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15.6 Confidence Limits on Estimated Model
Parameters

Several times already in this chapter we have made statements about the standard
errors, or uncertainties, in a set of M estimated parameters a. We have given some
formulas for computing standard deviations or variances of individual parameters
(equations 15.2.9, 15.4.15, 15.4.19), as well as some formulas for covariances
between pairs of parameters (equation 15.2.10; remark following equation 15.4.15;
equation 15.4.20; equation 15.5.15).

In this section, we want to be more explicit regarding the precise meaning
of these quantitative uncertainties, and to give further information about how
quantitative confidence limits on fitted parameters can be estimated. The subject
can get somewhat technical, and even somewhat confusing, so we will try to make
precise statements, even when they must be offered without proof.

Figure 15.6.1 shows the conceptual scheme of an experiment that “measures”
a set of parameters. There is some underlying true set of parameters atrue that are
known to Mother Nature but hidden from the experimenter. These true parameters
are statistically realized, along with random measurement errors, as a measured data
set, which we will symbolize asD(0). The data setD(0) is known to the experimenter.
He or she fits the data to a model by χ2 minimization or some other technique, and
obtains measured, i.e., fitted, values for the parameters, which we here denote a(0).

Because measurement errors have a random component, D(0) is not a unique
realization of the true parameters atrue. Rather, there are infinitely many other
realizations of the true parameters as “hypothetical data sets” each of which could
have been the one measured, but happened not to be. Let us symbolize these
by D(1),D(2), . . . . Each one, had it been realized, would have given a slightly
different set of fitted parameters, a(1), a(2), . . . , respectively. These parameter sets
a(i) therefore occur with some probability distribution in the M -dimensional space
of all possible parameter sets a. The actual measured set a(0) is one member drawn
from this distribution.

Even more interesting than the probability distribution of a(i) would be the
distribution of the difference a(i) − atrue. This distribution differs from the former
one by a translation that puts Mother Nature’s true value at the origin. If we knew this
distribution, we would know everything that there is to know about the quantitative
uncertainties in our experimental measurement a(0).

So the name of the game is to find some way of estimating or approximating
the probability distribution of a(i)− atrue without knowing atrue and without having
available to us an infinite universe of hypothetical data sets.

Monte Carlo Simulation of Synthetic Data Sets

Although the measured parameter set a(0) is not the true one, let us consider
a fictitious world in which it was the true one. Since we hope that our measured
parameters are not too wrong, we hope that that fictitious world is not too different
from the actual world with parameters atrue. In particular, let us hope — no, let us
assume — that the shape of the probability distribution a(i) − a(0) in the fictitious
world is the same, or very nearly the same, as the shape of the probability distribution
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Figure 15.6.1. A statistical universe of data sets from an underlying model. True parameters a true are
realized in a data set, from which fitted (observed) parameters a 0 are obtained. If the experiment were
repeated many times, new data sets and new values of the fitted parameters would be obtained.

a(i)− atrue in the real world. Notice that we are not assuming that a(0) and atrue are
equal; they are certainly not. We are only assuming that the way in which random
errors enter the experiment and data analysis does not vary rapidly as a function of
atrue, so that a(0) can serve as a reasonable surrogate.

Now, often, the distribution of a(i) − a(0) in the fictitious world is within our
power to calculate (see Figure 15.6.2). If we know something about the process
that generated our data, given an assumed set of parameters a(0), then we can
usually figure out how to simulate our own sets of “synthetic” realizations of these
parameters as “synthetic data sets.” The procedure is to draw random numbers from
appropriate distributions (cf. §7.2–§7.3) so as to mimic our best understanding of
the underlying process and measurement errors in our apparatus. With such random
draws, we construct data sets with exactly the same numbers of measured points,
and precisely the same values of all control (independent) variables, as our actual
data set D(0). Let us call these simulated data sets DS(1),DS(2), . . . . By construction
these are supposed to have exactly the same statistical relationship to a(0) as the
D(i)’s have to atrue. (For the case where you don’t know enough about what you
are measuring to do a credible job of simulating it, see below.)

Next, for each DS(j), perform exactly the same procedure for estimation of

parameters, e.g., χ2 minimization, as was performed on the actual data to get
the parameters a(0), giving simulated measured parameters aS(1), a

S
(2), . . . . Each

simulated measured parameter set yields a point aS(i) − a(0). Simulate enough data
sets and enough derived simulated measured parameters, and you map out the desired
probability distribution in M dimensions.

In fact, the ability to do Monte Carlo simulations in this fashion has revo-
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Figure 15.6.2. Monte Carlo simulation of an experiment. The fitted parameters from an actual experiment
are used as surrogates for the true parameters. Computer-generated random numbers are used to simulate
many synthetic data sets. Each of these is analyzed to obtain its fitted parameters. The distribution of
these fitted parameters around the (known) surrogate true parameters is thus studied.

lutionized many fields of modern experimental science. Not only is one able to
characterize the errors of parameter estimation in a very precise way; one can also
try out on the computer different methods of parameter estimation, or different data
reduction techniques, and seek to minimize the uncertainty of the result according
to any desired criteria. Offered the choice between mastery of a five-foot shelf of
analytical statistics books and middling ability at performing statistical Monte Carlo
simulations, we would surely choose to have the latter skill.

Quick-and-Dirty Monte Carlo: The Bootstrap Method

Here is a powerful technique that can often be used when you don’t know
enough about the underlying process, or the nature of your measurement errors,
to do a credible Monte Carlo simulation. Suppose that your data set consists of
N independent and identically distributed (or iid) “data points.” Each data point
probably consists of several numbers, e.g., one or more control variables (uniformly
distributed, say, in the range that you have decided to measure) and one or more
associated measured values (each distributed however Mother Nature chooses).
“Iid” means that the sequential order of the data points is not of consequence to
the process that you are using to get the fitted parameters a. For example, a χ2

sum like (15.5.5) does not care in what order the points are added. Even simpler
examples are the mean value of a measured quantity, or the mean of some function
of the measured quantities.

The bootstrap method [1] uses the actual data set DS(0), with itsN data points, to

generate any number of synthetic data sets DS(1),DS(2), . . . , also with N data points.
The procedure is simply to draw N data points at a time with replacement from the
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set DS(0). Because of the replacement, you do not simply get back your original
data set each time. You get sets in which a random fraction of the original points,
typically ∼ 1/e ≈ 37%, are replaced by duplicated original points. Now, exactly
as in the previous discussion, you subject these data sets to the same estimation
procedure as was performed on the actual data, giving a set of simulated measured
parameters aS(1), a

S
(2), . . . . These will be distributed around a(0) in close to the same

way that a(0) is distributed around atrue.
Sounds like getting something for nothing, doesn’t it? In fact, it has taken more

than a decade for the bootstrap method to become accepted by statisticians. By now,
however, enough theorems have been proved to render the bootstrap reputable (see [2]

for references). The basic idea behind the bootstrap is that the actual data set, viewed
as a probability distribution consisting of delta functions at the measured values, is
in most cases the best — or only — available estimator of the underlying probability
distribution. It takes courage, but one can often simply use that distribution as the
basis for Monte Carlo simulations.

Watch out for cases where the bootstrap’s “iid” assumption is violated. For
example, if you have made measurements at evenly spaced intervals of some control
variable, then you can usually get away with pretending that these are “iid,” uniformly
distributed over the measured range. However, some estimators of a (e.g., ones
involving Fourier methods) might be particularly sensitive to all the points on a grid
being present. In that case, the bootstrap is going to give a wrong distribution. Also
watch out for estimators that look at anything like small-scale clumpiness within the
N data points, or estimators that sort the data and look at sequential differences.
Obviously the bootstrap will fail on these, too. (The theorems justifying the method
are still true, but some of their technical assumptions are violated by these examples.)

For a large class of problems, however, the bootstrap does yield easy, very
quick, Monte Carlo estimates of the errors in an estimated parameter set.

Confidence Limits

Rather than present all details of the probability distribution of errors in
parameter estimation, it is common practice to summarize the distribution in the
form of confidence limits. The full probability distribution is a function defined
on the M -dimensional space of parameters a. A confidence region (or confidence
interval) is just a region of thatM -dimensional space (hopefully a small region) that
contains a certain (hopefully large) percentage of the total probability distribution.
You point to a confidence region and say, e.g., “there is a 99 percent chance that the
true parameter values fall within this region around the measured value.”

It is worth emphasizing that you, the experimenter, get to pick both the
confidence level (99 percent in the above example), and the shape of the confidence
region. The only requirement is that your region does include the stated percentage
of probability. Certain percentages are, however, customary in scientific usage:
68.3 percent (the lowest confidence worthy of quoting), 90 percent, 95.4 percent, 99
percent, and 99.73 percent. Higher confidence levels are conventionally “ninety-nine
point nine . . . nine.” As for shape, obviously you want a region that is compact
and reasonably centered on your measurement a(0), since the whole purpose of a
confidence limit is to inspire confidence in that measured value. In one dimension,
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68% confidence interval on a2

68% confidence
interval on a1

68% confidence region
on a1 and a2 jointly

bias

a(i)1 − a(0)1
(s)

a(i)2 − a(0)2
(s)

Figure 15.6.3. Confidence intervals in 1 and 2 dimensions. The same fraction of measured points (here
68%) lies (i) between the two vertical lines, (ii) between the two horizontal lines, (iii) within the ellipse.

the convention is to use a line segment centered on the measured value; in higher
dimensions, ellipses or ellipsoids are most frequently used.

You might suspect, correctly, that the numbers 68.3 percent, 95.4 percent,
and 99.73 percent, and the use of ellipsoids, have some connection with a normal
distribution. That is true historically, but not always relevant nowadays. In general,
the probability distribution of the parameters will not be normal, and the above
numbers, used as levels of confidence, are purely matters of convention.

Figure 15.6.3 sketches a possible probability distribution for the case M = 2.
Shown are three different confidence regions which might usefully be given, all at the
same confidence level. The two vertical lines enclose a band (horizontal inverval)
which represents the 68 percent confidence interval for the variable a1 without regard
to the value of a2. Similarly the horizontal lines enclose a 68 percent confidence
interval for a2. The ellipse shows a 68 percent confidence interval for a1 and a2

jointly. Notice that to enclose the same probability as the two bands, the ellipse must
necessarily extend outside of both of them (a point we will return to below).

Constant Chi-Square Boundaries as Confidence Limits

When the method used to estimate the parameters a(0) is chi-square minimiza-
tion, as in the previous sections of this chapter, then there is a natural choice for the
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C

B

A

Z ′

Z

C ′

∆χ2 = 6.63

∆χ2 = 2.71

∆χ2 = 1.00

∆χ2 = 2.30A′

B ′

Figure 15.6.4. Confidence region ellipses corresponding to values of chi-square larger than the fitted
minimum. The solid curves, with ∆χ2 = 1.00,2.71,6.63 project onto one-dimensional intervalsAA′ ,
BB′, CC′ . These intervals — not the ellipses themselves — contain 68.3%, 90%, and 99% of normally
distributed data. The ellipse that contains 68.3% of normally distributed data is shown dashed, and has
∆χ2 = 2.30. For additional numerical values, see accompanying table.

shape of confidence intervals, whose use is almost universal. For the observed data
set D(0), the value of χ2 is a minimum at a(0). Call this minimum value χ2

min. If
the vector a of parameter values is perturbed away from a(0), then χ2 increases. The
region within which χ2 increases by no more than a set amount ∆χ2 defines some
M -dimensional confidence region around a(0). If ∆χ2 is set to be a large number,
this will be a big region; if it is small, it will be small. Somewhere in between there
will be choices of ∆χ2 that cause the region to contain, variously, 68 percent, 90
percent, etc. of probability distribution for a’s, as defined above. These regions are
taken as the confidence regions for the parameters a(0).

Very frequently one is interested not in the full M -dimensional confidence
region, but in individual confidence regions for some smaller number ν of parameters.
For example, one might be interested in the confidence interval of each parameter
taken separately (the bands in Figure 15.6.3), in which case ν = 1. In that case,
the natural confidence regions in the ν-dimensional subspace of theM -dimensional
parameter space are the projections of the M -dimensional regions defined by fixed
∆χ2 into the ν-dimensional spaces of interest. In Figure 15.6.4, for the caseM = 2,
we show regions corresponding to several values of ∆χ2. The one-dimensional
confidence interval in a2 corresponding to the region bounded by ∆χ2 = 1 lies
between the lines A and A′.

Notice that the projection of the higher-dimensional region on the lower-
dimension space is used, not the intersection. The intersection would be the band
between Z and Z′. It is never used. It is shown in the figure only for the purpose of
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making this cautionary point, that it should not be confused with the projection.

Probability Distribution of Parameters in the Normal Case

You may be wondering why we have, in this section up to now, made no
connection at all with the error estimates that come out of the χ2 fitting procedure,
most notably the covariance matrix Cij . The reason is this: χ2 minimization
is a useful means for estimating parameters even if the measurement errors are
not normally distributed. While normally distributed errors are required if the χ2

parameter estimate is to be a maximum likelihood estimator (§15.1), one is often
willing to give up that property in return for the relative convenience of the χ2

procedure. Only in extreme cases, measurement error distributions with very large
“tails,” is χ2 minimization abandoned in favor of more robust techniques, as will
be discussed in §15.7.

However, the formal covariance matrix that comes out of a χ2 minimization has
a clear quantitative interpretation only if (or to the extent that) the measurement errors
actually are normally distributed. In the case of nonnormal errors, you are “allowed”

• to fit for parameters by minimizing χ2

• to use a contour of constant ∆χ2 as the boundary of your confidence region
• to use Monte Carlo simulation or detailed analytic calculation in deter-

mining which contour ∆χ2 is the correct one for your desired confidence
level

• to give the covariance matrix Cij as the “formal covariance matrix of
the fit.”

You are not allowed
• to use formulas that we now give for the case of normal errors, which

establish quantitative relationships among ∆χ2, Cij , and the confidence
level.

Here are the key theorems that hold when (i) the measurement errors are
normally distributed, and either (ii) the model is linear in its parameters or (iii) the
sample size is large enough that the uncertainties in the fitted parameters a do not
extend outside a region in which the model could be replaced by a suitable linearized
model. [Note that condition (iii) does not preclude your use of a nonlinear routine
like mqrfit to find the fitted parameters.]

Theorem A. χ2
min is distributed as a chi-square distribution with N −M

degrees of freedom, where N is the number of data points and M is the number of
fitted parameters. This is the basic theorem that lets you evaluate the goodness-of-fit
of the model, as discussed above in §15.1. We list it first to remind you that unless
the goodness-of-fit is credible, the whole estimation of parameters is suspect.

Theorem B. If aS(j) is drawn from the universe of simulated data sets with

actual parameters a(0), then the probability distribution of δa ≡ aS(j) − a(0) is the
multivariate normal distribution

P (δa) da1 . . . daM = const.× exp

(
−1

2
δa · [α] · δa

)
da1 . . . daM

where [α] is the curvature matrix defined in equation (15.5.8).
Theorem C. If aS(j) is drawn from the universe of simulated data sets with

actual parameters a(0), then the quantity ∆χ2 ≡ χ2(a(j)) − χ2(a(0)) is distributed
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as a chi-square distribution with M degrees of freedom. Here the χ2’s are all
evaluated using the fixed (actual) data set D(0). This theorem makes the connection
between particular values of ∆χ2 and the fraction of the probability distribution
that they enclose as an M -dimensional region, i.e., the confidence level of the
M -dimensional confidence region.

Theorem D. Suppose that aS(j) is drawn from the universe of simulated data
sets (as above), that its first ν components a1, . . . , aν are held fixed, and that its
remaining M − ν components are varied so as to minimize χ2. Call this minimum
value χ2

ν . Then ∆χ2
ν ≡ χ2

ν − χ2
min is distributed as a chi-square distribution with

ν degrees of freedom. If you consult Figure 15.6.4, you will see that this theorem
connects the projected ∆χ2 region with a confidence level. In the figure, a point that
is held fixed in a2 and allowed to vary in a1 minimizing χ2 will seek out the ellipse
whose top or bottom edge is tangent to the line of constant a2, and is therefore the
line that projects it onto the smaller-dimensional space.

As a first example, let us consider the case ν = 1, where we want to find
the confidence interval of a single parameter, say a1. Notice that the chi-square
distributionwith ν = 1 degree of freedom is the same distributionas that of the square
of a single normally distributed quantity. Thus ∆χ2

ν < 1 occurs 68.3 percent of the
time (1-σ for the normal distribution), ∆χ2

ν < 4 occurs 95.4 percent of the time (2-σ
for the normal distribution), ∆χ2

ν < 9 occurs 99.73 percent of the time (3-σ for the
normal distribution), etc. In this manner you find the ∆χ2

ν that corresponds to your
desired confidence level. (Additional values are given in the accompanying table.)

Let δa be a change in the parameters whose first component is arbitrary, δa1,
but the rest of whose components are chosen to minimize the ∆χ2. Then Theorem
D applies. The value of ∆χ2 is given in general by

∆χ2 = δa · [α] · δa (15.6.1)

which follows from equation (15.5.8) applied at χ2
min where βk = 0. Since δa

by hypothesis minimizes χ2 in all but its first component, the second through M th
components of the normal equations (15.5.9) continue to hold. Therefore, the
solution of (15.5.9) is

δa = [α]−1 ·


c
0
...
0

 = [C] ·


c
0
...
0

 (15.6.2)

where c is one arbitrary constant that we get to adjust to make (15.6.1) give the
desired left-hand value. Plugging (15.6.2) into (15.6.1) and using the fact that [C]
and [α] are inverse matrices of one another, we get

c = δa1/C11 and ∆χ2
ν = (δa1)2/C11 (15.6.3)

or

δa1 = ±
√

∆χ2
ν

√
C11 (15.6.4)

At last! A relation between the confidence interval ±δa1 and the formal
standard error σ1 ≡

√
C11. Not unreasonably, we find that the 68 percent confidence

interval is ±σ1, the 95 percent confidence interval is ±2σ1, etc.
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∆χ2 as a Function of Confidence Level and Degrees of Freedom

ν

p 1 2 3 4 5 6

68.3% 1.00 2.30 3.53 4.72 5.89 7.04

90% 2.71 4.61 6.25 7.78 9.24 10.6

95.4% 4.00 6.17 8.02 9.70 11.3 12.8

99% 6.63 9.21 11.3 13.3 15.1 16.8

99.73% 9.00 11.8 14.2 16.3 18.2 20.1

99.99% 15.1 18.4 21.1 23.5 25.7 27.8

These considerations hold not just for the individual parameters ai, but also
for any linear combination of them: If

b ≡
M∑
k=1

ciai = c · a (15.6.5)

then the 68 percent confidence interval on b is

δb = ±
√

c · [C] · c (15.6.6)

However, these simple, normal-sounding numerical relationships do not hold
in the case ν > 1 [3]. In particular, ∆χ2 = 1 is not the boundary, nor does it project
onto the boundary, of a 68.3 percent confidence region when ν > 1. If you want
to calculate not confidence intervals in one parameter, but confidence ellipses in
two parameters jointly, or ellipsoids in three, or higher, then you must follow the
following prescription for implementing Theorems C and D above:

• Let ν be the number of fitted parameters whose joint confidence region you
wish to display, ν ≤M . Call these parameters the “parameters of interest.”

• Let p be the confidence limit desired, e.g., p = 0.68 or p = 0.95.
• Find ∆ (i.e., ∆χ2) such that the probability of a chi-square variable with
ν degrees of freedom being less than ∆ is p. For some useful values of p
and ν , ∆ is given in the table. For other values, you can use the routine
gammq and a simple root-finding routine (e.g., bisection) to find ∆ such
that gammq(ν/2, ∆/2) = 1 − p.

• Take the M ×M covariance matrix [C] = [α]−1 of the chi-square fit.
Copy the intersection of the ν rows and columns corresponding to the
parameters of interest into a ν × ν matrix denoted [Cproj].

• Invert the matrix [Cproj]. (In the one-dimensional case this was just taking
the reciprocal of the element C11.)

• The equation for the elliptical boundary of your desired confidence region
in the ν-dimensional subspace of interest is

∆ = δa′ · [Cproj]
−1 · δa′ (15.6.7)

where δa′ is the ν-dimensional vector of parameters of interest.
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1
w2

V(2)

V(1)

∆χ2  = 1

a2

a1

length

length
1

w1

Figure 15.6.5. Relation of the confidence region ellipse ∆χ2 = 1 to quantities computed by singular
value decomposition. The vectors V(i) are unit vectors along the principal axes of the confidence region.
The semi-axes have lengths equal to the reciprocal of the singular values wi . If the axes are all scaled
by some constant factor α, ∆χ2 is scaled by the factor α2.

If you are confused at this point, you may find it helpful to compare Figure
15.6.4 and the accompanying table, considering the case M = 2 with ν = 1 and
ν = 2. You should be able to verify the following statements: (i) The horizontal
band between C and C ′ contains 99 percent of the probability distribution, so it
is a confidence limit on a2 alone at this level of confidence. (ii) Ditto the band
between B and B′ at the 90 percent confidence level. (iii) The dashed ellipse,
labeled by ∆χ2 = 2.30, contains 68.3 percent of the probability distribution, so it is
a confidence region for a1 and a2 jointly, at this level of confidence.

Confidence Limits from Singular Value Decomposition

When you have obtained yourχ2 fit by singular value decomposition (§15.4), the
information about the fit’s formal errors comes packaged in a somewhat different, but
generally more convenient, form. The columns of the matrix V are an orthonormal
set of M vectors that are the principal axes of the ∆χ2 = constant ellipsoids.
We denote the columns as V(1) . . .V(M). The lengths of those axes are inversely
proportional to the corresponding singular values w1 . . .wM ; see Figure 15.6.5. The
boundaries of the ellipsoids are thus given by

∆χ2 = w2
1(V(1) · δa)2 + · · ·+ w2

M (V(M) · δa)2 (15.6.8)

which is the justification for writing equation (15.4.18) above. Keep in mind that
it is much easier to plot an ellipsoid given a list of its vector principal axes, than
given its matrix quadratic form!

The formula for the covariance matrix [C] in terms of the columns V(i) is

[C] =

M∑
i=1

1

w2
i

V(i) ⊗V(i) (15.6.9)

or, in components,
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Cjk =

M∑
i=1

1

w2
i

VjiVki (15.6.10)
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15.7 Robust Estimation

The concept of robustness has been mentioned in passing several times already.
In §14.1 we noted that the median was a more robust estimator of central value than
the mean; in §14.6 it was mentioned that rank correlation is more robust than linear
correlation. The concept of outlier points as exceptions to a Gaussian model for
experimental error was discussed in §15.1.

The term “robust” was coined in statistics by G.E.P. Box in 1953. Various
definitions of greater or lesser mathematical rigor are possible for the term, but in
general, referring to a statistical estimator, it means “insensitive to small departures
from the idealized assumptions for which the estimator is optimized.” [1,2] The word
“small” can have two different interpretations, both important: either fractionally
small departures for all data points, or else fractionally large departures for a small
number of data points. It is the latter interpretation, leading to the notion of outlier
points, that is generally the most stressful for statistical procedures.

Statisticians have developed various sorts of robust statistical estimators. Many,
if not most, can be grouped in one of three categories.

M-estimates follow from maximum-likelihood arguments very much as equa-
tions (15.1.5) and (15.1.7) followed from equation (15.1.3). M-estimates are usually
the most relevant class for model-fitting, that is, estimation of parameters. We
therefore consider these estimates in some detail below.

L-estimates are “linear combinations of order statistics.” These are most
applicable to estimations of central value and central tendency, though they can
occasionally be applied to some problems in estimation of parameters. Two
“typical” L-estimates will give you the general idea. They are (i) the median, and
(ii) Tukey’s trimean, defined as the weighted average of the first, second, and third
quartile points in a distribution, with weights 1/4, 1/2, and 1/4, respectively.

R-estimates are estimates based on rank tests. For example, the equality or
inequality of two distributions can be estimated by the Wilcoxon test of computing
the mean rank of one distribution in a combined sample of both distributions.
The Kolmogorov-Smirnov statistic (equation 14.3.6) and the Spearman rank-order


