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14.7 Do Two-Dimensional Distributions Differ?

We here discuss a useful generalization of the K–S test (§14.3) to two-dimensional
distributions. This generalization is due to Fasano and Franceschini [1], a variant on an
earlier idea due to Peacock [2].

In a two-dimensional distribution, each data point is characterized by an (x, y) pair of
values. An example near to our hearts is that each of the 19 neutrinos that were detected
from Supernova 1987A is characterized by a time ti and by an energy Ei (see [3]). We
might wish to know whether these measured pairs (ti, Ei), i = 1 . . . 19 are consistent with a
theoretical model that predicts neutrino flux as a function of both time and energy — that is,
a two-dimensional probability distribution in the (x, y) [here, (t, E)] plane. That would be a
one-sample test. Or, given two sets of neutrino detections, from two comparable detectors,
we might want to know whether they are compatible with each other, a two-sample test.

In the spirit of the tried-and-true, one-dimensional K–S test, we want to range over
the (x, y) plane in search of some kind of maximum cumulative difference between two
two-dimensional distributions. Unfortunately, cumulative probability distribution is not
well-defined in more than one dimension! Peacock’s insight was that a good surrogate is
the integrated probability in each of four natural quadrants around a given point (xi, yi),
namely the total probabilities (or fraction of data) in (x > xi, y > yi), (x < xi, y > yi),
(x < xi, y < yi), (x > xi, y < yi). The two-dimensional K–S statistic D is now taken
to be the maximum difference (ranging both over data points and over quadrants) of the
corresponding integrated probabilities. When comparing two data sets, the value of D may
depend on which data set is ranged over. In that case, define an effective D as the average
of the two values obtained. If you are confused at this point about the exact definition of D,
don’t fret; the accompanying computer routines amount to a precise algorithmic definition.

Figure 14.7.1 gives a feeling for what is going on. The 65 triangles and 35 squares seem
to have somewhat different distributions in the plane. The dotted lines are centered on the
triangle that maximizes the D statistic; the maximum occurs in the upper-left quadrant. That
quadrant contains only 0.12 of all the triangles, but it contains 0.56 of all the squares. The
value of D is thus 0.44. Is this statistically significant?

Even for fixed sample sizes, it is unfortunately not rigorously true that the distribution
of D in the null hypothesis is independent of the shape of the two-dimensional distribution.
In this respect the two-dimensional K–S test is not as natural as its one-dimensional parent.
However, extensive Monte Carlo integrations have shown that the distribution of the two-
dimensional D is very nearly identical for even quite different distributions, as long as they
have the same coefficient of correlation r, defined in the usual way by equation (14.5.1). In
their paper, Fasano and Franceschini tabulate Monte Carlo results for (what amounts to) the
distribution ofD as a function of (of course)D, sample size N , and coefficient of correlation
r. Analyzing their results, one finds that the significance levels for the two-dimensional K–S
test can be summarized by the simple, though approximate, formulas,

Probability (D > observed ) = QKS

( √
N D

1 +
√

1− r2(0.25− 0.75/
√
N)

)
(14.7.1)

for the one-sample case, and the same for the two-sample case, but with

N =
N1N2

N1 +N2
. (14.7.2)

The above formulas are accurate enough when N >∼ 20, and when the indicated
probability (significance level) is less than (more significant than) 0.20 or so. When the
indicated probability is > 0.20, its value may not be accurate, but the implication that the
data and model (or two data sets) are not significantly different is certainly correct. Notice
that in the limit of r → 1 (perfect correlation), equations (14.7.1) and (14.7.2) reduce to
equations (14.3.9) and (14.3.10): The two-dimensional data lie on a perfect straight line, and
the two-dimensional K–S test becomes a one-dimensional K–S test.
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Figure 14.7.1. Two-dimensional distributions of 65 triangles and 35 squares. The two-dimensional K–S
test finds that point one of whose quadrants (shown by dotted lines) maximizes the difference between
fraction of triangles and fraction of squares. Then, equation (14.7.1) indicates whether the difference is
statistically significant, i.e., whether the triangles and squaresmust have different underlyingdistributions.

The significance level for the data in Figure 14.7.1, by the way, is about 0.001. This
establishes to a near-certainty that the triangles and squares were drawn from different
distributions. (As in fact they were.)

Of course, if you do not want to rely on the Monte Carlo experiments embodied in
equation (14.7.1), you can do your own: Generate a lot of synthetic data sets from your
model, each one with the same number of points as the real data set. Compute D for each
synthetic data set, using the accompanying computer routines (but ignoring their calculated
probabilities), and count what fraction of the time these synthetic D’s exceed the D from the
real data. That fraction is your significance.

One disadvantage of the two-dimensional tests, by comparison with their one-
dimensional progenitors, is that the two-dimensional tests require of order N2 operations:
Two nested loops of order N take the place of an N logN sort. For small computers, this
restricts the usefulness of the tests to N less than several thousand.

We now give computer implementations. The one-sample case is embodied in the
routine ks2d1s (that is, 2-dimensions, 1-sample). This routine calls a straightforward utility
routine quadct to count points in the four quadrants, and it calls a user-supplied routine
quadvl that must be capable of returning the integrated probability of an analytic model in
each of four quadrants around an arbitrary (x, y) point. A trivial sample quadvl is shown;
realistic quadvls can be quite complicated, often incorporating numerical quadratures over
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analytic two-dimensional distributions.

SUBROUTINE ks2d1s(x1,y1,n1,quadvl,d1,prob)
INTEGER n1
REAL d1,prob,x1(n1),y1(n1)
EXTERNAL quadvl

C USES pearsn,probks,quadct,quadvl
Two-dimensional Kolmogorov-Smirnov test of one sample against a model. Given the x
and y coordinates of n1 data points in arrays x1(1:n1) and y1(1:n1), and given a
user-supplied function quadvl that exemplifies the model, this routine returns the two-
dimensional K-S statistic as d1, and its significance level as prob. Small values of prob
show that the sample is significantly different from the model. Note that the test is slightly
distribution-dependent, so prob is only an estimate.

INTEGER j
REAL dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,rr,sqen,probks
d1=0.0
do 11 j=1,n1 Loop over the data points.

call quadct(x1(j),y1(j),x1,y1,n1,fa,fb,fc,fd)
call quadvl(x1(j),y1(j),ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

For both the sample and the model, the distribution is integrated in each of four quad-
rants, and the maximum difference is saved.

enddo 11

call pearsn(x1,y1,n1,r1,dum,dumm) Get the linear correlation coefficient r1.
sqen=sqrt(float(n1))
rr=sqrt(1.0-r1**2)

Estimate the probability using the K-S probability function probks.
prob=probks(d1*sqen/(1.0+rr*(0.25-0.75/sqen)))
return
END

SUBROUTINE quadct(x,y,xx,yy,nn,fa,fb,fc,fd)
INTEGER nn
REAL fa,fb,fc,fd,x,y,xx(nn),yy(nn)

Given an origin (x, y), and an array of nn points with coordinates xx and yy, count how
many of them are in each quadrant around the origin, and return the normalized frac-
tions. Quadrants are labeled alphabetically, counterclockwise from the upper right. Used
by ks2d1s and ks2d2s.

INTEGER k,na,nb,nc,nd
REAL ff
na=0
nb=0
nc=0
nd=0
do 11 k=1,nn

if(yy(k).gt.y)then
if(xx(k).gt.x)then

na=na+1
else

nb=nb+1
endif

else
if(xx(k).gt.x)then

nd=nd+1
else

nc=nc+1
endif

endif
enddo 11

ff=1.0/nn
fa=ff*na
fb=ff*nb
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fc=ff*nc
fd=ff*nd
return
END

SUBROUTINE quadvl(x,y,fa,fb,fc,fd)
REAL fa,fb,fc,fd,x,y

This is a sample of a user-supplied routine to be used with ks2d1s. In this case, the model
distribution is uniform inside the square −1 < x < 1, −1 < y < 1. In general this routine
should return, for any point (x, y), the fraction of the total distribution in each of the
four quadrants around that point. The fractions, fa, fb, fc, and fd, must add up to 1.
Quadrants are alphabetical, counterclockwise from the upper right.

REAL qa,qb,qc,qd
qa=min(2.,max(0.,1.-x))
qb=min(2.,max(0.,1.-y))
qc=min(2.,max(0.,x+1.))
qd=min(2.,max(0.,y+1.))
fa=0.25*qa*qb
fb=0.25*qb*qc
fc=0.25*qc*qd
fd=0.25*qd*qa
return
END

The routine ks2d2s is the two-sample case of the two-dimensional K–S test. It also calls
quadct, pearsn, and probks. Being a two-sample test, it does not need an analytic model.

SUBROUTINE ks2d2s(x1,y1,n1,x2,y2,n2,d,prob)
INTEGER n1,n2
REAL d,prob,x1(n1),x2(n2),y1(n1),y2(n2)

C USES pearsn,probks,quadct
Two-dimensional Kolmogorov-Smirnov test on two samples. Given the x and y coordinates
of the first sample as n1 values in arrays x1(1:n1) and y1(1:n1), and likewise for the
second sample, n2 values in arrays x2 and y2, this routine returns the two-dimensional, two-
sample K-S statistic as d, and its significance level as prob. Small values of prob show
that the two samples are significantly different. Note that the test is slightly distribution-
dependent, so prob is only an estimate.

INTEGER j
REAL d1,d2,dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,r2,rr,

* sqen,probks
d1=0.0
do 11 j=1,n1 First, use points in the first sample as origins.

call quadct(x1(j),y1(j),x1,y1,n1,fa,fb,fc,fd)
call quadct(x1(j),y1(j),x2,y2,n2,ga,gb,gc,gd)
d1=max(d1,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

enddo 11

d2=0.0
do 12 j=1,n2 Then, use points in the second sample as origins.

call quadct(x2(j),y2(j),x1,y1,n1,fa,fb,fc,fd)
call quadct(x2(j),y2(j),x2,y2,n2,ga,gb,gc,gd)
d2=max(d2,abs(fa-ga),abs(fb-gb),abs(fc-gc),abs(fd-gd))

enddo 12

d=0.5*(d1+d2) Average the K-S statistics.
sqen=sqrt(float(n1)*float(n2)/float(n1+n2))
call pearsn(x1,y1,n1,r1,dum,dumm) Get the linear correlation coefficient for each sample.
call pearsn(x2,y2,n2,r2,dum,dumm)
rr=sqrt(1.0-0.5*(r1**2+r2**2))

Estimate the probability using the K-S probability function probks.
prob=probks(d*sqen/(1.0+rr*(0.25-0.75/sqen)))
return
END



644 Chapter 14. Statistical Description of Data

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

CITED REFERENCES AND FURTHER READING:

Fasano, G. and Franceschini, A. 1987, Monthly Notices of the Royal Astronomical Society,
vol. 225, pp. 155–170. [1]

Peacock, J.A. 1983, Monthly Notices of the Royal Astronomical Society, vol. 202, pp. 615–627.
[2]

Spergel, D.N., Piran, T., Loeb, A., Goodman, J., and Bahcall, J.N. 1987, Science, vol. 237,
pp. 1471–1473. [3]

14.8 Savitzky-Golay Smoothing Filters

In §13.5 we learned something about the construction and application of digital filters,
but little guidance was given on which particular filter to use. That, of course, depends
on what you want to accomplish by filtering. One obvious use for low-pass filters is to
smooth noisy data.

The premise of data smoothing is that one is measuring a variable that is both slowly
varying and also corrupted by random noise. Then it can sometimes be useful to replace
each data point by some kind of local average of surrounding data points. Since nearby
points measure very nearly the same underlying value, averaging can reduce the level of noise
without (much) biasing the value obtained.

We must comment editorially that the smoothing of data lies in a murky area, beyond
the fringe of some better posed, and therefore more highly recommended, techniques that
are discussed elsewhere in this book. If you are fitting data to a parametric model, for
example (see Chapter 15), it is almost always better to use raw data than to use data that
has been pre-processed by a smoothing procedure. Another alternative to blind smoothing is
so-called “optimal” or Wiener filtering, as discussed in §13.3 and more generally in §13.6.
Data smoothing is probably most justified when it is used simply as a graphical technique, to
guide the eye through a forest of data points all with large error bars; or as a means of making
initial rough estimates of simple parameters from a graph.

In this section we discuss a particular type of low-pass filter, well-adapted for data
smoothing, and termed variously Savitzky-Golay [1], least-squares [2], or DISPO (Digital
Smoothing Polynomial) [3] filters. Rather than having their properties defined in the Fourier
domain, and then translated to the time domain, Savitzky-Golay filters derive directly from
a particular formulation of the data smoothing problem in the time domain, as we will now
see. Savitzky-Golay filters were initially (and are still often) used to render visible the relative
widths and heights of spectral lines in noisy spectrometric data.

Recall that a digital filter is applied to a series of equally spaced data values fi ≡ f(ti),
where ti ≡ t0 + i∆ for some constant sample spacing ∆ and i = . . . − 2,−1, 0, 1, 2, . . . .
We have seen (§13.5) that the simplest type of digital filter (the nonrecursive or finite impulse
response filter) replaces each data value fi by a linear combination gi of itself and some
number of nearby neighbors,

gi =

nR∑
n=−nL

cnfi+n (14.8.1)

Here nL is the number of points used “to the left” of a data point i, i.e., earlier than it, while
nR is the number used to the right, i.e., later. A so-called causal filter would have nR = 0.

As a starting point for understanding Savitzky-Golay filters, consider the simplest
possible averaging procedure: For some fixed nL = nR , compute each gi as the average of
the data points from fi−nL to fi+nR . This is sometimes called moving window averaging
and corresponds to equation (14.8.1) with constant cn = 1/(nL + nR + 1). If the underlying
function is constant, or is changing linearly with time (increasing or decreasing), then no
bias is introduced into the result. Higher points at one end of the averaging interval are on


