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do1 j=1,m
p(j)=p(j)/den Normalize the output.
enddo 19
return
END
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13.5 Digital Filtering in the Time Domain

Suppose that you have a signal that you want to filter digitally. For example, perhaps
you want to apply high-passor low-passfiltering, to eliminate noise at low or high frequencies
respectively; or perhaps the interesting part of your signal lies only in a certain frequency
band, so that you need a bandpassfilter. Or, if your measurements are contaminated by 60
Hz power-line interference, you may need a notch filter to remove only a narrow band around
that frequency. This section speaks particularly about the case in which you have chosen to
do such filtering in the time domain.

Before continuing, we hope you will reconsider this choice. Remember how convenient
it is to filter in the Fourier domain. You just take your whole data record, FFT it, multiply
the FFT output by a filter function H(f), and then do an inverse FFT to get back a filtered
data set in time domain. Here is some additional background on the Fourier technique that
you will want to take into account.

e Remember that you must define your filter function H(f) for both positive and
negative frequencies, and that the magnitude of the frequency extremes is always
the Nyquist frequency 1/(2A), where A is the sampling interval. The magnitude
of the smallest nonzero frequencies in the FFT is +1/(NA), where N is the
number of (complex) points in the FFT. The positive and negative frequencies to
which this filter are applied are arranged in wrap-around order.

e |f the measured data are real, and you want the filtered output also to be real, then
your arbitrary filter function should obey H(— f) = H(f)*. You can arrange this
most easily by picking an H that is real and evenin f.

o If your chosen H(f) has sharp vertical edgesin it, then the impulse response of
your filter (the output arising from a short impulse as input) will have damped
“ringing” at frequencies corresponding to these edges. There is nothing wrong
with this, but if you don’t like it, then pick a smoother H(f). To get a first-hand
look at the impulse responseof your filter, just take the inverse FFT of your H( f).

If you smooth all edges of the filter function over some number k of points, then
the impulse response function of your filter will have a span on the order of a
fraction 1/k of the whole data record.
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552 Chapter 13.  Fourier and Spectral Applications

e If your data set is too long to FFT all at once, then break it up into segments of
any convenient size, as long as they are much longer than the impulse response
function of the filter. Use zero-padding, if necessary.

e You should probably remove any trend from the data, by subtracting from it a
straight line through thefirst and last points (i.e., makethefirst and last pointsequal
to zero). If you are segmenting the data, then you can pick overlapping segments
and use only the middle section of each, comfortably distant from edge effects.

e A digital filter is said to be causal or physically realizable if its output for a
particular time-step depends only on inputs at that particular time-step or earlier.
It is said to be acausal if its output can depend on both earlier and later inputs.
Filtering in the Fourier domain s, in general, acausal, since the data are processed
“in a batch,” without regard to time ordering. Don't let this bother you! Acausal
filters can generally give superior performance (e.g., less dispersion of phases,
sharper edges, less asymmetric impulse response functions). People use causal
filters not because they are better, but because some situations just don’'t allow
accessto out-of-time-order data. Time domain filters can, in principle, be either
causal or acausal, but they are most often used in applications where physical
realizability is a constraint. For this reason we will restrict ourselvesto the causal
case in what follows.

If you are still favoring time-domain filtering after all we have said, it is probably because
you have a real-time application, for which you must process a continuous data stream and
wish to output filtered values at the same rate as you receive raw data. Otherwise, it may
be that the quantity of datato be processed is so large that you can afford only a very small
number of floating operations on each data point and cannot afford even a modest-sized FFT
(with a number of floating operations per data point several times the logarithm of the number
of points in the data set or segment).

Linear Filters

The most general linear filter takes a sequence xz;, of input points and produces a
seguence y,, of output points by the formula

M N
Yn =) Ck Tn-k+ Y dj Ynj (135.1)
k=0 j=1

Here the M + 1 coefficients ¢, and the N coefficients d; are fixed and define the filter
response. Thefilter (13.5.1) produces each new output value from the current and M previous
input values, and from its own N previous output values. If N = 0, so that there is no
secondsumin (13.5.1), then thefilter is called nonrecursiveor finite impul se response (FIR). If
N # 0, thenitiscalled recursiveor infinite impulse response(lIR). (The term “IIR” connotes
only that such filters are capable of having infinitely long impulse responses, not that their
impulse responseis necessarily long in a particular application. Typically the response of an
IIR filter will drop off exponentially at late times, rapidly becoming negligible.)
The relation between the ¢;'s and d;'s and the filter response function H( f) is

M
Z Cke—QTrik(fA)

H(f) = =% (135.2)
1— 3 dje2mis(fa)

Jj=1

where A is, asusual, the sampling interval. The Nyquistinterval correspondsto f A between
—1/2 and 1/2. For FIR filters the denominator of (13.5.2) is just unity.

Equation (13.5.2) tells how to determine H(f) from the ¢’sand d’s. To design afilter,
though, we need a way of doing the inverse, getting a suitable set of ¢’'sand d’s — as small
a set as possible, to minimize the computational burden — from a desired H(f). Entire
books are devoted to this issue. Like many other “inverse problems,” it has no all-purpose
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13.5 Digital Filtering in the Time Domain 553

solution. One clearly has to make compromises, since H(f) is a full continuous function,
while the short list of ¢’sand d’s represents only afew adjustable parameters. The subject of
digital filter design concerns itself with the various ways of making these compromises. We
cannot hope to give any sort of complete treatment of the subject. We can, however, sketch
a couple of basic techniquesto get you started. For further details, you will haveto consult
some specialized books (see references).

FIR (Nonrecursive) Filters

When the denominator in (13.5.2) is unity, the right-hand side is just a discrete Fourier
transform. Thetransformiseasily invertible, givingthe desired small number of ¢, coefficients
in terms of the same small number of values of H(f;) at some discrete frequencies f;. This
fact, however, is not very useful. The reason is that, for values of ¢, computed in this way,
H(f) will tend to oscillate wildly in between the discrete frequencies where it is pinned
down to specific values.

A better strategy, and one which isthe basis of several formal methodsin the literature,
is this: Start by pretending that you are willing to have a relatively large number of filter
coefficients, that is, arelatively large value of M. Then H(f) can befixed to desired values
on a relatively fine mesh, and the M coefficients ¢, £k = 0,..., M — 1 can be found by
an FFT. Next, truncate (set to zero) most of the c;’s, leaving nonzero only the first, say,
K, (C()7 Cly.nn, CK_1) and last K — 1, (C]u_K+1, ey C]M—l)- The last few ci's are filter
coefficients at negative lag, because of the wrap-around property of the FFT. But we don't
want coefficients at negative lag. Therefore we cyclically shift the array of c¢x’s, to bring
everything to positive lag. (This correspondsto introducing a time-delay into the filter.) Do
this by copying the ¢i’s into a new array of length M in the following order:

(C]u_K+1,...,C]u_1, Co, C1y...,CK—1, O, O,,O) (1353)

To see if your truncation is acceptable, take the FFT of the array (13.5.3), giving an
approximation to your original H(f). You will generaly want to compare the modulus
|H(f)| to your original function, since the time-delay will have introduced complex phases
into the filter response.

If the new filter function is acceptable, then you are done and have a set of 2K — 1
filter coefficients. If it is not acceptable, then you can either (i) increase K and try again,
or (ii) do something fancier to improve the acceptability for the same K. An example of
something fancier is to modify the magnitudes (but not the phases) of the unacceptable( 1)
to bring it more in line with your ideal, and then to FFT to get new c;’s. Once again set
to zero al but the first 2K — 1 values of these (no need to cyclically shift since you have
preserved the time-delaying phases), then inverse transform to get a new H(f), which will
often be more acceptable. You can iterate this procedure. Note, however, that the procedure
will not convergeif your requirements for acceptability are more stringent than your 2K — 1
coefficients can handle.

Thekey idea, in other words, is to iterate between the space of coefficients and the space
of functions H( f), until a Fourier conjugate pair that satisfies the imposed constraintsin both
spacesis found. A more formal technique for this kind of iteration is the Remes Exchange
Algorithm which produces the best Chebyshev approximation to a given desired frequency
response with a fixed number of filter coefficients (cf. §5.13).

IIR (Recursive) Filters

Recursivefilters, whose output at a given time dependsboth on the current and previous
inputsand on previousoutputs, can generally have performancethat is superior to nonrecursive
filters with the same total number of coefficients (or same number of floating operations per
input point). The reason is fairly clear by inspection of (13.5.2): A nonrecursivefilter has a
frequency response that is a polynomial in the variable 1/z, where

z=e2miA) (13.5.4)

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM



554 Chapter 13.  Fourier and Spectral Applications

By contrast, arecursive filter's frequency responseis arational functionin 1/z. The class of
rational functions is especially good at fitting functions with sharp edges or narrow features,
and most desired filter functions are in this category.

Nonrecursive filters are always stable. If you turn off the sequence of incoming z;’s,
then after no more than M steps the sequence of y;'s produced by (13.5.1) will also turn off.
Recursive filters, feeding as they do on their own output, are not necessarily stable. If the
coefficients d; are badly chosen, arecursive filter can have exponentially growing, so-called
homogeneous, modes, which become huge even after the input sequence has been turned off.
Thisis not good. The problem of designing recursive filters, therefore, is not just an inverse
problem; it is an inverse problem with an additional stability constraint.

How do you tell if the filter (13.5.1) is stable for a given set of ¢, and d; coefficients?
Stability depends only on the d;’s. The filter is stable if and only if al N complex roots
of the characteristic polynomial equation

N
2N =3 "diN =0 (135.5)
j=1

are inside the unit circle, i.e., satisfy
lz] <1 (13.5.6)

The various methods for constructing stable recursive filters again form a subject area
for which you will need more specialized books. One very useful technique, however, is the
bilinear transformation method. For thistopic we defineanew variable w that reparametrizes
the frequency f,

1+z

Don't befooled by the:’sin (13.5.7). Thisequation mapsreal frequencies f into real valuesof
w. Infact, it mapsthe Nyquistinterval —1 < fA < 1 ontothereal w axis —co < w < +oo.
The inverse equation to (13.5.7) is

] 1— eQTri(fA) ) 1—2
w = tan[r(fA)] =1 (1 T 62m‘(fA)> =1 ( ) (13.5.7)

p= A o 1F T (1358)
1—w
In reparametrizing f, w also reparametrizes z, of course. Therefore, the condition for
stability (13.5.5)—(13.5.6) can be rephrased in terms of w: If the filter response H(f) is
written as a function of w, then thefilter is stable if and only if the poles of the filter function
(zeros of its denominator) are al in the upper half complex plane,

Im(w) >0 (135.9)

Theidea of the bilinear transformation method is that instead of specifyingyour desired
H(f), you specify only its desired modulus square, |1 (f)|* = H(f)H(f)* = H(f)H(—-f).
Pick this to be approximated by some rational function in w?. Then find all the poles of this
function in the w complex plane. Every polein the lower half-planewill havea corresponding
pole in the upper half-plane, by symmetry. The ideais to form a product only of the factors
with good poles, ones in the upper half-plane. This product is your stably realizable H(f).
Now substitute equation (13.5.7) to write the function asarational functionin z, and compare
with equation (13.5.2) to read off the ¢'s and d’s.

The procedure becomes clearer when we go through an example. Suppose we want to
design a simple bandpassfilter, whose lower cutoff frequency correspondsto avaluew = a,
and whose upper cutoff frequency corresponds to a value w = b, with a and b both positive
numbers. A simple rational function that accomplishes this is

ol = () (75) (13510

This function does not have a very sharp cutoff, but it is illustrative of the more general
case. To obtain sharper edges, one could take the function (13.5.10) to some positive integer
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13.5 Digital Filtering in the Time Domain 555

power, or, equivalently, run the data sequentially through some number of copies of the filter
that we will obtain from (13.5.10).

The poles of (13.5.10) are evidently at w = +ia and w = +4b. Therefore the stably
redlizable H(f) is

11—z

w ib (H—Z) b

H(f) = ( ‘ ) ( ‘ ) = (135.11)
B (CORUINCO R

We put the i in the numerator of the second factor in order to end up with real-valued

coefficients. If we multiply out all the denominators, (13.5.11) can be rewritten in the form

—2

b b
“Oroam T Groarm?

H(f) = (135.12)
(+a)(A-b)+1A-a)(A+b) _ (-a)(d=b) _
1= (TFa)(110) 27+ (TFa)(110) © 2
from which one reads off the filter coefficients for equation (13.5.1),
o= - b
T T Mt a)(1+0b)
Cc1 = 0
o b
T 0ta)1+0b)
g — (I14+a)(1—05)+ (1 —a)(l+Db)
! (1+a)(1+b)
dy = L= =) (135.13)

(1+a)(1+b)

This completes the design of the bandpass filter.

Sometimes you can figure out how to construct directly a rational function in w for
H(f), rather than having to start with its modulus square. The function that you construct
has to have its poles only in the upper half-plane, for stability. It should also have the
property of going into its own complex conjugate if you substitute —w for w, so that the
filter coefficients will be real.

For example, here is a function for a notch filter, designed to remove only a narrow
frequency band around some fiducial frequency w = wo, Where wy is a positive number,

_ w — Wo w ~+ wo
Hf) = (w — wo — iewo> (w—|—wo — iewo>

w? — wi

(135.14)

(w — iewp)? — w

In (13.5.14) the parameter ¢ isasmall positive number that isthe desired width of thenotch, asa
fraction of wo. Going through the arithmetic of substituting z for w givesthefilter coefficients

1+ wd
CO= 7T N2 1 2
(1+ ewo)? +wj
o g lzwb
(1 + ewo)? + wk
1+wd
= 13.5.15
2 (1 + ewo)? + wk ( )
dy =2 1 — 2wd — wk
(1 + ewo)? + wi
dy — s ewo)? + wi

(1+ ewo)? + wk

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM



556 Chapter 13.  Fourier and Spectral Applications

@

(b)

Figure 13.5.1. (a) A “chirp,” or signal whose frequency increases continuously with time. (b) Same
signal after it has passed through the notch filter (13.5.15). The parameter ¢ is here 0.2.

Figure 13.5.1 showsthe results of using afilter of the form (13.5.15) on a“chirp” input
signal, onethat glides upwards in frequency, crossing the notch frequency along the way.

While the bilinear transformation may seem very general, its applications are limited
by some features of the resulting filters. The method is good at getting the general shape
of the desired filter, and good where “flatness’ is a desired goal. However, the nonlinear
mapping between w and f makes it difficult to design to a desired shape for a cutoff, and
may move cutoff frequencies (defined by a certain number of dB) from their desired places.
Consequently, practitioners of theart of digital filter design reserve the bilinear transformation
for specific situations, and arm themselves with a variety of other tricks. We suggest that
you do likewise, as your projects demand.
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13.6 Linear Prediction and Linear Predictive Coding 557

13.6 Linear Prediction and Linear Predictive
Coding

We beginwithavery general formulationthat will allow usto make connections
to various specid cases. Let {y/,} be aset of measured values for some underlying
set of true values of a quantity y, denoted {y, }, related to these true values by
the addition of random noise,

Yo = Ya +Na (136.1)

(compare equation 13.3.2, with a somewhat different notation). Our use of a Greek
subscript to index the members of the set is meant to indicate that the data points
are not necessarily equally spaced along a line, or even ordered: they might be
“random” pointsin three-dimensional space, for example. Now, suppose we want to
construct the “best” estimate of the true value of some particular point y, asalinear
combination of the known, noisy, values. Writing

Yo = Y dualfy + 74 (13.6.2)

we want to find coefficients d ., that minimize, in someway, thediscrepancy x,. The
coefficients d,., havea“star” subscript to indicate that they depend on the choice of
point y,. Later, we might want to let y, be one of the existing y,’s. In that case,
our problem becomes one of optimal filtering or estimation, closely related to the
discussion in §13.3. On the other hand, we might want y, to be a completely new
point. In that case, our problem will be one of linear prediction.

A natural way to minimize the discrepancy x, isin the statistical mean square
sense. If angle brackets denote statistical averages, then we seek d,.,'sthat minimize

(22) = <[Z dua(go +110) — y]>

=D ({Ways) + (nanp))deades —2 ) (Ysa) dua + (47)
af

[e3

(13.6.3)

Here we have used the fact that noise is uncorrelated with signal, eg., (n,yz) = 0.
The quantities (y,yz) and (y.y.) describe the autocorrelation structure of the
underlying data. We have already seen an anaogous expression, (13.2.2), for the
case of equally spaced data points on aline; we will meet correlation severa times
againinitsstatistical sensein Chapters14 and 15. Thequantities(n,ng) describethe
autocorrelation properties of the noise. Often, for point-to-point uncorrel ated noise,
we have (nong) = (n2)6ap. It is convenient to think of the various correlation
quantities as comprising matrices and vectors,

$ap = (YalYs)  bra = (UYa)  Nap = (nang) OF (n2)6ap (1364)

Setting the derivative of eguation (13.6.3) with respect to the d,.’s equal to zero,
one readily obtains the set of linear equations,

Z [(baﬁ + naﬁ] d*ﬁ = (b*a (1365)
B
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