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13.6 Linear Prediction and Linear Predictive
Coding

We begin with a very general formulation that will allow us to make connections
to various special cases. Let {y′α} be a set of measured values for some underlying
set of true values of a quantity y, denoted {yα}, related to these true values by
the addition of random noise,

y′α = yα + nα (13.6.1)

(compare equation 13.3.2, with a somewhat different notation). Our use of a Greek
subscript to index the members of the set is meant to indicate that the data points
are not necessarily equally spaced along a line, or even ordered: they might be
“random” points in three-dimensional space, for example. Now, suppose we want to
construct the “best” estimate of the true value of some particular point y? as a linear
combination of the known, noisy, values. Writing

y? =
∑
α

d?αy
′
α + x? (13.6.2)

we want to find coefficients d?α that minimize, in some way, the discrepancy x?. The
coefficients d?α have a “star” subscript to indicate that they depend on the choice of
point y?. Later, we might want to let y? be one of the existing yα’s. In that case,
our problem becomes one of optimal filtering or estimation, closely related to the
discussion in §13.3. On the other hand, we might want y? to be a completely new
point. In that case, our problem will be one of linear prediction.

A natural way to minimize the discrepancy x? is in the statistical mean square
sense. If angle brackets denote statistical averages, then we seek d?α’s that minimize

〈
x2
?

〉
=

〈[∑
α

d?α(yα + nα)− y?
]2
〉

=
∑
αβ

(〈yαyβ〉+ 〈nαnβ〉)d?αd?β − 2
∑
α

〈y?yα〉 d?α +
〈
y2
?

〉 (13.6.3)

Here we have used the fact that noise is uncorrelated with signal, e.g., 〈nαyβ〉 = 0.
The quantities 〈yαyβ〉 and 〈y?yα〉 describe the autocorrelation structure of the
underlying data. We have already seen an analogous expression, (13.2.2), for the
case of equally spaced data points on a line; we will meet correlation several times
again in its statistical sense in Chapters 14 and 15. The quantities〈nαnβ〉 describe the
autocorrelation properties of the noise. Often, for point-to-point uncorrelated noise,
we have 〈nαnβ〉 =

〈
n2
α

〉
δαβ . It is convenient to think of the various correlation

quantities as comprising matrices and vectors,

φαβ ≡ 〈yαyβ〉 φ?α ≡ 〈y?yα〉 ηαβ ≡ 〈nαnβ〉 or
〈
n2
α

〉
δαβ (13.6.4)

Setting the derivative of equation (13.6.3) with respect to the d?α’s equal to zero,
one readily obtains the set of linear equations,∑

β

[φαβ + ηαβ] d?β = φ?α (13.6.5)
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If we write the solution as a matrix inverse, then the estimation equation (13.6.2)
becomes, omitting the minimized discrepancy x?,

y? ≈
∑
αβ

φ?α [φµν + ηµν]−1
αβ y

′
β (13.6.6)

From equations (13.6.3) and (13.6.5) one can also calculate the expected mean square
value of the discrepancy at its minimum, denoted

〈
x2
?

〉
0
,

〈
x2
?

〉
0

=
〈
y2
?

〉
−
∑
β

d?βφ?β =
〈
y2
?

〉
−
∑
αβ

φ?α [φµν + ηµν]
−1
αβ φ?β (13.6.7)

A final general result tells how much the mean square discrepancy
〈
x2
?

〉
is

increased if we use the estimation equation (13.6.2) not with the best values d?β , but
with some other values d̂?β . The above equations then imply〈

x2
?

〉
=
〈
x2
?

〉
0

+
∑
αβ

(d̂?α − d?α) [φαβ + ηαβ] (d̂?β − d?β) (13.6.8)

Since the second term is a pure quadratic form, we see that the increase in the
discrepancy is only second order in any error made in estimating the d?β’s.

Connection to Optimal Filtering

If we change “star” to a Greek index, say γ, then the above formulas describe
optimal filtering, generalizing the discussion of §13.3. One sees, for example, that
if the noise amplitudes nα go to zero, so likewise do the noise autocorrelations
ηαβ , and, canceling a matrix times its inverse, equation (13.6.6) simply becomes
yγ = y′γ . Another special case occurs if the matrices φαβ and ηαβ are diagonal.
In that case, equation (13.6.6) becomes

yγ =
φγγ

φγγ + ηγγ
y′γ (13.6.9)

which is readily recognizable as equation (13.3.6) withS2 → φγγ ,N2 → ηγγ . What
is going on is this: For the case of equally spaced data points, and in the Fourier
domain, autocorrelations become simply squares of Fourier amplitudes (Wiener-
Khinchin theorem, equation 12.0.12), and the optimal filter can be constructed
algebraically, as equation (13.6.9), without inverting any matrix.

More generally, in the time domain, or any other domain, an optimal filter (one
that minimizes the square of the discrepancy from the underlying true value in the
presence of measurement noise) can be constructed by estimating the autocorrelation
matrices φαβ and ηαβ, and applying equation (13.6.6) with ? → γ. (Equation
13.6.8 is in fact the basis for the §13.3’s statement that even crude optimal filtering
can be quite effective.)
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Linear Prediction

Classical linear prediction specializes to the case where the data points yβ
are equally spaced along a line, yi , i = 1, 2, . . . , N , and we want to use M
consecutive values of yi to predict an M + 1st. Stationarity is assumed. That is, the
autocorrelation 〈yjyk〉 is assumed to depend only on the difference |j − k|, and not
on j or k individually, so that the autocorrelation φ has only a single index,

φj ≡ 〈yiyi+j〉 ≈
1

N − j

N−j∑
i=1

yiyi+j (13.6.10)

Here, the approximate equality shows one way to use the actual data set values to
estimate the autocorrelation components. (In fact, there is a better way to make these
estimates; see below.) In the situation described, the estimation equation (13.6.2) is

yn =

M∑
j=1

djyn−j + xn (13.6.11)

(compare equation 13.5.1) and equation (13.6.5) becomes the set ofM equations for
the M unknown dj’s, now called the linear prediction (LP) coefficients,

M∑
j=1

φ|j−k| dj = φk (k = 1, . . . ,M) (13.6.12)

Notice that while noise is not explicitly included in the equations, it is properly
accounted for, if it is point-to-point uncorrelated: φ0, as estimated by equation
(13.6.10) using measured values y′i, actually estimates the diagonal part ofφαα+ηαα,
above. The mean square discrepancy

〈
x2
n

〉
is estimated by equation (13.6.7) as〈

x2
n

〉
= φ0 − φ1d1 − φ2d2 − · · · − φMdM (13.6.13)

To use linear prediction, we first compute the dj’s, using equations (13.6.10)
and (13.6.12). We then calculate equation (13.6.13) or, more concretely, apply
(13.6.11) to the known record to get an idea of how large are the discrepancies xi.
If the discrepancies are small, then we can continue applying (13.6.11) right on into
the future, imagining the unknown “future” discrepancies xi to be zero. In this
application, (13.6.11) is a kind of extrapolation formula. In many situations, this
extrapolation turns out to be vastly more powerful than any kind of simple polynomial
extrapolation. (By the way, you should not confuse the terms “linear prediction” and
“linear extrapolation”; the general functional form used by linear prediction is much
more complex than a straight line, or even a low-order polynomial!)

However, to achieve its full usefulness, linear prediction must be constrained in
one additional respect: One must take additional measures to guarantee its stability.
Equation (13.6.11) is a special case of the general linear filter (13.5.1). The condition
that (13.6.11) be stable as a linear predictor is precisely that given in equations
(13.5.5) and (13.5.6), namely that the characteristic polynomial

zN −
N∑
j=1

djz
N−j = 0 (13.6.14)
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have all N of its roots inside the unit circle,

|z| ≤ 1 (13.6.15)

There is no guarantee that the coefficients produced by equation (13.6.12) will have
this property. If the data contain many oscillations without any particular trend
towards increasing or decreasing amplitude, then the complex roots of (13.6.14)
will generally all be rather close to the unit circle. The finite length of the data
set will cause some of these roots to be inside the unit circle, others outside. In
some applications, where the resulting instabilities are slowly growing and the linear
prediction is not pushed too far, it is best to use the “unmassaged” LP coefficients
that come directly out of (13.6.12). For example, one might be extrapolating to fill a
short gap in a data set; then one might extrapolate both forwards across the gap and
backwards from the data beyond the gap. If the two extrapolations agree tolerably
well, then instability is not a problem.

When instability is a problem, you have to “massage” the LP coefficients. You
do this by (i) solving (numerically) equation (13.6.14) for its N complex roots; (ii)
moving the roots to where you think they ought to be inside or on the unit circle; (iii)
reconstituting the now-modified LP coefficients. You may think that step (ii) sounds
a little vague. It is. There is no “best” procedure. If you think that your signal
is truly a sum of undamped sine and cosine waves (perhaps with incommensurate
periods), then you will want simply to move each root zi onto the unit circle,

zi → zi/ |zi| (13.6.16)

In other circumstances it may seem appropriate to reflect a bad root across the
unit circle

zi → 1/zi* (13.6.17)

This alternative has the property that it preserves the amplitude of the output of
(13.6.11) when it is driven by a sinusoidal set of xi’s. It assumes that (13.6.12)
has correctly identified the spectral width of a resonance, but only slipped up on
identifying its time sense so that signals that should be damped as time proceeds end
up growing in amplitude. The choice between (13.6.16) and (13.6.17) sometimes
might as well be based on voodoo. We prefer (13.6.17).

Also magical is the choice of M , the number of LP coefficients to use. You
should choose M to be as small as works for you, that is, you should choose it by
experimenting with your data. Try M = 5, 10, 20, 40. If you need larger M ’s than
this, be aware that the procedure of “massaging” all those complex roots is quite
sensitive to roundoff error. Use double precision.

Linear prediction is especially successful at extrapolating signals that are smooth
and oscillatory, though not necessarily periodic. In such cases, linear prediction often
extrapolates accurately through many cycles of the signal. By contrast, polynomial
extrapolation in general becomes seriously inaccurate after at most a cycle or two.
A prototypical example of a signal that can successfully be linearly predicted is the
height of ocean tides, for which the fundamental 12-hour period is modulated in
phase and amplitude over the course of the month and year, and for which local
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hydrodynamic effects may make even one cycle of the curve look rather different
in shape from a sine wave.

We already remarked that equation (13.6.10) is not necessarily the best way
to estimate the covariances φk from the data set. In fact, results obtained from
linear prediction are remarkably sensitive to exactly how the φk’s are estimated.
One particularly good method is due to Burg [1], and involves a recursive procedure
for increasing the order M by one unit at a time, at each stage re-estimating the
coefficients dj , j = 1, . . . ,M so as to minimize the residual in equation (13.6.13).
Although further discussion of the Burg method is beyond our scope here, the method
is implemented in the following routine [1,2] for estimating the LP coefficients dj
of a data set.

SUBROUTINE memcof(data,n,m,xms,d)
INTEGER m,n,MMAX,NMAX
REAL xms,d(m),data(n)
PARAMETER (MMAX=60,NMAX=2000)

Given a real vector of data(1:n), and given m, this routine returns m linear prediction
coefficients as d(1:m), and returns the mean square discrepancy as xms.

INTEGER i,j,k
REAL denom,p,pneum,wk1(NMAX),wk2(NMAX),wkm(MMAX)
if (m.gt.MMAX.or.n.gt.NMAX) pause ’workspace too small in memcof’
p=0.
do 11 j=1,n

p=p+data(j)**2
enddo 11

xms=p/n
wk1(1)=data(1)
wk2(n-1)=data(n)
do 12 j=2,n-1

wk1(j)=data(j)
wk2(j-1)=data(j)

enddo 12

do 17 k=1,m
pneum=0.
denom=0.
do 13 j=1,n-k

pneum=pneum+wk1(j)*wk2(j)
denom=denom+wk1(j)**2+wk2(j)**2

enddo 13

d(k)=2.*pneum/denom
xms=xms*(1.-d(k)**2)
do 14 i=1,k-1

d(i)=wkm(i)-d(k)*wkm(k-i)
enddo 14

The algorithm is recursive, building up the answer for larger and larger values of m until
the desired value is reached. At this point in the algorithm, one could return the vector
d and scalar xms for a set of LP coefficients with k (rather than m) terms.

if(k.eq.m)return
do 15 i=1,k

wkm(i)=d(i)
enddo 15

do 16 j=1,n-k-1
wk1(j)=wk1(j)-wkm(k)*wk2(j)
wk2(j)=wk2(j+1)-wkm(k)*wk1(j+1)

enddo 16

enddo 17

pause ’never get here in memcof’
END
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Here are procedures for rendering the LP coefficients stable (if you choose to
do so), and for extrapolating a data set by linear prediction, using the original or
massaged LP coefficients. The routine zroots (§9.5) is used to find all complex
roots of a polynomial.

SUBROUTINE fixrts(d,m)
INTEGER m,MMAX
REAL d(m)
PARAMETER (MMAX=100) Largest expected value of m.

C USES zroots
Given the LP coefficients d(1:m), this routine finds all roots of the characteristic polynomial
(13.6.14), reflects any roots that are outside the unit circle back inside, and then returns
a modified set of coefficients d(1:m).

INTEGER i,j
LOGICAL polish
COMPLEX a(MMAX),roots(MMAX)
a(m+1)=cmplx(1.,0.)
do 11 j=m,1,-1 Set up complex coefficients for polynomial root finder.

a(j)=cmplx(-d(m+1-j),0.)
enddo 11

polish=.true.
call zroots(a,m,roots,polish) Find all the roots.
do 12 j=1,m Look for a...

if(abs(roots(j)).gt.1.)then root outside the unit circle,
roots(j)=1./conjg(roots(j)) and reflect it back inside.

endif
enddo 12

a(1)=-roots(1) Now reconstruct the polynomial coefficients,
a(2)=cmplx(1.,0.)
do 14 j=2,m by looping over the roots

a(j+1)=cmplx(1.,0.)
do 13 i=j,2,-1 and synthetically multiplying.

a(i)=a(i-1)-roots(j)*a(i)
enddo 13

a(1)=-roots(j)*a(1)
enddo 14

do 15 j=1,m The polynomial coefficients are guaranteed to be real,
d(m+1-j)=-real(a(j)) so we need only return the real part as new LP coefficients.

enddo 15

return
END

SUBROUTINE predic(data,ndata,d,m,future,nfut)
INTEGER ndata,nfut,m,MMAX
REAL d(m),data(ndata),future(nfut)
PARAMETER (MMAX=100)

Given data(1:ndata), and given the data’s LP coefficients d(1:m), this routine applies
equation (13.6.11) to predict the next nfut data points, which it returns in the array
future(1:nfut). Note that the routine references only the last m values of data, as
initial values for the prediction.
Parameter: MMAX is the largest expected value of m.

INTEGER j,k
REAL discrp,sum,reg(MMAX)
do 11 j=1,m

reg(j)=data(ndata+1-j)
enddo 11

do 14 j=1,nfut
discrp=0. This is where you would put in a known discrepancy if you

were reconstructing a function by linear predictive coding
rather than extrapolating a function by linear prediction.
See text.

sum=discrp
do 12 k=1,m
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sum=sum+d(k)*reg(k)
enddo 12

do 13 k=m,2,-1 [If you want to implement circular arrays, you can avoid this
shifting of coefficients!]reg(k)=reg(k-1)

enddo 13

reg(1)=sum
future(j)=sum

enddo 14

return
END

Removing the Bias in Linear Prediction

You might expect that the sum of the dj’s in equation (13.6.11) (or, more
generally, in equation 13.6.2) should be 1, so that (e.g.) adding a constant to all the
data points yi yields a prediction that is increased by the same constant. However,
the dj’s do not sum to 1 but, in general, to a value slightly less than one. This fact
reveals a subtle point, that the estimator of classical linear prediction is not unbiased,
even though it does minimize the mean square discrepancy. At any place where the
measured autocorrelation does not imply a better estimate, the equations of linear
prediction tend to predict a value that tends towards zero.

Sometimes, that is just what you want. If the process that generates the yi’s
in fact has zero mean, then zero is the best guess absent other information. At
other times, however, this behavior is unwarranted. If you have data that show
only small variations around a positive value, you don’t want linear predictions
that droop towards zero.

Often it is a workable approximation to subtract the mean off your data set,
perform the linear prediction, and then add the mean back. This procedure contains
the germ of the correct solution; but the simple arithmetic mean is not quite the
correct constant to subtract. In fact, an unbiased estimator is obtained by subtracting
from every data point an autocorrelation-weighted mean defined by [3,4]

y ≡
∑
β

[φµν + ηµν ]
−1
αβ yβ

/∑
αβ

[φµν + ηµν ]
−1
αβ (13.6.18)

With this subtraction, the sum of the LP coefficients should be unity, up to roundoff
and differences in how the φk’s are estimated.

Linear Predictive Coding (LPC)

A different, though related, method to which the formalism above can be
applied is the “compression” of a sampled signal so that it can be stored more
compactly. The original form should be exactly recoverable from the compressed
version. Obviously, compression can be accomplished only if there is redundancy
in the signal. Equation (13.6.11) describes one kind of redundancy: It says that
the signal, except for a small discrepancy, is predictable from its previous values
and from a small number of LP coefficients. Compression of a signal by the use of
(13.6.11) is thus called linear predictive coding, or LPC.

The basic idea of LPC (in its simplest form) is to record as a compressed file (i)
the number of LP coefficients M , (ii) their M values, e.g., as obtained by memcof,
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(iii) the first M data points, and then (iv) for each subsequent data point only its
residual discrepancy xi (equation 13.6.1). When you are creating the compressed
file, you find the residual by applying (13.6.1) to the previousM points, subtracting
the sum from the actual value of the current point. When you are reconstructing the
original file, you add the residual back in, at the point indicated in the routinepredic.

It may not be obvious why there is any compression at all in this scheme. After
all, we are storing one value of residual per data point! Why not just store the original
data point? The answer depends on the relative sizes of the numbers involved. The
residual is obtained by subtracting two very nearly equal numbers (the data and the
linear prediction). Therefore, the discrepancy typically has only a very small number
of nonzero bits. These can be stored in a compressed file. How do you do it in a
high-level language? Here is one way: Scale your data to have integer values, say
between +1000000 and −1000000 (supposing that you need six significant figures).
Modify equation (13.6.1) by enclosing the sum term in an “integer part of” operator.
The discrepancy will now, by definition, be an integer. Experiment with different
values of M , to find LP coefficients that make the range of the discrepancy as small
as you can. If you can get to within a range of±127 (and in our experience this is not
at all difficult) then you can write it to a file as a single byte. This is a compression
factor of 4, compared to 4-byte integer or floating formats.

Notice that the LP coefficients are computed using the quantized data, and that
the discrepancy is also quantized, i.e., quantization is done both outside and inside
the LPC loop. If you are careful in following this prescription, then, apart from the
initial quantization of the data, you will not introduce even a single bit of roundoff
error into the compression-reconstruction process: While the evaluation of the sum
in (13.6.11) may have roundoff errors, the residual that you store is the value which,
when added back to the sum, gives exactly the original (quantized) data value. Notice
also that you do not need to massage the LP coefficients for stability; by adding the
residual back in to each point, you never depart from the original data, so instabilities
cannot grow. There is therefore no need for fixrts, above.

Look at §20.4 to learn about Huffman coding, which will further compress the
residuals by taking advantage of the fact that smaller values of discrepancy will occur
more often than larger values. A very primitive version of Huffman coding would
be this: If most of the discrepancies are in the range ±127, but an occasional one is
outside, then reserve the value 127 to mean “out of range,” and then record on the file
(immediately following the 127) a full-word value of the out-of-range discrepancy.
§20.4 explains how to do much better.

There are many variant procedures that all fall under the rubric of LPC.
• If the spectral character of the data is time-variable, then it is best not

to use a single set of LP coefficients for the whole data set, but rather
to partition the data into segments, computing and storing different LP
coefficients for each segment.

• If the data are really well characterized by their LP coefficients, and you
can tolerate some small amount of error, then don’t bother storing all of the
residuals. Just do linear prediction until you are outside of tolerances, then
reinitialize (usingM sequential stored residuals) and continue predicting.

• In some applications, most notably speech synthesis, one cares only about
the spectral content of the reconstructed signal, not the relative phases.
In this case, one need not store any starting values at all, but only the
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LP coefficients for each segment of the data. The output is reconstructed
by driving these coefficients with initial conditions consisting of all zeros
except for one nonzero spike. A speech synthesizer chip may have of
order 10 LP coefficients, which change perhaps 20 to 50 times per second.

• Some people believe that it is interesting to analyze a signal by LPC, even
when the residuals xi are not small. The xi’s are then interpreted as the
underlying “input signal” which, when filtered through the all-poles filter
defined by the LP coefficients (see §13.7), produces the observed “output
signal.” LPC reveals simultaneously, it is said, the nature of the filter and
the particular input that is driving it. We are skeptical of these applications;
the literature, however, is full of extravagant claims.
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13.7 Power Spectrum Estimation by the
Maximum Entropy (All Poles) Method

The FFT is not the only way to estimate the power spectrum of a process, nor is it
necessarily the best way for all purposes. To see how one might devise another method,
let us enlarge our view for a moment, so that it includes not only real frequencies in the
Nyquist interval −fc < f < fc, but also the entire complex frequency plane. From that
vantage point, let us transform the complex f -plane to a new plane, called the z-transform
plane or z-plane, by the relation

z ≡ e2πif∆ (13.7.1)

where ∆ is, as usual, the sampling interval in the time domain. Notice that the Nyquist interval
on the real axis of the f -plane maps one-to-one onto the unit circle in the complex z-plane.

If we now compare (13.7.1) to equations (13.4.4) and (13.4.6), we see that the FFT
power spectrum estimate (13.4.5) for any real sampled function ck ≡ c(tk) can be written,
except for normalization convention, as

P (f) =

∣∣∣∣∣∣
N/2−1∑
k=−N/2

ckz
k

∣∣∣∣∣∣
2

(13.7.2)

Of course, (13.7.2) is not the true power spectrum of the underlying function c(t), but only an
estimate. We can see in two related ways why the estimate is not likely to be exact. First, in the
time domain, the estimate is based on only a finite range of the function c(t) which may, for all
we know, have continued from t = −∞ to∞. Second, in the z-plane of equation (13.7.2), the
finite Laurent series offers, in general, only an approximation to a general analytic function of
z. In fact, a formal expression for representing “true” power spectra (up to normalization) is

P (f) =

∣∣∣∣∣
∞∑

k=−∞
ckz

k

∣∣∣∣∣
2

(13.7.3)


