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special quadraturerules, but they are a so sometimes blessingsin disguise, since they
can spoil a kernel’s smoothing and make problems well-conditioned.

In §518.4-18.7 we face up to the issues of inverse problems. §18.4 is an
introduction to this large subject.

We should note here that wavelet transforms, aready discussed in §13.10, are
applicable not only to data compression and signal processing, but can also be used
to transform some classes of integral equationsinto sparse linear problemsthat allow
fast solution. You may wish to review §13.10 as part of reading this chapter.

Some subjects, such as integro-differential equations, we must simply declare
to be beyond our scope. For areview of methods for integro-differential equations,
see Brunner [4].

It should go without saying that this one short chapter can only barely touch on
afew of the most basic methods involved in this complicated subject.
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18.1 Fredholm Equations of the Second Kind

We desire a numerical solution for f(¢) in the equation

b
f@) = )\/ K(t,s)f(s)ds + g(t) (18.1.1)

The method we describe, avery basic one, is caled the Nystrom method. It requires
the choice of some approximate quadrature rule:

b N
/ y(s)ds = ijy(sj) (18.1.2)

Here the set {w;} are the weights of the quadrature rule, while the N points {s; }
are the abscissas.

What quadrature rule should we use? It is certainly possible to solve integral
equationswith low-order quadrature ruleslike the repested trapezoidal or Simpson’'s
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18.1 Fredholm Equations of the Second Kind 783

rules. We will see, however, that the solution method involves O(NN3) operations,
and so the most efficient methods tend to use high-order quadrature rules to keep
N as small as possible. For smooth, nonsingular problems, nothing beats Gaussian
quadrature (e.g., Gauss-Legendre quadrature, §4.5). (For non-smooth or singular
kernels, see §18.3))

Delves and Mohamed [1] investigated methods more complicated than the
Nystrom method. For straightforward Fredholm equations of the second kind, they
concluded “. . . the clear winner of thiscontest has been the Nystromroutine. . . with
the N-point Gauss-Legendre rule. Thisroutineis extremely simple. . .. Such results
are enough to make a numerica analyst weep.”

If we apply the quadrature rule (18.1.2) to equation (18.1.1), we get

N
ft) = /\ZwJ'K(ta s;)f(s5) +9(t) (18.1.3)

Evaluate equation (18.1.3) at the quadrature points:

N

Flt) = XY wiK(ti,s5)f(s5) + g(t:) (18.1.4)

j=1
Let f; bethevector f(¢;), g; the vector g(t;), K;; the matrix K (¢;, s;), and define
Kij = Kijw; (18.1.5)
Then in matrix notation equation (18.1.4) becomes
(1-XK) -f=g (18.1.6)

Thisis aset of N linear algebraic equations in N unknowns that can be solved
by standard triangular decomposition techniques (§2.3) — that is where the O(IV?3)
operations count comes in. The solution is usualy well-conditioned, unless A is
very close to an eigenvalue.

Having obtained the solution at the quadrature points {¢;}, how do you get the
solution at some other point t? You do not simply use polynomia interpolation.
This destroys all the accuracy you have worked so hard to achieve. Nystrom’s key
observation was that you should use equation (18.1.3) as an interpolatory formula,
maintaining the accuracy of the solution.

We here give two subroutines for use with linear Fredholm equations of the
second kind. The routine fred2 sets up equation (18.1.6) and then solvesit by LU
decomposition with callsto the routines ludcmp and 1ubksb. The Gauss-Legendre
quadrature is implemented by first getting the weights and abscissas with a call to
gauleg. Routine fred2 requires that you provide an external function that returns
g(t) and another that returns A\K;;. It then returns the solution f at the quadrature
points. It also returns the quadrature points and weights. These are used by the
second routine fredin to carry out the Nystrom interpolation of equation (18.1.3)
and return the value of f at any point in the interval [a, b].
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784 Chapter 18.  Integral Equations and Inverse Theory

SUBROUTINE fred2(n,a,b,t,f,w,g,ak)

INTEGER n,NMAX

REAL a,b,f(n),t(),w(n),g,ak

EXTERNAL ak,g

PARAMETER (NMAX=200)

USES ak, g, gaul eg, | ubksb, | udcnp
Solves a linear Fredholm equation of the second kind. On input, a and b are the limits of
integration, and n is the number of points to use in the Gaussian quadrature. g and ak
are user-supplied external functions that respectively return g(¢) and AK(t,s). The routine
returns arrays t (1:n) and £(1:n) containing the abscissas ¢; of the Gaussian quadrature
and the solution f at these abscissas. Also returned is the array w(1:n) of Gaussian weights
for use with the Nystrom interpolation routine fredin.

INTEGER i, j,indx (NMAX)

REAL d,omk (NMAX ,NMAX)

if (n.gt.NMAX) pause ’increase NMAX in fred2’

call gauleg(a,b,t,w,n) Replace gauleg with another routine if not using

do12 i=1,n Gauss-Legendre quadrature.
dou j=1,n Form 1 — AK.
if(i.eq.j)then
omk(i,j)=1.
else
omk(i,j)=0.
endif
omk (i, j)=omk(i,j)-ak(t(i),t(§))*w(j)
enddo 11
f(i)=g(t(i))
enddo 12
call ludcmp(omk,n,NMAX,indx,d) Solve linear equations.
call lubksb(omk,n,NMAX,indx,f)
return
END

FUNCTION fredin(x,n,a,b,t,f,w,g,ak)

INTEGER n

REAL fredin,a,b,x,f(n),t(n),w(n),g,ak

EXTERNAL ak,g

USES ak, g
Given arrays t(1:n) and w(1:n) containing the abscissas and weights of the Gaussian
quadrature, and given the solution array f(1:n) from fred2, this function returns the
value of f at x using the Nystrom interpolation formula. On input, a and b are the limits
of integration, and n is the number of points used in the Gaussian quadrature. g and ak
are user-supplied external functions that respectively return g(¢) and AK (¢, s).

INTEGER i

REAL sum

sum=0.

don i=1,n
sum=sum+ak (x,t (1)) *w(i)*£f (i)

enddo 11

fredin=g(x)+sum

return

END

One disadvantage of a method based on Gaussian quadratureis that thereisno
simpleway to obtain an estimate of the error in theresult. The best practical method
istoincrease N by 50%, say, and treat the difference between thetwo estimates asa
conservative estimate of the error in the result obtained with the larger value of V.
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18.1 Fredholm Equations of the Second Kind 785

Turn now to solutions of the homogeneous equation. If weset A = 1/0 and
g = 0, then equation (18.1.6) becomes a standard eigenvalue equation

K-f=of (18.1.7)

which we can solve with any convenient matrix eigenvalue routine (see Chapter
11). Note that if our original problem had a symmetric kernel, then the matrix K
is symmetric. However, since the weights w; are not equal for most quadrature
rules, the matrix K (equation 18.1.5) is not symmetric. The matrix eigenvalue
problem is much easier for symmetric matrices, and so we should restore the
symmetry if possible. Provided the weightsare positive (which they arefor Gaussian
quadrature), we can define the diagonal matrix D = diag(w;) and its square root,
D'/? = diag(,/w;). Then equation (18.1.7) becomes

K-D-f=of
Multiplying by D'/2, we get

(Dl/z K. Dl/z) -h=coh (18.1.8)

whereh = D'/2 . f. Equation (18.1.8) is now in the form of asymmetric eigenvalue
problem.

Solution of equations (18.1.7) or (18.1.8) will in general give N eigenvalues,
where N is the number of quadrature points used. For square-integrable kernels,
these will provide good approximationsto the lowest N eigenvalues of the integral
equation. Kernels of finiterank (also called degenerate or separable kernels) have
only a finite number of nonzero eigenvalues (possibly none). You can diagnose
this situation by a cluster of eigenvalues o that are zero to machine precision. The
number of nonzero eigenvalues will stay constant as you increase N to improve
their accuracy. Some care is required here: A nondegenerate kernel can have an
infinite number of eigenvalues that have an accumulation point at ¢ = 0. You
distinguish the two cases by the behavior of the solution as you increase N. If you
suspect adegenerate kernel, you will usually be able to solvethe problem by analytic
techniques described in al the textbooks.

CITED REFERENCES AND FURTHER READING:
Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, U.K.: Cambridge University Press). [1]
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786 Chapter 18.  Integral Equations and Inverse Theory

18.2 Volterra Equations

Let us now turn to Volterra equations, of which our prototype is the Volterra
equation of the second kind,

() = / K(t,5)f(s) ds + g(1) (182.1)

Most algorithmsfor Volterraequationsmarch out from¢ = a, buildingup the solution
as they go. In this sense they resemble not only forward substitution (as discussed
in §18.0), but also initial-value problemsfor ordinary differential equations. In fact,
many agorithms for ODEs have counterparts for Volterra equations.

The simplest way to proceed is to solve the equation on a mesh with uniform
spacing:
b—a

N

To do so, we must choose a quadrature rule. For a uniform mesh, the simplest
scheme is the trapezoidal rule, equation (4.1.11):

t;=a+ih, i=0,1,....N, h

(18.2.2)

t; 1—1

j=1

Thus the trapezoidal method for equation (18.2.1) is:

fo= 9o
i1 (18.2.4)
Jj=1

(For aVolterra equation of the first kind, the leading 1 on the left would be absent,
and g would have opposite sign, with corresponding straightforward changes in the
rest of the discussion.)

Equation (18.2.4) is an explicit prescription that gives the solution in O(N?)
operations. UnlikeFredholm equations, it isnot necessary to solve asystem of linear
equations. Volterra equations thus usually involve less work than the corresponding
Fredholm equations which, as we have seen, do involvethe inversion of, sometimes
large, linear systems.

The efficiency of solving Volterra equations is somewhat counterbalanced by
the fact that systems of these equations occur more frequently in practice. If we
interpret equation (18.2.1) as a vector equation for the vector of m functions f(t),
then the kernel K (¢, s) isan m x m matrix. Equation (18.2.4) must now aso be
understood as a vector equation. For each i, we have to solve the m x m set of
linear algebraic equations by Gaussian elimination.

The routine voltra below implements this algorithm. You must supply an
externa function that returns the kth function of the vector ¢(¢) at the point ¢, and
another that returns the (k, 1) element of the matrix K (¢, s) a (¢,s). The routine
voltra then returns the vector f(¢) at the regularly spaced pointst;.
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