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For some problems the initial stepsize ∆V might depend sensitively upon the
initial conditions. It is straightforward to alter load to include a suggested stepsize
h1 as another returned argument and feed it to fdjac via a common block.

A complete cycle of the shooting method thus requires n2 + 1 integrations of
the N coupled ODEs: one integration to evaluate the current degree of mismatch,
and n2 for the partial derivatives. Each new cycle requires a new round of n2 + 1
integrations. This illustrates the enormous extra effort involved in solving two point
boundary value problems compared with intial value problems.

If the differential equations are linear, then only one complete cycle is required,
since (17.1.3)–(17.1.4) should take us right to the solution. A second round can be
useful, however, in mopping up some (never all) of the roundoff error.

As given here, shoot uses the quality controlled Runge-Kutta method of §16.2
to integrate the ODEs, but any of the other methods of Chapter 16 could just as
well be used.

You, the user, must supply shoot with: (i) a subroutine load(x1,v,y) which
returns the n-vector y(1:n) (satisfying the starting boundary conditions, of course),
given the freely specifiable variables of v(1:n2) at the initial point x1; (ii) a
subroutine score(x2,y,f) which returns the discrepancy vector f(1:n2) of the
ending boundary conditions, given the vector y(1:n) at the endpoint x2; (iii) a
starting vector v(1:n2); (iv) a subroutine derivs for the ODE integration; and
other obvious parameters as described in the header comment above.

In §17.4 we give a sample program illustrating how to use shoot.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

17.2 Shooting to a Fitting Point

The shooting method described in §17.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initial solution can’t even get from x1 to x2 without
encountering some incalculable, or catastrophic, result. For example, the argument
of a square root might go negative, causing the numerical code to crash. Simple
shooting would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such cases it is
feasible to integrate in the direction away from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usually not feasible to integrate into
a singular point, if only because one has not usually expended the same analytic
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effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficulties is shooting to a fitting point.
Instead of integrating from x1 to x2, we integrate first from x1 to some point xf that
is between x1 and x2; and second from x2 (in the opposite direction) to xf .

If (as before) the number of boundary conditions imposed at x1 is n1, and the
number imposed at x2 is n2, then there are n2 freely specifiable starting values at
x1 and n1 freely specifiable starting values at x2. (If you are confused by this, go
back to §17.1.) We can therefore define an n2-vector V(1) of starting parameters
at x1, and a prescription load1(x1,v1,y) for mapping V(1) into a y that satisfies
the boundary conditions at x1,

yi(x1) = yi(x1; V(1)1, . . . , V(1)n2
) i = 1, . . . , N (17.2.1)

Likewise we can define an n1-vector V(2) of starting parameters at x2, and a
prescription load2(x2,v2,y) for mapping V(2) into a y that satisfies the boundary
conditions at x2,

yi(x2) = yi(x2; V(2)1, . . . , V(2)n1
) i = 1, . . . , N (17.2.2)

We thus have a total of N freely adjustable parameters in the combination of
V(1) and V(2). The N conditions that must be satisfied are that there be agreement
in N components of y at xf between the values obtained integrating from one side
and from the other,

yi(xf ; V(1)) = yi(xf ; V(2)) i = 1, . . . , N (17.2.3)

In some problems, the N matching conditions can be better described (physically,
mathematically, or numerically) by usingN different functionsFi, i = 1 . . .N , each
possibly depending on the N components yi. In those cases, (17.2.3) is replaced by

Fi[y(xf ; V(1))] = Fi[y(xf ; V(2))] i = 1, . . . , N (17.2.4)

In the program below, the user-supplied subroutinescore(xf,y,f) is supposed
to map an input N -vector y into an output N -vector F. In most cases, you can
dummy this subroutine as the identity mapping.

Shooting to a fitting point uses globally convergent Newton-Raphson exactly
as in §17.1. Comparing closely with the routine shoot of the previous section, you
should have no difficulty in understanding the following routine shootf. The main
differences in use are that you have to supply both load1 and load2. Also, in the
calling program you must supply initial guesses for v1(1:n2) and v2(1:n1). Once
again a sample program illustrating shooting to a fitting point is given in §17.4.

C SUBROUTINE shootf(n,v,f) is named "funcv" for use with "newt"
SUBROUTINE funcv(n,v,f)
INTEGER n,nvar,nn2,kmax,kount,KMAXX,NMAX
REAL f(n),v(n),x1,x2,xf,dxsav,xp,yp,EPS
PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX equations.
COMMON /caller/ x1,x2,xf,nvar,nn2
COMMON /path/ kmax,kount,dxsav,xp(KMAXX),yp(NMAX,KMAXX)

C USES derivs,load1,load2,odeint,rkqs,score
Routine for use with newt to solve a two point boundary value problem for nvar cou-
pled ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the nvar
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ODEs at x1 (x2) are generated from the n2 (n1) coefficients v1 (v2), using the user-
supplied routine load1 (load2). The coefficients v1 and v2 should be stored in a sin-
gle array v(1:n1+n2) in the main program by an EQUIVALENCE statement of the form
(v1(1),v(1)),(v2(1),v(n2+1)). The input parameter n = n1+n2 = nvar. The rou-
tine integrates the ODEs to xf using the Runge-Kutta method with tolerance EPS, initial
stepsize h1, and minimum stepsize hmin. At xf it calls the user-supplied subroutine score
to evaluate the nvar functions f1 and f2 that ought to match at xf. The differences f are
returned on output. newt uses a globally convergent Newton’s method to adjust the val-
ues of v until the functions f are zero. The user-supplied subroutine derivs(x,y,dydx)
supplies derivative information to the ODE integrator (see Chapter 16). The common block
caller receives its values from the main program so that funcv can have the syntax
required by newt. Set nn2 = n2 in the main program. The common block path is for
compatibility with odeint.

INTEGER i,nbad,nok
REAL h1,hmin,f1(NMAX),f2(NMAX),y(NMAX)
EXTERNAL derivs,rkqs
kmax=0
h1=(x2-x1)/100.
hmin=0.
call load1(x1,v,y) Path from x1 to xf with best trial values v1.
call odeint(y,nvar,x1,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f1)
call load2(x2,v(nn2+1),y) Path from x2 to xf with best trial values v2.
call odeint(y,nvar,x2,xf,EPS,h1,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f2)
do 11 i=1,n

f(i)=f1(i)-f2(i)
enddo 11

return
END

There are boundary value problems where even shooting to a fitting point fails
— the integration interval has to be partitioned by several fitting points with the
solution being matched at each such point. For more details see [1].

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§§7.3.5–7.3.6. [1]

17.3 Relaxation Methods

In relaxation methods we replace ODEs by approximate finite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As a typical example,
we could replace a general first-order differential equation

dy

dx
= g(x, y) (17.3.1)

with an algebraic equation relating function values at two points k, k − 1:

yk − yk−1 − (xk − xk−1) g
[

1
2
(xk + xk−1), 1

2
(yk + yk−1)

]
= 0 (17.3.2)


