774 Chapter 17.  Two Point Boundary Value Problems

17.5 Automated Allocation of Mesh Points

In relaxation problems, you have to choose values for the independent variable at the
mesh points. This is called allocating the grid or mesh. The usual procedure is to pick
a plausible set of values and, if it works, to be content. If it doesn’t work, increasing the
number of points usually cures the problem.

If we know ahead of time where our solutionswill be rapidly varying, we can put more
grid pointsthere and less elsewhere. Alternatively, we can solvethe problem first on auniform
mesh and then examine the solution to see where we should add more points. We then repeat
the solution with the improved grid. The object of the exercise is to allocate points in such
a way as to represent the solution accurately.

It is also possible to automate the alocation of mesh points, so that it is done
“dynamically” during the relaxation process. This powerful technique not only improves
the accuracy of the relaxation method, but also (as we will see in the next section) allows
internal singularities to be handled in quite a neat way. Here we learn how to accomplish
the automatic allocation.

We want to focus attention on the independent variable x, and consider two alternative
reparametrizations of it. The first, we term ¢; thisis just the coordinate corresponding to the
mesh points themselves, sothat g = 1 atk = 1, ¢ = 2 atk = 2, and so on. Between any two
mesh pointswe have Ag = 1. Inthe change of independent variable in the ODEsfrom z to g,
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In terms of ¢, equation (17.5.2) as an FDE might be written
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or some related version. Note that dx/dq should accompany g. The transformation between
z and ¢ depends only on the Jacobian dx/dq. Its reciprocal dgq/dx is proportional to the
density of mesh points.

Now, given the function y(z), or its approximation at the current stage of relaxation,
we are supposed to have some idea of how we want to specify the density of mesh points.
For example, we might want dg/dx to be larger where y is changing rapidly, or near to the
boundaries, or both. In fact, we can probably make up a formula for what we would like
dq/dz to be proportional to. The problem isthat we do not know the proportiondity constant.
That is, the formula that we might invent would not have the correct integral over the whole
range of x so asto make ¢ vary from 1 to M, according to its definition. To solvethis problem
we introduce a second reparametrization Q(q), where @ is a new independent variable. The
relation between @ and ¢ is taken to be linear, so that a mesh spacing formula for dQ/dx
differs only in its unknown proportionality constant. A linear relation implies

d’Q
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or, expressed in the usual manner as coupled first-order equations,
dQ(z) _ W _
d P i 0 (17.5.5)
where 7 is a new intermediate variable. We add these two equations to the set of ODEs

being solved.
Completing the prescription, we add a third ODE that is just our desired mesh-density
function, namely

_ 4@ _ dQdq

¢la) = —~= dq do (17.5.6)

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM



17.6 Handling Internal Boundary Conditions or Singular Points 775

where ¢ () is chosen by us. Written in terms of the mesh variable g, this equation is

dx P
i @) (17.5.7)
Notice that ¢(x) should be chosen to be positive definite, so that the density of mesh pointsis
everywhere positive. Otherwise (17.5.7) can have a zero in its denominator.
To use automated mesh spacing, you add the three ODEs (17.5.5) and (17.5.7) to your
set of equations, i.e., to the array y(j,k). Now z becomes a dependent variable! @ and 1)
also become new dependent variables. Normally, evaluating ¢ requireslittle extrawork since
it will be composedfrom piecesof the g's that exist anyway. The automated procedure allows
one to investigate quickly how the numerical results might be affected by various strategies
for mesh spacing. (A special caseoccursif the desired mesh spacing function @ can be found
analytically, i.e., dQ/dx is directly integrable. Then, you need to add only two equations,
those in 17.5.5, and two new variables x, 1).)
As an example of atypical strategy for implementing this scheme, consider a system
with one dependent variable y(x). We could set

dz  |dlny|
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or
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$(x) = % =X ‘—yy/ = (17.5.9)

where A and 6 are constants that we choose. The first term would give a uniform spacing
in z if it alone were present. The second term forces more grid points to be used where y is
changing rapidly. The constants act to make every logarithmic changein y of an amount 6
about as “attractive” to agrid point as a change in = of amount A. You adjust the constants
according to taste. Other strategies are possible, such as alogarithmic spacing in z, replacing
dz in the first term with d1nz.
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17.6 Handling Internal Boundary Conditions
or Singular Points

Singularities can occur in the interiors of two point boundary value problems. Typically,

thereis apoint s at which a derivative must be evaluated by an expression of the form
N(IS7 y)
S(xs) = ———== 17.6.1

)= Dleny) (764

where the denominator D(zs,y) = 0. In physical problems with finite answers, singular

points usually come with their own cure: Where D — 0, there the physical solution y must

be such asto make N — 0 simultaneously, in such away that the ratio takes on a meaningful

value. This constraint on the solution y is often called aregularity condition. The condition

that D(zs,Yy) satisfy some special constraint at x s is entirely analogousto an extra boundary
condition, an algebraic relation among the dependent variables that must hold at a point.

We discussed a related situation earlier, in §17.2, when we described the “fitting point

method” to handle the task of integrating equations with singular behavior at the boundaries.

In those problems you are unable to integrate from one side of the domain to the other.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

(X-790€-T2S-0 NESI) ONILNDINOD DIHILNIIOS 40 18V FHL 22 NVHLHO4 NI SAdIDTY TvOIYIWNN woyy abed sjdwes gap 8pIm PHOM



