614 Chapter 14.  Statistical Description of Data

14.3 Are Two Distributions Different?

Given two sets of data, we can generalize the questions asked in the previous
section and ask thesinglequestion: Arethetwo setsdrawn fromthe same distribution
function, or from different distribution functions? Equivalently, in proper statistical
language, “Can we disprove, to a certain required level of significance, the null
hypothesis that two data sets are drawn from the same population distribution
function?’ Disproving the null hypothesisin effect provesthat the data sets are from
different distributions. Failing to disprove the null hypothesis, on the other hand,
only shows that the data sets can be consistent with a single distribution function.
One can never prove that two data sets come from a single distribution, since (e.g.)
no practical amount of data can distinguish between two distributions which differ
only by one part in 10%°.

Proving that two distributionsare different, or showing that they are consistent,
isatask that comes up al the time in many areas of research: Are the visible stars
distributed uniformly in the sky? (That is, is the distribution of stars as a function
of declination — position in the sky — the same as the distribution of sky area as
afunction of declination?) Are educationa patterns the same in Brooklyn as in the
Bronx? (That is, are the distributions of people as a function of |ast-grade-attended
the same?) Do two brands of fluorescent lights have the same distribution of
burn-out times? Istheincidence of chicken pox the same for first-born, second-born,
third-born children, etc.?

These four examples illustrate the four combinations arising from two different
dichotomies: (1) The data are either continuous or binned. (2) Either we wish to
compare one data set to a known distribution, or we wish to compare two equally
unknown data sets. The data sets on fluorescent lights and on stars are continuous,
since we can be given lists of individua burnout times or of stellar positions. The
data sets on chicken pox and educational level are binned, since we are given
tables of numbers of events in discrete categories. first-born, second-born, etc.; or
6th Grade, 7th Grade, etc. Stars and chicken pox, on the other hand, share the
property that the null hypothesisis a known distribution (distribution of areain the
sky, or incidence of chicken pox in the general population). Fluorescent lights and
educational level involvethe comparison of two equally unknown data sets (the two
brands, or Brooklyn and the Bronx).

One can aways turn continuous data into binned data, by grouping the events
into specified ranges of the continuous variable(s): declinations between 0 and 10
degrees, 10 and 20, 20 and 30, etc. Binning involvesaloss of information, however.
Also, thereis often considerable arbitrariness as to how the bins should be chosen.
Alongwith many other investigators, we prefer to avoid unnecessary binning of data.

The accepted test for differences between binned distributionsisthe chi-square
test. For continuous data as a function of a single variable, the most generaly
accepted test is the Kolmogorov-Smirnov test. We consider each in turn.

Chi-Square Test

Suppose that N; isthe number of events observed in theith bin, and that n; is
the number expected according to some known distribution. Note that the N;'s are
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14.3 Are Two Distributions Different? 615

integers, while the n;’s may not be. Then the chi-square statisticis

2 (N; —n;)?

X2 = Z - (14.3.1)
where thesum is over al bins. A large vaue of x? indicatesthat the null hypothesis
(that the N;'saredrawn from thepopul ation represented by then,;’s) israther unlikely.

Any term j in (14.3.1) with 0 = n; = N; should be omitted from the sum. A
term withn; = 0, N; # 0 givesan infinite x2, as it should, since in this case the
N;'s cannot possibly be drawn from the n;’sl

The chi-square probability function Q(x2|v) is an incompl ete gamma function,
and was already discussed in §6.2 (see equation 6.2.18). Strictly speaking Q(x2|v)
is the probability that the sum of the squares of v random normal variables of unit
variance (and zero mean) will be greater than x2. The terms in the sum (14.3.1)
are not individually normal. However, if either the number of binsislarge (> 1),
or the number of eventsin each bin islarge > 1), then the chi-square probability
function isagood approximation to the distribution of (14.3.1) in the case of the null
hypothesis. Its use to estimate the significance of the chi-square test is standard.

The appropriate value of v, the number of degrees of freedom, bears some
additional discussion. If the data are collected with the model n;'s fixed — that
is, not later renormalized to fit the total observed number of events ¥ N; — then v
equals the number of bins Np. (Note that thisis not the total number of events!)
Much more commonly, then;’sare normalized after the fact so that their sum equals
the sum of the N;’s. In this case the correct value for v is Ng — 1, and the mode
is said to have one constraint (knstrn=1 in the program below). If the model that
givesthen;’'shas additional free parameters that were adjusted after the fact to agree
with the data, then each of these additiona “fitted” parameters decreases v (and
increases knstrn) by one additiona unit.

We have, then, the following program:

SUBROUTINE chsone(bins,ebins,nbins,knstrn,df,chsq,prob)

INTEGER knstrn,nbins

REAL chsq,df,prob,bins(nbins),ebins(nbins)

USES ganmmy
Given the array bins (1:nbins) containing the observed numbers of events, and an array
ebins (1:nbins) containing the expected numbers of events, and given the number of
constraints knstrn (normally one), this routine returns (trivially) the number of degrees of
freedom df, and (nontrivially) the chi-square chsq and the significance prob. A small value
of prob indicates a significant difference between the distributions bins and ebins. Note
that bins and ebins are both real arrays, although bins will normally contain integer
values.

INTEGER j

REAL gammq

df=nbins-knstrn

chsqg=0.

dou j=1,nbins
if (ebins(j).le.0.)pause ’bad expected number in chsone’
chsq=chsq+(bins(j)-ebins(j))**2/ebins(j)

enddo 11

prob=gammq(0.5*df,0.5%chsq)

return

END

Chi-square probability function. See §6.2.
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616 Chapter 14.  Statistical Description of Data

Next we consider the case of comparing two binned data sets. Let R, be the
number of eventsin bin ¢ for the first data set, .S; the number of events in the same
bin i for the second data set. Then the chi-square statistic is

2 (Ri — S;)?
= E - 14.3.2
X - R, + S; ( )

Comparing (14.3.2) to (14.3.1), you should note that the denominator of (14.3.2) is
not just the average of R; and S; (which would be an estimator of n; in 14.3.1).
Rather, it istwice the average, the sum. The reason is that each term in a chi-square
sum is supposed to approximate the square of a normally distributed quantity with
unit variance. The variance of the difference of two norma quantities is the sum
of their individua variances, not the average.

If the data were collected in such away that the sum of the R;’sis necessarily
equal to the sum of S;’'s, then the number of degrees of freedom is egua to one
less than the number of bins, Ng — 1 (that is, knstrn = 1), the usua case. If
this requirement were absent, then the number of degrees of freedom would be N.
Example: A birdwatcher wants to know whether the distribution of sighted birds
as a function of species is the same thisyear as last. Each bin corresponds to one
species. |If the birdwatcher takes his data to be the first 1000 birds that he saw in
each year, then the number of degrees of freedomis Np — 1. If hetakes hisdatato
be all the birds he saw on arandom sample of days, the same daysin each year, then
the number of degrees of freedom is Np (knstrn = 0). In thislatter case, note that
he is a'so testing whether the birds were more numerous overal in one year or the
other: That isthe extra degree of freedom. Of course, any additional constraintson
the data set lower the number of degrees of freedom (i.e., increase knstrn to more
positive values) in accordance with their number.

The program is

SUBROUTINE chstwo(binsl,bins2,nbins,knstrn,df,chsq,prob)

INTEGER knstrn,nbins

REAL chsq,df,prob,bins1(nbins),bins2(nbins)

USES ganmmy
Given the arrays bins1(1:nbins) and bins2(1:nbins), containing two sets of binned
data, and given the number of constraints knstrn (normally 1 or 0), this routine returns
the number of degrees of freedom df, the chi-square chsq, and the significance prob.
A small value of prob indicates a significant difference between the distributions bins1
and bins2. Note that bins1 and bins2 are both real arrays, although they will normally
contain integer values.

INTEGER j

REAL gammq

df=nbins-knstrn

chsqg=0.

dou j=1,nbins
if (bins1(j).eq.0..and.bins2(j) .eq.0.)then

df=df-1. No data means one less degree of freedom.
else
chsq=chsq+(bins1(j)-bins2(j))**2/(bins1(j)+bins2(j))
endif
enddo 11
prob=gammq(0.5*df,0.5%chsq) Chi-square probability function. See §6.2.

return
END
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14.3 Are Two Distributions Different? 617

Equation (14.3.2) and theroutine chstwo both apply to the case where the total
number of data pointsis the same in the two binned sets. For unequal numbers of
data points, the formula analogous to (14.3.2) is

oY (v/S/RR; — \/R/SS;) (1433

- R; + S;

K3

where
R=> R S=)_5 (14.3.4)

are the respective numbers of data points. It is straightforward to make the
corresponding change in chstwo.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (or K—S) test is applicable to unbinned distributions
that are functions of a single independent variable, that is, to data sets where each
data point can be associated with a single number (lifetime of each lightbulb when
it burns out, or declination of each star). In such cases, the list of data points can
be easily converted to an unbiased estimator Sy () of the cumulative distribution
function of the probability distributionfrom which it was drawn: If the N events are
located at values x;, i = 1,..., N, then Sy (x) isthe function giving the fraction
of data points to the left of a given value x. This function is obviously constant
between consecutive (i.e., sorted into ascending order) z;’s, and jumps by the same
constant 1/N at each x;. (See Figure 14.3.1)

Different distribution functions, or sets of data, give different cumulative
distribution function estimates by the above procedure. However, al cumulative
distribution functions agree at the smallest alowable value of x (where they are
zero), and at the largest alowable value of = (where they are unity). (The smallest
and largest values might of course be £00.) So it isthe behavior between the largest
and smallest values that distinguishes distributions.

One can think of any number of statistics to measure the overall difference
between two cumulativedistributionfunctions: the absol ute val ue of the areabetween
them, for example. Or their integrated mean square difference. The Kolmogorov-
Smirnov D is a particularly simple measure: It is defined as the maximum value
of the absolute difference between two cumulative distribution functions. Thus,
for comparing one data set’s Sy (z) to a known cumulative distribution function
P(x), the K-S statistic is

D= max [Sy(z)— P(x)] (14.3.5)

—oo<r<oo

while for comparing two different cumulative distribution functions Sy, (x) and
SN, (x), the K-S datistic is

D= max |Sy,(2)— S, (2)| (14.3.6)

—oo<r<oo
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618 Chapter 14.  Statistical Description of Data
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Figure 14.3.1.  Kolmogorov-Smirnov statistic D. A measured distribution of values in = (shown
as N dots on the lower abscissa) is to be compared with a theoretical distribution whose cumulative
probability distribution is plotted as P(z). A step-function cumulative probability distribution Sx () is
constructed, one that rises an equal amount at each measured point. D is the greatest distance between
the two cumulative distributions.

What makes the K-S statistic useful isthat itsdistributionin the case of the null
hypothesis (data sets drawn from the same distribution) can be calculated, at least to
useful approximation, thus giving the significance of any observed nonzero value of
D. A central feature of the K-S test is that it is invariant under reparametrization
of x; in other words, you can locally dide or stretch the = axis in Figure 14.3.1,
and the maximum distance D remains unchanged. For example, you will get the
same significance using x as using log x.

The function that enters into the calculation of the significance can be written
as the following sum:

Qrs(\) =2 (-1)7~L e %™ (14.3.7)
j=1

which is a monotonic function with the limiting values
Qrs(0) =1 Qxs(c0) =0 (14.3.8)

In terms of this function, the significance level of an observed value of D (as
a disproof of the null hypothesis that the distributions are the same) is given
approximately [1] by the formula

Probability (D > observed ) = QKS([\/N_@+ 0.12 + 0.11/\/J7@] D)
(14.3.9)
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14.3 Are Two Distributions Different? 619

where N, is the effective number of data points, N, = N for the case (14.3.5)
of one distribution, and

_ NiNp
N+ N,

€

(14.3.10)

for the case (14.3.6) of two distributions, where N; is the number of data pointsin
the first distribution, N5 the number in the second.

The nature of the approximation involved in (14.3.9) is that it becomes
asymptotically accurate as the N, becomes large, but is already quite good for
N, > 4, as smal anumber as one might ever actualy use. (Seel1].)

So, we have the following routines for the cases of one and two distributions:

SUBROUTINE ksone(data,n,func,d,prob)

INTEGER n

REAL d,data(n),func,prob

EXTERNAL func

USES probks, sort
Given an array data(1:n), and given a user-supplied function of a single variable func
which is a cumulative distribution function ranging from 0 (for smallest values of its argu-
ment) to 1 (for largest values of its argument), this routine returns the K-S statistic d, and
the significance level prob. Small values of prob show that the cumulative distribution
function of data is significantly different from func. The array data is modified by being
sorted into ascending order.

INTEGER j

REAL dt,en,ff,fn,fo,probks

call sort(n,data) If the data are already sorted into ascending or-

en=n der, then this call can be omitted.

d=0.

fo=0. Data’s c.d.f. before the next step.

dou j=1,n Loop over the sorted data points.
fn=j/en Data’s c.d.f. after this step.
ff=func(data(j)) Compare to the user-supplied function.
dt=max(abs(fo-ff),abs(fn-ff)) Maximum distance.
if(dt.gt.d)d=dt
fo=fn

enddo 11

en=sqrt (en)

prob=probks ((en+0.12+0.11/en) *d) Compute significance.

return

END

SUBROUTINE kstwo(datal,nl,data2,n2,d,prob)

INTEGER nl,n2

REAL d,prob,datal(nl),data2(n2)

USES probks, sort
Given an array datal(1:n1), and an array data2(1:n2), this routine returns the K—
S statistic d, and the significance level prob for the null hypothesis that the data sets
are drawn from the same distribution. Small values of prob show that the cumulative
distribution function of datal is significantly different from that of data2. The arrays
datal and data2 are modified by being sorted into ascending order.

INTEGER j1,j2

REAL d1,d2,dt,enl,en2,en,fnl,fn2,probks

call sort(nl,datal)

call sort(n2,data2)

enl=nl

en2=n2

j1=1 Next value of datal to be processed.

j2=1 Ditto, data2.
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620 Chapter 14.  Statistical Description of Data

fn1=0.

fn2=0.

d=0.

if(jl.le.nl.and.j2.le.n2)then
di=datal(jl)
d2=data2(j2)
if(d1.le.d2)then

If we are not done...

Next step is in datal.

fni=j1/enl
j1=ji+1
endif
if(d2.1le.d1)then Next step is in data2.
fn2=j2/en2
j2=j2+1
endif

dt=abs (fn2-fn1)
if(dt.gt.d)d=dt
goto 1
endif
en=sqrt (enl*en2/(enl+en2))
prob=probks ((en+0.12+0.11/en) *d) Compute significance.
return
END

Both of the above routines use the following routinefor calculating thefunction

Qks:

FUNCTION probks(alam)
REAL probks,alam,EPS1,EPS2
PARAMETER (EPS1=0.001, EPS2=1.e-8)
Kolmogorov-Smirnov probability function.
INTEGER j
REAL a2,fac,term,termbf
a2=-2.*alam#**2
fac=2.
probks=0.
termbf=0. Previous term in sum.
dou j=1,100
term=fac*exp (a2*j**2)
probks=probks+term
if (abs(term) .le.EPS1*termbf.or.abs(term) .le.EPS2*probks)return

fac=-fac Alternating signs in sum.
termbf=abs (term)
enddo 11
probks=1. Get here only by failing to converge.
return
END

Variants on the K-S Test

The sensitivity of the K-S test to deviations from a cumulative distribution function
P(x) is not independent of =. In fact, the K-S test tends to be most sensitive around the
median value, where P(z) = 0.5, and less sensitive at the extreme ends of the distribution,
where P(z) isnear 0 or 1. Thereason isthat the difference | Sy (z) — P(z)| doesnot, in the
null hypothesis, have a probability distribution that isindependent of z. Rather, its varianceis
proportional to P(z)[1 — P(z)], whichislargest at P = 0.5. Sincethe K-S statistic (14.3.5)
isthe maximum difference over all = of two cumulative distribution functions, adeviation that
might be statistically significant at its own value of x gets compared to the expected chance
deviation at P = 0.5, and is thus discounted. A result is that, while the K-S test is good at
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14.3 Are Two Distributions Different? 621

finding shifts in a probability distribution, especially changes in the median value, it is not
always so good at finding spreads, which more affect the tails of the probability distribution,
and which may leave the median unchanged.

One way of increasing the power of the K-S statistic out on the tails is to replace
D (equation 14.3.5) by a so-called stabilized or weighted statistic [2-4], for example the
Anderson-Darling statistic,

ISu(z) - Pla)]
—oo<z<oo  /P(x)[1 — P(x)]

Unfortunately, there is no simple formula analogousto equations(14.3.7) and (14.3.9) for this
statistic, although Noé [5] givesacomputational method using arecursion relation and provides
agraph of numerical results. There are many other possible similar statistics, for example

Do [0 ISx(@) - P@)

~ Jroo VP@1-P(0)]

which is also discussed by Anderson and Darling (see[3]).

Another approach, which we prefer as simpler and more direct, is due to Kuiper [6,7].
We already mentioned that the standard K-S test is invariant under reparametrizations of the
variable z. An even more general symmetry, which guaranteesequal sensitivities at all values
of z, isto wrap the x axis around into acircle (identifying the points at +00), and to look for
astatistic that is now invariant under all shifts and parametrizations on the circle. Thisallows,
for example, a probability distribution to be “cut” at some central value of x, and the left and
right halves to be interchanged, without altering the statistic or its significance.

Kuiper’s statistic, defined as

V=D,+D_= max [Snv(z)—P(z)]+ max [P(z)—Sn(z)] (14.313)

—oco<zr <o —oco<zr <o

D* = (14.3.11)

P(z) (14.3.12)

is the sum of the maximum distance of Sx (z) above and below P(z). You should be able
to convince yourself that this statistic has the desired invariance on the circle: Sketch the
indefinite integral of two probability distributions defined on the circle as a function of angle
around the circle, as the angle goes through several times 360°. If you change the starting
point of the integration, D and D_ changeindividualy, but their sum is constant.

Furthermore, there is a simple formula for the asymptotic distribution of the statistic V/,
directly analogous to equations (14.3.7)—«(14.3.10). Let

2,2

Qrr(\) = 2%(43‘2,\2 —1)e ¥ (14.3.14)
j=1

which is monotonic and satisfies
Qrr(0)=1  Qxp(co)=0 (14.3.15)
In terms of this function the significance level is[1]

Probability (V > observed ) = Qxp ( [W +0.155 + 0.24/\/E] D) (14.3.16)

Here N, is N in the one-sample case, or is given by equation (14.3.10) in the case of
two samples.

Of course, Kuiper’s test is ideal for any problem originally defined on a circle, for
example, to test whether the distribution in longitude of something agrees with some theory,
or whether two somethings have different distributions in longitude. (See also[8].)

We will leave to you the coding of routines analogous to ksone, kstwo, and probks,
above. (For A < 0.4, don’t try to do the sum 14.3.14. Itsvalueis 1, to 7 figures, but the series
can require many terms to converge, and loses accuracy to roundoff.)

Two final cautionary notes: First, we should mention that all varieties of K-S test lack
the ability to discriminate some kinds of distributions. A simple example is a probability
distribution with a narrow “notch” within which the probability falls to zero. Such a
distribution is of course ruled out by the existence of even one data point within the notch,
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but, because of its cumulative nature, a K-S test would require many data points in the notch
before signaling a discrepancy.

Second, we should note that, if you estimate any parametersfrom a dataset (e.g., amean
and variance), then thedistribution of the K—Sstatistic D for acumulativedistribution function
P(x) that usesthe estimated parametersis no longer given by equation (14.3.9). In general,
you will haveto determine the new distribution yourself, e.g., by Monte Carlo methods.
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14.4 Contingency Table Analysis of Two
Distributions

In this section, and the next two sections, we deal with measures of association
for two distributions. The situation is this:. Each data point has two or more
different quantities associated with it, and we want to know whether knowledge of
one quantity gives us any demonstrable advantage in predicting the val ue of another
guantity. In many cases, one variablewill be an “independent” or “control” variable,
and another will be a“ dependent” or “measured” variable. Then, wewant to know if
thelatter variableisin fact dependent on or associated with the former variable. If it
is, we want to have some quantitative measure of the strength of the association. One
often hears thisloosaly stated as the question of whether two variables are correlated
or uncorrelated, but we will reserve those terms for a particular kind of association
(linear, or at least monotonic), as discussed in §14.5 and §14.6.

Notice that, as in previous sections, the different concepts of significance and
strength appear: The association between two distributions may be very significant
even if that association iswesk — if the quantity of datais large enough.

It is useful to distinguish among some different kinds of variables, with
different categories forming a loose hierarchy.

e A variable is called nominal if its values are the members of some
unordered set. For example, “state of residence” is a nomina variable
that (in the U.S.) takes on one of 50 values; in astrophysics, “type of
galaxy” isanomina variable with the three values “spira,” “eliptica,”
and “irregular.”
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