542 Chapter 13.  Fourier and Spectral Applications

e OCL? (measured)

ONCF (extrapol ated)

log scale

_— 0S? (deduced)

f

Figure 13.3.1. Optimal (Wiener) filtering. The power spectrum of signal plus noise showsasignal peak
added to anoisetail. Thetall is extrapolated back into the signal region as a“noise model.” Subtracting
gives the “signal model.” The models need not be accurate for the method to be useful. A simple
algebraic combination of the models gives the optimal filter (see text).
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13.4 Power Spectrum Estimation Using the FFT

Intheprevioussectionwe“informally” estimated the power spectral density of a
function¢(t) by taking the modul us-squared of thediscrete Fourier transform of some
finite, sampled stretch of it. In this section we'll do roughly the same thing, but with
considerably greater attention to details. Our attention will uncover some surprises.

The first detail is power spectrum (also caled a power spectra density or
PSD) normalization. In genera there is some relation of proportionality between a
mesasure of the squared amplitude of the function and a measure of the amplitude
of the PSD. Unfortunately there are severa different conventions for describing
the normalization in each domain, and many opportunities for getting wrong the
relationship between the two domains. Suppose that our function ¢(¢) is sampled at
N pointsto produce values ¢y . . . cy—1, and that these points span a range of time
T,thatisT = (N — 1)A, where A isthe sampling interval. Then here are several

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM



13.4 Power Spectrum Estimation Using the FFT 543

different descriptions of the total power:

N-1

[ | = “sum squared amplitude” (134.1)
j=0

1 /7 5 1
f/o el dt ~ <

T N—-1
/ le(®)]* dt ~ A > |ej|* = “time-integral squared amplitude’  (13.4.3)
0 =

N-1
[ I = “mean squared amplitude” (134.2)

—

<

PSD estimators, as we shall see, have an even greater variety. In this section,
we consider a class of them that give estimates at discrete values of frequency f;,
where ¢ will range over integer values. In the next section, we will learn about
a different class of estimators that produce estimates that are continuous functions
of frequency f. Even if it is agreed always to relate the PSD normalization to a
particular description of the function normalization (e.g., 13.4.2), there are at least
the following possibilities: The PSD is

o defined for discrete positive, zero, and negative frequencies, and its sum

over these is the function mean squared amplitude

o defined for zero and discrete positive frequencies only, and its sum over

these is the function mean squared amplitude

o defined in the Nyquist interval from — f. to f., and itsintegra over this

range is the function mean squared amplitude

e defined from 0 to f., and itsintegral over thisrangeis the function mean

squared amplitude

It never makes sense to integrate the PSD of a sampled function outside of the
Nyquist interval — f. and f. since, according to the sampling theorem, power there
will have been aliased into the Nyquist interval.

It is hopelessto define enough notation to distinguish al possible combinations
of normalizations. In what follows, we use the notation P(f) to mean any of the
above PSDs, stating in each instance how the particular P(f) isnormalized. Beware
the inconsistent notation in the literature.

The method of power spectrum estimation used in the previous section is a
simple version of an estimator called, historicdly, the periodogram. If we take an
N-point sample of the function ¢(¢) at equal intervals and use the FFT to compute
its discrete Fourier transform

N—-1
Ch=Y ¢ ™M k=0, ,N-1 (13.4.4)
7=0

then the periodogram estimate of the power spectrum is defined at N/2 + 1
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544 Chapter 13.  Fourier and Spectral Applications

frequencies as
P(0) = P(fo) = 575 ICof
P(fy) = % [ICk|2 + |CN_,€|2} k=1,2,..., (g - 1) (134.5)
P(f.) = Pixps) = 53 [ O

where f;. is defined only for the zero and positive frequencies

k: J—
NA

k N
fx = 2fCN k=0,1,..., 5 (13.4.6)
By Parseval’stheorem, equation (12.1.10), we seeimmediately that equation (13.4.5)
is normalized so that the sum of the N/2 + 1 values of P is equa to the mean
squared amplitude of the function c;.

We must now ask this question. In what sense is the periodogram estimate
(13.4.5) a “true”’ estimator of the power spectrum of the underlying function ¢(¢)?
You can find the answer treated in considerable detail in the literature cited (see,
eg., [1] for an introduction). Here is a summary.

First, is the expectation value of the periodogram estimate equal to the power
spectrum, i.e., is the estimator correct on average? Well, yes and no. We wouldn’t
really expect one of the P( fi.)’sto equal the continuous P( f) at exactly f, since fj
is supposed to be representative of awhole frequency “bin” extending from halfway
from the preceding discrete frequency to halfway to the next one. We should be
expecting the P(fi) to be some kind of average of P(f) over a narrow window
function centered on its f;. For the periodogram estimate (13.4.6) that window

function, as a function of s the frequency offset in bins, is

W(s) = % [%]2 (13.4.7)

Notice that W (s) has oscillatory lobes but, apart from these, falls off only about as
W (s) =~ (ws)~2. Thisisnot avery rapid fall-off, and it resultsin significant |leakage
(thatisthetechnical term) from onefrequency to another in the periodogram estimate.
Noticea sothat W (s) happensto bezero for s equal toanonzerointeger. Thismeans
that if the function ¢(t) is a pure sine wave of frequency exactly equal to one of the
fx's, then there will be no leakage to adjacent fi.’s. But thisis not the characteristic
case! If the frequency is, say, one-third of the way between two adjacent f's, then
the leakage will extend well beyond those two adjacent bins. The solution to the
problem of leskage is called data windowing, and we will discussit below.

Turn now to another question about the periodogram estimate. What is the
variance of that estimate as N goes to infinity? In other words, as we take more
sampled pointsfrom the original function (either sampling alonger stretch of data at
the same sampling rate, or else by resampling the same stretch of data with a faster
sampling rate), then how much more accurate do the estimates P, become? The
unpleasant answer is that the periodogram estimates do not become more accurate
atall! Infact, thevariance of the periodogram estimate at a frequency fi. isaways
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13.4 Power Spectrum Estimation Using the FFT 545

equal to the sgquare of its expectation value at that frequency. In other words, the
standard deviation is aways 100 percent of the value, independent of N! How can
this be? Where did al the information go as we added points? It al went into
producing estimates at a greater number of discrete frequencies fi.. If we samplea
longer run of data using the same sampling rate, then the Nyquist critical frequency
fe isunchanged, but we now have finer frequency resolution (more f,'s) within the
Nyquist frequency interval; dternatively, if we sample the same length of datawitha
finer sampling interval, then our frequency resolution is unchanged, but the Nyquist
range now extends up to ahigher frequency. In neither case do the additional samples
reduce the variance of any one particular frequency’s estimated PSD.

You don't havetolivewith PSD estimateswith 100 percent standard deviations,
however. You simply have to know some techniques for reducing the variance of
the estimates. Here are two techniques that are very nearly identical mathematically,
though different in implementation. The first isto compute a periodogram estimate
with finer discrete frequency spacing than you really need, and then to sum the
periodogram estimates at K consecutive discrete frequencies to get one “smoother”
estimate at the mid frequency of those K. The variance of that summed estimate
will be smaller than the estimate itself by a factor of exactly 1/ K, i.e., the standard
deviation will be smaller than 100 percent by afactor 1/v/K. Thus, to estimate the
power spectrum at M + 1 discrete frequencies between 0 and f. inclusive, you begin
by taking the FFT of 2M K points (which number had better be an integer power of
two!). You then take the modulus square of the resulting coefficients, add positive
and negative frequency pairs, and divide by (2M K)?, all according to equation
(13.4.5) with N = 2M K. Finally, you “bin” the resultsinto summed (not averaged)
groupsof K. This procedureisvery easy to program, so we will not bother to give
aroutinefor it. The reason that you sum, rather than average, K consecutive points
is so that your final PSD estimate will preserve the normalization property that the
sum of its M + 1 values equals the mean sguare value of the function.

A second technique for estimating the PSD a M + 1 discrete frequencies in
the range 0 to f. isto partition the original sampled data into K segments each of
2M consecutive sampled points. Each segment is separately FFT'd to produce a
periodogram estimate (equation 13.4.5with N = 2M). Finally, the K periodogram
estimates are averaged at each frequency. It isthisfina averaging that reduces the
variance of the estimate by a factor K (standard deviation by v/K). This second
techniqueiscomputationally more efficient than thefirst techni que above by amodest
factor, since it islogarithmically more efficient to take many shorter FFTs than one
longer one. The principal advantage of the second technique, however, is that only
2M data points are manipulated at asingletime, not 2 K M asin the first technique.
This means that the second technique is the natural choice for processing long runs
of data, as from a magnetic tape or other data record. We will give a routine later
for implementing this second technique, but we need first to return to the matters of
leakage and data windowing which were brought up after equation (13.4.7) above.

Data Windowing

The purpose of datawindowing isto modify equation (13.4.7), which expresses
the relation between the spectral estimate Py, at a discrete frequency and the actual
underlying continuous spectrum P( f) at nearby frequencies. In general, the spectral
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546 Chapter 13.  Fourier and Spectral Applications

power in one “bin” k containsleakage from frequency components that are actually
s bins away, where s is the independent variable in equation (13.4.7). Thereis, as
we pointed out, quite substantia leakage even from moderately large vaues of s.

When we select arun of N sampled pointsfor periodogram spectral estimation,
we are in effect multiplying an infinite run of sampled datac; by awindow function
intime, onethat is zero except during thetotal ssmplingtime N A, and isunity during
that time. In other words, the data are windowed by a square window function. By
the convolution theorem (12.0.9; but interchanging theroles of f and t), the Fourier
transform of the product of the data with this square window function is equal to the
convolution of the data’'s Fourier transform with the window’s Fourier transform. In
fact, we determined equation (13.4.7) as nothing more than the square of the discrete
Fourier transform of the unity window function.

2

Wi(s) = — [Mr - % (1348)

BRE sin(mws/N)

N-1
E e27T’iSk/N
k=0

The reason for the leakage at large values of s, is that the square window function
turns on and off so rapidly. Its Fourier transform has substantial components
at high freguencies. To remedy this situation, we can multiply the input data
¢j, 3 =0,...,N —1 by awindow function w; that changes more gradually from
zero to a maximum and then back to zero as j ranges from 0 to N. In thiscase, the
equations for the periodogram estimator (13.4.4-13.4.5) become

N—-1
Dr =Y cjw; ™IRN =0, N1 (13.4.9)
7=0
1 2
P(0) = P(fo) = W | Dol
1 N
P(fk):WSS [|Dk|2+|DN—k|2} k:1,2,...,<3—1>
1
P(fe) = P(fnj2) = 55— |Dwpel” (13.4.10)
where W, stands for “window sgquared and summed,”
N-1
Wss =N w? (13.4.11)
§=0

and f isgiven by (13.4.6). The more genera form of (13.4.7) can now be written
in terms of the window function w; as

1 N-1

e27T’iSk/N
Wes

Wi(s) = W

k=0
) (13.4.12)

1
Wis

~
~

N/2
/ cos(2wsk/N)w(k — N/2) dk
—N/2

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad
(X-790€¥-T2S-0 N9SI) ONILNINOD DIHILNIIDS 4O LYV IHL 122 NVHLHOd NI S3dI03H TvOI4INNN woyy abed sjdwes gap spim plIOM

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA



13.4 Power Spectrum Estimation Using the FFT 547

amplitude

0 50 100 150 200 250
bin number

Figure 13.4.1. Window functions commonly used in FFT power spectral estimation. The data segment,
here of length 256, is multiplied (bin by bin) by the window function before the FFT is computed. The
square window, which is equivalent to no windowing, is least recommended. The Welch and Bartlett
windows are good choices.

Here the approximate equality is useful for practical estimates, and holds for any
window that is left-right symmetric (the usua case), and for s < N (the case of
interest for estimatingleakageinto nearby bins). Thecontinuousfunctionw(k—N/2)
intheintegral ismeant to be some smooth function that passes through the pointswy, .

Thereisalot of perhapsunnecessary loreabout choice of awindow function, and
practically every function that rises from zero to a peak and then falls again has been
named after someone. A few of the more common (also shownin Figure 13.4.1) are:

j—iN

T ’ = “Bartlett window” (13.4.13)
5N

w; = 1— ‘
(The “Parzen window” is very similar to this.)

1 2mj .
w; =5 [1 — cos (%)] = “Hann window” (13.4.14)

(The “Hamming window” is similar but does not go exactly to zero at the ends.)

1 2

1N
wj=1— (]172> = “Welch window” (13.4.15)
N

2

We areinclined to follow Welch in recommending that you use either (13.4.13)
or (13.4.15) in practical work. However, at thelevel of thisbook, there is effectively
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548 Chapter 13.  Fourier and Spectral Applications

amplitude of leakage

1 | 1 I- -I | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 1 1
-8 -6 -4 -2 0 2 4 6 8
offset in units of frequency bins

Figure 13.4.2. Leakage functions for the window functions of Figure 13.4.1. A signal whose
frequency is actually located at zero offset “leaks’ into neighboring bins with the amplitude shown. The
purpose of windowing is to reduce the leakage at large offsets, where square (no) windowing has large
sidelobes. Offset can have a fractional value, since the actual signal frequency can be located between
two frequency bins of the FFT.

no difference between any of these (or similar) window functions. Their difference
lies in subtle trade-offs among the various figures of merit that can be used to
describe the narrowness or peakedness of the spectral |eakage functions computed
by (13.4.12). These figures of merit have such names as: highest sidelobelevel (dB),
sidel obefall-off (dB per octave), equival ent noise bandwidth (bins), 3-dB bandwidth
(bins), scallop loss (dB), wor st case process| oss (dB). Roughly speaking, the principal
trade-off is between making the central peak as narrow as possible versus making
the tails of the distribution fall off as rapidly as possible. For details, see (e.g.) [2].
Figure 13.4.2 plots the leakage amplitudesfor several windows already discussed.
There is particularly a lore about window functions that rise smoothly from
zero to unity in the first small fraction (say 10 percent) of the data, then stay at
unity until the last small fraction (again say 10 percent) of the data, during which
the window function falls smoothly back to zero. These windows will squeeze a
little bit of extra narrowness out of the main lobe of the leakage function (never as
much as a factor of two, however), but trade this off by widening the leakage tail
by a significant factor (e.g., the reciproca of 10 percent, a factor of ten). If we
distinguish between the width of a window (number of samples for which it is at
its maximum value) and its rise/fall time (number of samples during which it rises
and fals); and if we distinguish between the FWHM (full width to half maximum
value) of the leakage function’s main lobe and the leakage width (full width that
contains half of the spectra power that is not contained in the main lobe); then
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13.4 Power Spectrum Estimation Using the FFT 549

these quantities are related roughly by

N
(window width)
N
(window riseffall time)

(FWHM in bins) ~ (13.4.16)

(leakage width in bins) ~

(13.4.17)

For the windows given above in (13.4.13)—«13.4.15), the effective window
widths and the effective window riseffall times are both of order %N. Generdly
speaking, we fed that the advantages of windows whose rise and fall times are
only small fractions of the data length are minor or nonexistent, and we avoid using
them. One sometimes hears it said that flat-topped windows “throw away less of
the data,” but we will now show you a better way of dealing with that problem by
use of overlapping data segments.

Let us now suppose that we have chosen a window function, and that we are
ready to segment the data into X segments of N = 20 points. Each segment will
be FFT'd, and the resulting K periodograms will be averaged together to obtain a
PSD estimate at M frequency values between 0 and f.. We must now distinguish
between two possible situations. We might want to obtain the smallest variance
from a fixed amount of computation, without regard to the number of data points
used. Thiswill generaly be the goa when the data are being gathered in real time,
with the data-reduction being computer-limited. Alternatively, we might want to
obtain the smallest variance from a fixed number of available sampled data points.
This will generally be the goal in cases where the data are already recorded and
we are anayzing it after the fact.

In the first situation (smallest spectral variance per computer operation), it is
best to segment the datawithout any overlapping. Thefirst 2\ datapointsconstitute
segment number 1; the next 20 data points constitute segment number 2; and so
on, up to segment number K, for atotal of 2K M sampled points. The variancein
this case, relative to a single segment, is reduced by a factor K.

In the second situation (smallest spectra variance per data point), it turns out
to be optimal, or very nearly optimal, to overlap the segments by one half of their
length. The first and second sets of M points are segment number 1; the second
and third sets of M points are segment number 2; and so on, up to segment number
K, which is made of the Kth and K + 1st sets of M points. The total number of
sampled pointsistherefore (K +1) M, just over half as many aswith nonoverlapping
segments. The reduction in the variance is not afull factor of K, since the segments
are not statistically independent. 1t can be shown that the variance isinstead reduced
by a factor of about 9K /11 (see the paper by Welch in[3]). This is, however,
significantly better than the reduction of about K/2 that would have resulted if the
same number of data points were segmented without overlapping.

We can now codify these ideas into aroutinefor spectral estimation. Whilewe
generally avoid input/output coding, we make an exception here to show how data
are read sequentially in one pass through a data file (here FORTRAN Unit 9). Only a
small fraction of the data is in memory at any one time.
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550 Chapter 13.  Fourier and Spectral Applications

SUBROUTINE spctrm(p,m,k,ovrlap,wl,w2)

INTEGER k,m

REAL p(m),wl(4*m),w2(m)

LOGICAL ovrlap True for overlapping segments, false otherwise.

USES fourl
Reads data from input unit 9 and returns as p(j) the data’s power (mean square amplitude)
at frequency (j—1)/(2*m) cycles per gridpoint, for j=1,2,...,m based on (2xk+1)*m

data points (if ovrlap is set .true.) or 4*k*m data points (if ovrlap is set .false.).
The number of segments of the data is 2%k in both cases: The routine calls fourl k
times, each call with 2 partitions each of 2*m real data points. w1(1:4*m) and w2(1:m)
are user-supplied workspaces.

INTEGER j,j2,joff,joffn,kk,m4,m43,mé4,mm

REAL den,facm,facp,sumw,w,window

window(j)=(1.-abs (((j-1)-facm)*facp)) Statement function defines Bartlett window.
window(j)=1. Alternative for square window.
window(j)=(1.-(((j-1)-facm)*facp)**2) Alternative for Welch window.

mm=m-+m Useful factors.

m4=mm-+mm

m44=m4+4

m43=m4+3

den=0.

facm=m Factors used by the window statement function.
facp=1./m

sumw=0. Accumulate the squared sum of the weights.

dou j=1,mm
sumw=sumw+window (j) **2

enddo 11
do2 j=1,m Initialize the spectrum to zero.
p(j)=0.
enddo 12
if (ovrlap)then Initialize the “save” half-buffer.
read (9,%) (w2(j),j=1,m)
endif
do 18 kk=1,k Loop over data set segments in groups of two.

dois joff=-1,0,1
if (ovrlap) then
do13 j=1,m
wl(joff+j+j)=w2(j)
enddo 13
read (9,*) (w2(j),j=1,m)
joffn=joff+mm

Get two complete segments into workspace.

dos j=1,m
wl(joffn+j+j)=w2(j)
enddo 14
else
read (9,*) (wi(j),j=joff+2,m4,2)
endif
enddo 15
do 1 j=1,mm Apply the window to the data.
j2=3+j

w=window (j)
wl(j2)=wl(j2)*w
wl(j2-1)=wl(j2-1)*u
enddo 16
call fourl(wl,mm,1) Fourier transform the windowed data.
p (1) =p(1)+wl (1) **2+wl (2) **2 Sum results into previous segments.
do17 j=2,m
j2=j+j
P(§)=p () +w1(j2) **2+wl (j2-1) **2
+wl(m44d-j2) **2+wl (md3-732) **2
enddo 17
den=den+sumw
enddo 18
den=m4*den Correct normalization.
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do1 j=1,m
p(j)=p(j)/den Normalize the output.
enddo 19
return
END
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13.5 Digital Filtering in the Time Domain

Suppose that you have a signal that you want to filter digitally. For example, perhaps
you want to apply high-passor low-passfiltering, to eliminate noise at low or high frequencies
respectively; or perhaps the interesting part of your signal lies only in a certain frequency
band, so that you need a bandpassfilter. Or, if your measurements are contaminated by 60
Hz power-line interference, you may need a notch filter to remove only a narrow band around
that frequency. This section speaks particularly about the case in which you have chosen to
do such filtering in the time domain.

Before continuing, we hope you will reconsider this choice. Remember how convenient
it is to filter in the Fourier domain. You just take your whole data record, FFT it, multiply
the FFT output by a filter function H(f), and then do an inverse FFT to get back a filtered
data set in time domain. Here is some additional background on the Fourier technique that
you will want to take into account.

e Remember that you must define your filter function H(f) for both positive and
negative frequencies, and that the magnitude of the frequency extremes is always
the Nyquist frequency 1/(2A), where A is the sampling interval. The magnitude
of the smallest nonzero frequencies in the FFT is +1/(NA), where N is the
number of (complex) points in the FFT. The positive and negative frequencies to
which this filter are applied are arranged in wrap-around order.

e |f the measured data are real, and you want the filtered output also to be real, then
your arbitrary filter function should obey H(— f) = H(f)*. You can arrange this
most easily by picking an H that is real and evenin f.

o If your chosen H(f) has sharp vertical edgesin it, then the impulse response of
your filter (the output arising from a short impulse as input) will have damped
“ringing” at frequencies corresponding to these edges. There is nothing wrong
with this, but if you don’t like it, then pick a smoother H(f). To get a first-hand
look at the impulse responseof your filter, just take the inverse FFT of your H( f).

If you smooth all edges of the filter function over some number k of points, then
the impulse response function of your filter will have a span on the order of a
fraction 1/k of the whole data record.
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