
604 Chapter 14. Statistical Description of Data

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

In the other category, model-dependent statistics, we lump the whole subject of
fitting data to a theory, parameter estimation, least-squares fits, and so on. Those
subjects are introduced in Chapter 15.

Section 14.1 deals with so-called measures of central tendency, the moments of
a distribution, the median and mode. In §14.2 we learn to test whether different data
sets are drawn from distributions with different values of these measures of central
tendency. This leads naturally, in §14.3, to the more general question of whether two
distributions can be shown to be (significantly) different.

In §14.4–§14.7, we deal with measures of association for two distributions.
We want to determine whether two variables are “correlated” or “dependent” on
one another. If they are, we want to characterize the degree of correlation in
some simple ways. The distinction between parametric and nonparametric (rank)
methods is emphasized.

Section 14.8 introduces the concept of data smoothing, and discusses the
particular case of Savitzky-Golay smoothing filters.

This chapter draws mathematically on the material on special functions that
was presented in Chapter 6, especially §6.1–§6.4. You may wish, at this point,
to review those sections.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill).

Stuart, A., and Ord, J.K. 1987, Kendall’s Advanced Theory of Statistics, 5th ed. (London: Griffin
and Co.) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory
of Statistics].

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

14.1 Moments of a Distribution: Mean,
Variance, Skewness, and So Forth

When a set of values has a sufficiently strong central tendency, that is, a tendency
to cluster around some particular value, then it may be useful to characterize the
set by a few numbers that are related to its moments, the sums of integer powers
of the values.

Best known is the mean of the values x1, . . . , xN ,

x =
1

N

N∑
j=1

xj (14.1.1)

which estimates the value around which central clustering occurs. Note the use of
an overbar to denote the mean; angle brackets are an equally common notation, e.g.,
〈x〉. You should be aware that the mean is not the only available estimator of this
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quantity, nor is it necessarily the best one. For values drawn from a probability
distribution with very broad “tails,” the mean may converge poorly, or not at all, as
the number of sampled points is increased. Alternative estimators, the median and
the mode, are mentioned at the end of this section.

Having characterized a distribution’s central value, one conventionally next
characterizes its “width” or “variability” around that value. Here again, more than
one measure is available. Most common is the variance,

Var(x1 . . . xN) =
1

N − 1

N∑
j=1

(xj − x)2 (14.1.2)

or its square root, the standard deviation,

σ(x1 . . . xN ) =
√

Var(x1 . . . xN) (14.1.3)

Equation (14.1.2) estimates the mean squared deviation of x from its mean value.
There is a long story about why the denominator of (14.1.2) is N − 1 instead of
N . If you have never heard that story, you may consult any good statistics text.
Here we will be content to note that the N − 1 should be changed to N if you
are ever in the situation of measuring the variance of a distribution whose mean
x is known a priori rather than being estimated from the data. (We might also
comment that if the difference between N and N − 1 ever matters to you, then you
are probably up to no good anyway — e.g., trying to substantiate a questionable
hypothesis with marginal data.)

As the mean depends on the first moment of the data, so do the variance and
standard deviation depend on the second moment. It is not uncommon, in real
life, to be dealing with a distribution whose second moment does not exist (i.e., is
infinite). In this case, the variance or standard deviation is useless as a measure
of the data’s width around its central value: The values obtained from equations
(14.1.2) or (14.1.3) will not converge with increased numbers of points, nor show
any consistency from data set to data set drawn from the same distribution. This can
occur even when the width of the peak looks, by eye, perfectly finite. A more robust
estimator of the width is the average deviation or mean absolute deviation, defined by

ADev(x1 . . . xN) =
1

N

N∑
j=1

|xj − x| (14.1.4)

One often substitutes the sample median xmed for x in equation (14.1.4). For any
fixed sample, the median in fact minimizes the mean absolute deviation.

Statisticians have historically sniffed at the use of (14.1.4) instead of (14.1.2),
since the absolute value brackets in (14.1.4) are “nonanalytic” and make theorem-
proving difficult. In recent years, however, the fashion has changed, and the subject
of robust estimation (meaning, estimation for broad distributions with significant
numbers of “outlier” points) has become a popular and important one. Higher
moments, or statistics involving higher powers of the input data, are almost always
less robust than lower moments or statistics that involve only linear sums or (the
lowest moment of all) counting.
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Kurtosis

Figure 14.1.1. Distributions whose third and fourth moments are significantly different from a normal
(Gaussian) distribution. (a) Skewness or third moment. (b) Kurtosis or fourth moment.

That being the case, the skewness or third moment, and the kurtosis or fourth
moment should be used with caution or, better yet, not at all.

The skewness characterizes the degree of asymmetry of a distribution around its
mean. While the mean, standard deviation, and average deviation are dimensional
quantities, that is, have the same units as the measured quantities xj , the skewness
is conventionally defined in such a way as to make it nondimensional. It is a pure
number that characterizes only the shape of the distribution. The usual definition is

Skew(x1 . . . xN) =
1

N

N∑
j=1

[
xj − x
σ

]3

(14.1.5)

where σ = σ(x1 . . . xN) is the distribution’s standard deviation (14.1.3). A positive
value of skewness signifies a distribution with an asymmetric tail extending out
towards more positive x; a negative value signifies a distribution whose tail extends
out towards more negative x (see Figure 14.1.1).

Of course, any set of N measured values is likely to give a nonzero value
for (14.1.5), even if the underlying distribution is in fact symmetrical (has zero
skewness). For (14.1.5) to be meaningful, we need to have some idea of its
standard deviation as an estimator of the skewness of the underlying distribution.
Unfortunately, that depends on the shape of the underlying distribution, and rather
critically on its tails! For the idealized case of a normal (Gaussian) distribution, the
standard deviation of (14.1.5) is approximately

√
15/N . In real life it is good practice

to believe in skewnesses only when they are several or many times as large as this.
The kurtosis is also a nondimensional quantity. It measures the relative

peakedness or flatness of a distribution. Relative to what? A normal distribution,
what else! A distribution with positive kurtosis is termed leptokurtic; the outline
of the Matterhorn is an example. A distribution with negative kurtosis is termed
platykurtic; the outline of a loaf of bread is an example. (See Figure 14.1.1.) And,
as you no doubt expect, an in-between distribution is termed mesokurtic.

The conventional definition of the kurtosis is

Kurt(x1 . . . xN) =

 1

N

N∑
j=1

[
xj − x
σ

]4
− 3 (14.1.6)

where the −3 term makes the value zero for a normal distribution.
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The standard deviation of (14.1.6) as an estimator of the kurtosis of an
underlying normal distribution is

√
96/N . However, the kurtosis depends on such

a high moment that there are many real-life distributions for which the standard
deviation of (14.1.6) as an estimator is effectively infinite.

Calculation of the quantities defined in this section is perfectly straightforward.
Many textbooks use the binomial theorem to expand out the definitions into sums
of various powers of the data, e.g., the familiar

Var(x1 . . . xN) =
1

N − 1

 N∑
j=1

x2
j

−Nx2

 ≈ x2 − x2 (14.1.7)

but this can magnify the roundoff error by a large factor and is generally unjustifiable
in terms of computing speed. A clever way to minimize roundoff error, especially
for large samples, is to use the corrected two-pass algorithm [1]: First calculate x,
then calculate Var(x1 . . . xN) by

Var(x1 . . . xN) =
1

N − 1


N∑
j=1

(xj − x)2 − 1

N

 N∑
j=1

(xj − x)

2
 (14.1.8)

The second sum would be zero if x were exact, but otherwise it does a good job of
correcting the roundoff error in the first term.

SUBROUTINE moment(data,n,ave,adev,sdev,var,skew,curt)
INTEGER n
REAL adev,ave,curt,sdev,skew,var,data(n)

Given an array of data(1:n), this routine returns its mean ave, average deviation adev,
standard deviation sdev, variance var, skewness skew, and kurtosis curt.

INTEGER j
REAL p,s,ep
if(n.le.1)pause ’n must be at least 2 in moment’
s=0. First pass to get the mean.
do 11 j=1,n

s=s+data(j)
enddo 11

ave=s/n
adev=0. Second pass to get the first (absolute), second, third, and fourth

moments of the deviation from the mean.var=0.
skew=0.
curt=0.
ep=0.
do 12 j=1,n

s=data(j)-ave
ep=ep+s
adev=adev+abs(s)
p=s*s
var=var+p
p=p*s
skew=skew+p
p=p*s
curt=curt+p

enddo 12

adev=adev/n Put the pieces together according to the conventional definitions.
var=(var-ep**2/n)/(n-1) Corrected two-pass formula.
sdev=sqrt(var)
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if(var.ne.0.)then
skew=skew/(n*sdev**3)
curt=curt/(n*var**2)-3.

else
pause ’no skew or kurtosis when zero variance in moment’

endif
return
END

Semi-Invariants

The mean and variance of independent random variables are additive: If x and y are
drawn independently from two, possibly different, probability distributions, then

(x+ y) = x+ y Var(x+ y) = Var(x) + Var(x) (14.1.9)

Higher moments are not, in general, additive. However, certain combinations of them,
called semi-invariants, are in fact additive. If the centered moments of a distribution are
denoted Mk,

Mk ≡
〈

(xi − x)k
〉

(14.1.10)

so that, e.g., M2 = Var(x), then the first few semi-invariants, denoted Ik are given by

I2 = M2 I3 = M3 I4 = M4 − 3M2
2

I5 = M5 − 10M2M3 I6 = M6 − 15M2M4 − 10M2
3 + 30M3

2

(14.1.11)

Notice that the skewness and kurtosis, equations (14.1.5) and (14.1.6) are simple powers
of the semi-invariants,

Skew(x) = I3/I
3/2
2 Kurt(x) = I4/I

2
2 (14.1.12)

A Gaussian distribution has all its semi-invariants higher than I2 equal to zero. A Poisson
distribution has all of its semi-invariants equal to its mean. For more details, see [2].

Median and Mode

The median of a probability distribution function p(x) is the value xmed for
which larger and smaller values of x are equally probable:∫ xmed

−∞
p(x) dx =

1

2
=

∫ ∞
xmed

p(x) dx (14.1.13)

The median of a distribution is estimated from a sample of values x1, . . . ,
xN by finding that value xi which has equal numbers of values above it and below
it. Of course, this is not possible when N is even. In that case it is conventional
to estimate the median as the mean of the unique two central values. If the values
xj j = 1, . . . , N are sorted into ascending (or, for that matter, descending) order,
then the formula for the median is

xmed =

{
x(N+1)/2, N odd
1
2 (xN/2 + x(N/2)+1), N even

(14.1.14)
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If a distribution has a strong central tendency, so that most of its area is under
a single peak, then the median is an estimator of the central value. It is a more
robust estimator than the mean is: The median fails as an estimator only if the area
in the tails is large, while the mean fails if the first moment of the tails is large;
it is easy to construct examples where the first moment of the tails is large even
though their area is negligible.

To find the median of a set of values, one can proceed by sorting the set and
then applying (14.1.14). This is a process of orderN logN . You might rightly think
that this is wasteful, since it yields much more information than just the median
(e.g., the upper and lower quartile points, the deciles, etc.). In fact, we saw in
§8.5 that the element x(N+1)/2 can be located in of order N operations. Consult
that section for routines.

The mode of a probability distribution function p(x) is the value of x where it
takes on a maximum value. The mode is useful primarily when there is a single, sharp
maximum, in which case it estimates the central value. Occasionally, a distribution
will be bimodal, with two relative maxima; then one may wish to know the two
modes individually. Note that, in such cases, the mean and median are not very
useful, since they will give only a “compromise” value between the two peaks.
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14.2 Do Two Distributions Have the Same
Means or Variances?

Not uncommonly we want to know whether two distributions have the same
mean. For example, a first set of measured values may have been gathered before
some event, a second set after it. We want to know whether the event, a “treatment”
or a “change in a control parameter,” made a difference.

Our first thought is to ask “how many standard deviations” one sample mean is
from the other. That number may in fact be a useful thing to know. It does relate to
the strength or “importance” of a difference of means if that difference is genuine.
However, by itself, it says nothing about whether the difference is genuine, that is,
statistically significant. A difference of means can be very small compared to the
standard deviation, and yet very significant, if the number of data points is large.
Conversely, a difference may be moderately large but not significant, if the data


