since your filter is constructed in the frequency domain to begin with. If you are also deconvolving your data with a known response function, however, you can modify convlv to multiply by your optimal filter just before it takes the inverse Fourier transform.

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America) World Wide Web sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-his one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs HE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)
1988-1992 by Numerical Recipes Software.

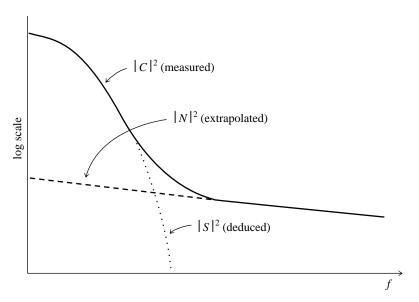


Figure 13.3.1. Optimal (Wiener) filtering. The power spectrum of signal plus noise shows a signal peak added to a noise tail. The tail is extrapolated back into the signal region as a "noise model." Subtracting gives the "signal model." The models need not be accurate for the method to be useful. A simple algebraic combination of the models gives the optimal filter (see text).

CITED REFERENCES AND FURTHER READING:

Rabiner, L.R., and Gold, B. 1975, *Theory and Application of Digital Signal Processing* (Englewood Cliffs, NJ: Prentice-Hall).

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York: Academic Press).

13.4 Power Spectrum Estimation Using the FFT

In the previous section we "informally" estimated the power spectral density of a function c(t) by taking the modulus-squared of the discrete Fourier transform of some finite, sampled stretch of it. In this section we'll do roughly the same thing, but with considerably greater attention to details. Our attention will uncover some surprises.

The first detail is power spectrum (also called a power spectral density or PSD) normalization. In general there is *some* relation of proportionality between a measure of the squared amplitude of the function and a measure of the amplitude of the PSD. Unfortunately there are several different conventions for describing the normalization in each domain, and many opportunities for getting wrong the relationship between the two domains. Suppose that our function c(t) is sampled at N points to produce values $c_0 \dots c_{N-1}$, and that these points span a range of time T, that is $T = (N-1)\Delta$, where Δ is the sampling interval. Then here are several

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs World Wide Web sample page from NUMERICAL RECIPES IN FORTRAN 77: Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright /isit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America) IE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X) 1988-1992 by Numerical Recipes Software.