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For some problems the initial stepsize AV might depend sensitively upon the
initia conditions. It is straightforward to ater 1oad to include a suggested stepsize
h1 as another returned argument and feed it to £djac viaacommon block.

A complete cycle of the shooting method thus requires ny 4 1 integrations of
the N coupled ODEs. one integration to evauate the current degree of mismatch,
and ny for the partia derivatives. Each new cycle requires a new round of ns + 1
integrations. Thisillustratesthe enormous extra effort involved in solving two point
boundary value problems compared with intia value problems.

If the differential equationsarelinear, then only one complete cycleisrequired,
since (17.1.3)—(17.1.4) should take us right to the solution. A second round can be
useful, however, in mopping up some (never al) of the roundoff error.

Asgiven here, shoot uses the quality controlled Runge-Kuttamethod of §16.2
to integrate the ODEs, but any of the other methods of Chapter 16 could just as
well be used.

You, the user, must supply shoot with: (i) asubroutineload (x1,v,y) which
returnsthe n-vector y (1:n) (satisfying the starting boundary conditions, of course),
given the freely specifiable variables of v(1:n2) at the initial point x1; (ii) a
subroutine score (x2,y,f) which returns the discrepancy vector £ (1:n2) of the
ending boundary conditions, given the vector y(1:n) at the endpoint x2; (iii) a
starting vector v(1:n2); (iv) a subroutine derivs for the ODE integration; and
other obvious parameters as described in the header comment above.

In §17.4 we give a sample program illustrating how to use shoot.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

17.2 Shooting to a Fitting Point

The shooting method described in §17.1 tacitly assumed that the “shots” would
be able to traverse the entire domain of integration, even at the early stages of
convergence to a correct solution. In some problems it can happen that, for very
wrong starting conditions, an initia solution can’t even get from x; to x5 without
encountering some incalculable, or catastrophic, result. For example, the argument
of a sguare root might go negative, causing the numerical code to crash. Simple
shooting would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such casesitis
feasible to integrate in the direction away from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However it is usualy not feasible to integrate into
a singular point, if only because one has not usually expended the same anaytic
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752 Chapter 17.  Two Point Boundary Value Problems

effort to obtain expansions of “wrong” solutions near the singular point (those not
satisfying the desired boundary condition).

The solution to the above mentioned difficulties is shooting to a fitting point.
Instead of integrating from z; to 2, we integratefirst from x; to some point z ; that
is between z, and z»; and second from x5 (in the opposite direction) to « ;.

If (as before) the number of boundary conditionsimposed at =, isn,, and the
number imposed at x, is no, then there are ny freely specifiable starting values at
x1 and ny freely specifiable starting values at z». (If you are confused by this, go
back to §17.1.) We can therefore define an no-vector V() of starting parameters
at x,, and a prescription load1 (x1,v1,y) for mapping V ;) into ay that satisfies
the boundary conditions at x,

yi (1) Zyz‘($1;V(1)1,---,V(1)n2) i=1,....N (17.2.1)

Likewise we can define an n;-vector V(y) of starting parameters at 2, and a
prescription 1load2(x2,v2,y) for mapping V ») into ay that satisfies the boundary
conditions at s,

yi (z2) zyi(xz;‘/(z)l,...,v(z)nl) i=1,....N (17.2.2)

We thus have atotal of IV freely adjustable parameters in the combination of
V(1) and V(5). The N conditionsthat must be satisfied are that there be agreement
in NV components of y at «; between the values obtained integrating from one side
and from the other,

yi(xf;V(l)) zyi(xf;V(z)) i=1,....N (17.2.3)

In some problems, the N matching conditions can be better described (physically,
mathematically, or numerically) by using N different functionsF;, i = 1... N, each
possibly depending on the N' components y;. In those cases, (17.2.3) isreplaced by

F; [y(xf; V(l))] =F; [y(xf; V(2))] i=1,....N (17.2.4)

Inthe program bel ow, the user-supplied subroutinescore (xf, y, ) issupposed
to map an input N-vector y into an output N-vector F. In most cases, you can
dummy this subroutine as the identity mapping.

Shooting to a fitting point uses globally convergent Newton-Raphson exactly
asin §17.1. Comparing closdly with the routine shoot of the previous section, you
should have no difficulty in understanding the following routine shootf. The main
differences in use are that you have to supply both 1oad1 and 1oad2. Also, in the
calling program you must supply initial guessesfor v1(1:n2) and v2(1:n1). Once
again asample program illustrating shooting to afitting point isgivenin §17.4.

SUBRQUTI NE shoot f(n, v, f) is naned "funcv" for use with "newt"
SUBROUTINE funcv(n,v,f)

INTEGER n,nvar,nn2,kmax,kount ,KMAXX,NMAX

REAL £ (n),v(n),x1,x2,xf,dxsav,xp,yp,EPS

PARAMETER (NMAX=50,KMAXX=200,EPS=1.e-6) At most NMAX equations.
COMMON /caller/ x1,x2,xf,nvar,nn2

COMMON /path/ kmax,kount,dxsav,xp(KMAXX) ,yp (NMAX,KMAXX)

C USES derivs, | oadl, | oad2, odei nt, rkgs, score

Routine for use with newt to solve a two point boundary value problem for nvar cou-
pled ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the nvar

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM



17.3 Relaxation Methods 753

ODEs at x1 (x2) are generated from the n2 (n1) coefficients vl (v2), using the user-
supplied routine 1loadl (load2). The coefficients v1 and v2 should be stored in a sin-
gle array v(1:n1+n2) in the main program by an EQUIVALENCE statement of the form
(v1(1),v(1)), (v2(1) ,v(n2+1)). Theinput parametern = n1+n2 = nvar. The rou-
tine integrates the ODEs to xf using the Runge-Kutta method with tolerance EPS, initial
stepsize h1, and minimum stepsize hmin. At xf it calls the user-supplied subroutine score
to evaluate the nvar functions £1 and £2 that ought to match at xf. The differences £ are
returned on output. newt uses a globally convergent Newton's method to adjust the val-
ues of v until the functions £ are zero. The user-supplied subroutine derivs(x,y,dydx)
supplies derivative information to the ODE integrator (see Chapter 16). The common block
caller receives its values from the main program so that funcv can have the syntax
required by newt. Set nn2 = n2 in the main program. The common block path is for
compatibility with odeint.

INTEGER i,nbad,nok

REAL h1,hmin, 1 (NMAX),£2(NMAX) ,y (NMAX)
EXTERNAL derivs,rkqgs

kmax=0

h1=(x2-x1)/100.

hmin=0.

call loadi(xl,v,y)

call odeint(y,nvar,x1,xf,EPS,hl,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f1)

call load2(x2,v(nn2+1),y)
call odeint(y,nvar,x2,xf,EPS,hl,hmin,nok,nbad,derivs,rkqs)
call score(xf,y,f2)

dou i=1,n

Path from x1 to xf with best trial values v1.

Path from x2 to xf with best trial values v2.

f(1)=£f1(i)-£2(1)

enddo 11
return

There are boundary value problems where even shooting to afitting point fails

— the integration interval has to be partitioned by several fitting points with the
solution being matched at each such point. For more details see[1].

CITED REFERENCES AND FURTHER READING:
Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-

matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:

Blaisdell).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),

§87.3.5-7.3.6. [1]

17.3 Relaxation Methods

In relaxation methods we replace ODEs by approximate finite-difference equations

(FDEs) on a grid or mesh of points that spans the domain of interest. As atypical example,
we could replace a general first-order differential equation

dy .
T g(z,y) (17.3.2)

with an algebraic equation relating function values at two points k, k — 1:

Uk —Yh—1 — Tk — k1) g [S(xr + Tr-1), 2(yk + yr—1)] =0 (17.3.2)

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM



