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(Don’t let this notation mislead you into inverting the full matrix W(x) + λS. You
only need to solve for some y the linear system (W(x) + λS) · y = R, and then
substitute y into both the numerators and denominators of 18.6.12 or 18.6.13.)

Equations (18.6.12) and (18.6.13) have a completely different character from
the linearly regularized solutions to (18.5.7) and (18.5.8). The vectors and matrices in
(18.6.12) all have sizeN , the number of measurements. There is no discretization of
the underlying variable x, soM does not come into play at all. One solves a different
N ×N set of linear equations for each desired value of x. By contrast, in (18.5.8),
one solves anM ×M linear set, but only once. In general, the computational burden
of repeatedly solving linear systems makes the Backus-Gilbert method unsuitable
for other than one-dimensional problems.

How does one choose λ within the Backus-Gilbert scheme? As already
mentioned, you can (in some cases should) make the choice before you see any
actual data. For a given trial value of λ, and for a sequence of x’s, use equation
(18.6.12) to calculate q(x); then use equation (18.6.6) to plot the resolution functions
δ̂(x, x′) as a function of x′. These plots will exhibit the amplitude with which
different underlying values x′ contribute to the point û(x) of your estimate. For the
same value of λ, also plot the function

√
Var[û(x)] using equation (18.6.8). (You

need an estimate of your measurement covariance matrix for this.)
As you change λ you will see very explicitly the trade-off between resolution

and stability. Pick the value that meets your needs. You can even choose λ to be a
function of x, λ = λ(x), in equations (18.6.12) and (18.6.13), should you desire to
do so. (This is one benefit of solving a separate set of equations for each x.) For
the chosen value or values of λ, you now have a quantitative understanding of your
inverse solution procedure. This can prove invaluable if — once you are processing
real data — you need to judge whether a particular feature, a spike or jump for
example, is genuine, and/or is actually resolved. The Backus-Gilbert method has
found particular success among geophysicists, who use it to obtain information about
the structure of the Earth (e.g., density run with depth) from seismic travel time data.
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18.7 Maximum Entropy Image Restoration

Above, we commented that the association of certain inversion methods
with Bayesian arguments is more historical accident than intellectual imperative.
Maximum entropy methods, so-called, are notorious in this regard; to summarize
these methods without some, at least introductory, Bayesian invocations would be
to serve a steak without the sizzle, or a sundae without the cherry. We should
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also comment in passing that the connection between maximum entropy inversion
methods, considered here, and maximum entropy spectral estimation, discussed in
§13.7, is rather abstract. For practical purposes the two techniques, though both
named maximum entropy method or MEM, are unrelated.

Bayes’ Theorem, which follows from the standard axioms of probability, relates
the conditional probabilities of two events, say A and B:

Prob(A|B) = Prob(A)
Prob(B|A)

Prob(B)
(18.7.1)

Here Prob(A|B) is the probability of A given that B has occurred, and similarly for
Prob(B|A), while Prob(A) and Prob(B) are unconditional probabilities.

“Bayesians” (so-called) adopt a broader interpretation of probabilities than do
so-called “frequentists.” To a Bayesian, P (A|B) is a measure of the degree of
plausibility ofA (givenB) on a scale ranging from zero to one. In this broader view,
A and B need not be repeatable events; they can be propositions or hypotheses.
The equations of probability theory then become a set of consistent rules for
conducting inference [1,2]. Since plausibility is itself always conditioned on some,
perhaps unarticulated, set of assumptions, all Bayesian probabilities are viewed as
conditional on some collective background information I.

Suppose H is some hypothesis. Even before there exist any explicit data,
a Bayesian can assign to H some degree of plausibility Prob(H |I), called the
“Bayesian prior.” Now, when some data D1 comes along, Bayes theorem tells how
to reassess the plausibility of H ,

Prob(H |D1I) = Prob(H |I)Prob(D1|HI)
Prob(D1|I)

(18.7.2)

The factor in the numerator on the right of equation (18.7.2) is calculable as the
probability of a data set given the hypothesis (compare with “likelihood” in §15.1).
The denominator, called the “prior predictive probability” of the data, is in this case
merely a normalization constant which can be calculated by the requirement that
the probability of all hypotheses should sum to unity. (In other Bayesian contexts,
the prior predictive probabilities of two qualitatively different models can be used
to assess their relative plausibility.)

If some additional data D2 comes along tomorrow, we can further refine our
estimate of H’s probability, as

Prob(H |D2D1I) = Prob(H |D1I)
Prob(D2|HD1I)

Prob(D1|D1I)
(18.7.3)

Using the product rule for probabilities, Prob(AB|C) = Prob(A|C)Prob(B|AC),
we find that equations (18.7.2) and (18.7.3) imply

Prob(H |D2D1I) = Prob(H |I)Prob(D2D1|HI)
Prob(D2D1|I)

(18.7.4)

which shows that we would have gotten the same answer if all the data D1D2

had been taken together.
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From a Bayesian perspective, inverse problems are inference problems [3,4].
The underlying parameter set u is a hypothesis whose probability, given the measured
data values c, and the Bayesian prior Prob(u|I) can be calculated. We might want
to report a single “best” inverse u, the one that maximizes

Prob(u|cI) = Prob(c|uI)Prob(u|I)
Prob(c|I) (18.7.5)

over all possible choices of u. Bayesian analysis also admits the possibility of
reporting additional information that characterizes the region of possible u’s with
high relative probability, the so-called “posterior bubble” in u.

The calculation of the probability of the data c, given the hypothesis u proceeds
exactly as in the maximum likelihood method. For Gaussian errors, e.g., it is given by

Prob(c|uI) = exp(−1

2
χ2)∆u1∆u2 · · ·∆uM (18.7.6)

where χ2 is calculated from u and c using equation (18.4.9), and the ∆uµ’s are
constant, small ranges of the components of u whose actual magnitude is irrelevant,
because they do not depend on u (compare equations 15.1.3 and 15.1.4).

In maximum likelihood estimation we, in effect, chose the prior Prob(u|I) to
be constant. That was a luxury that we could afford when estimating a small number
of parameters from a large amount of data. Here, the number of “parameters”
(components of u) is comparable to or larger than the number of measured values
(components of c); we need to have a nontrivial prior, Prob(u|I), to resolve the
degeneracy of the solution.

In maximum entropy image restoration, that is where entropy comes in. The
entropy of a physical system in some macroscopic state, usually denoted S, is the
logarithm of the number of microscopically distinct configurations that all have
the same macroscopic observables (i.e., consistent with the observed macroscopic
state). Actually, we will find it useful to denote the negative of the entropy, also
called the negentropy, by H ≡ −S (a notation that goes back to Boltzmann). In
situations where there is reason to believe that the a priori probabilities of the
microscopic configurations are all the same (these situations are called ergodic), then
the Bayesian prior Prob(u|I) for a macroscopic state with entropy S is proportional
to exp(S) or exp(−H).

MEM uses this concept to assign a prior probability to any given underlying
function u. For example [5-7], suppose that the measurement of luminance in each
pixel is quantized to (in some units) an integer value. Let

U =

M∑
µ=1

uµ (18.7.7)

be the total number of luminance quanta in the whole image. Then we can base our
“prior” on the notion that each luminance quantum has an equal a priori chance of
being in any pixel. (See [8] for a more abstract justification of this idea.) The number
of ways of getting a particular configuration u is

U !

u1!u2! · · ·uM !
∝ exp

[
−
∑
µ

uµ ln(uµ/U) +
1

2

(
lnU −

∑
µ

lnuµ

)]
(18.7.8)
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Here the left side can be understood as the number of distinct orderings of all
the luminance quanta, divided by the numbers of equivalent reorderings within
each pixel, while the right side follows by Stirling’s approximation to the factorial
function. Taking the negative of the logarithm, and neglecting terms of order logU
in the presence of terms of order U , we get the negentropy

H(u) =

M∑
µ=1

uµ ln(uµ/U) (18.7.9)

From equations (18.7.5), (18.7.6), and (18.7.9) we now seek to maximize

Prob(u|c) ∝ exp

[
−1

2
χ2

]
exp[−H(u)] (18.7.10)

or, equivalently,

minimize: − ln [ Prob(u|c) ] =
1

2
χ2[u] + H(u) =

1

2
χ2[u] +

M∑
µ=1

uµ ln(uµ/U)

(18.7.11)

This ought to remind you of equation (18.4.11), or equation (18.5.6), or in fact any of
our previous minimization principles along the lines of A+ λB, where λB = H(u)
is a regularizing operator. Where is λ? We need to put it in for exactly the reason
discussed following equation (18.4.11): Degenerate inversions are likely to be able
to achieve unrealistically small values of χ2. We need an adjustable parameter to
bringχ2 into its expected narrow statistical range ofN±(2N)1/2. The discussion at
the beginning of §18.4 showed that it makes no difference which term we attach the
λ to. For consistency in notation, we absorb a factor 2 intoλ and put it on the entropy
term. (Another way to see the necessity of an undetermined λ factor is to note that it
is necessary if our minimization principle is to be invariant under changing the units
in which u is quantized, e.g., if an 8-bit analog-to-digital converter is replaced by a
12-bit one.) We can now also put “hats” back to indicate that this is the procedure
for obtaining our chosen statistical estimator:

minimize: A+ λB = χ2[û] + λH(û) = χ2[û] + λ

M∑
µ=1

ûµ ln(ûµ) (18.7.12)

(Formally, we might also add a second Lagrange multiplier λ′U , to constrain the
total intensity U to be constant.)

It is not hard to see that the negentropy,H(û), is in fact a regularizing operator,
similar to û · û (equation 18.4.11) or û · H · û (equation 18.5.6). The following of
its properties are noteworthy:

1. When U is held constant, H(û) is minimized for ûµ = U/M = constant, so it
smooths in the sense of trying to achieve a constant solution, similar to equation
(18.5.4). The fact that the constant solution is a minimum follows from the fact
that the second derivative of u lnu is positive.
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2. Unlike equation (18.5.4), however, H(û) is local, in the sense that it does not
difference neighboring pixels. It simply sums some function f , here

f(u) = u lnu (18.7.13)

over all pixels; it is invariant, in fact, under a complete scrambling of the pixels
in an image. This form implies that H(û) is not seriously increased by the
occurrence of a small number of very bright pixels (point sources) embedded
in a low-intensity smooth background.

3. H(û) goes to infinite slope as any one pixel goes to zero. This causes it to
enforce positivity of the image, without the necessity of additional deterministic
constraints.

4. The biggest difference between H(û) and the other regularizing operators that
we have met is that H(û) is not a quadratic functional of û, so the equations
obtained by varying equation (18.7.12) are nonlinear. This fact is itself worthy
of some additional discussion.
Nonlinear equations are harder to solve than linear equations. For image

processing, however, the large number of equations usually dictates an iterative
solution procedure, even for linear equations, so the practical effect of the nonlinearity
is somewhat mitigated. Below, we will summarize some of the methods that are
successfully used for MEM inverse problems.

For some problems, notably the problem in radio-astronomy of image recovery
from an incomplete set of Fourier coefficients, the superior performance of MEM
inversion can be, in part, traced to the nonlinearity of H(û). One way to see this [5]

is to consider the limit of perfect measurements σi → 0. In this case the χ2 term in
the minimization principle (18.7.12) gets replaced by a set of constraints, each with
its own Lagrange multiplier, requiring agreement between model and data; that is,

minimize:
∑
j

λj

[
cj −

∑
µ

Rjµûµ

]
+ H(û) (18.7.14)

(cf. equation 18.4.7). Setting the formal derivative with respect to ûµ to zero gives

∂H

∂ûµ
= f ′(ûµ) =

∑
j

λjRjµ (18.7.15)

or defining a function G as the inverse function of f ′ ,

ûµ = G

∑
j

λjRjµ

 (18.7.16)

This solution is only formal, since the λj ’s must be found by requiring that equation
(18.7.16) satisfy all the constraints built into equation (18.7.14). However, equation
(18.7.16) does show the crucial fact that ifG is linear, then the solution ûcontains only
a linear combination of basis functions Rjµ corresponding to actual measurements
j. This is equivalent to setting unmeasured cj’s to zero. Notice that the principal
solution obtained from equation (18.4.11) in fact has a linear G.
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In the problem of incomplete Fourier image reconstruction, the typical Rjµ
has the form exp(−2πikj · xµ), where xµ is a two-dimensional vector in the image
space and kµ is a two-dimensional wave-vector. If an image contains strong point
sources, then the effect of setting unmeasured cj ’s to zero is to produce sidelobe
ripples throughout the image plane. These ripples can mask any actual extended,
low-intensity image features lying between the point sources. If, however, the slope
of G is smaller for small values of its argument, larger for large values, then ripples
in low-intensity portions of the image are relatively suppressed, while strong point
sources will be relatively sharpened (“superresolution”). This behavior on the slope
of G is equivalent to requiring f ′′′(u) < 0. For f(u) = u lnu, we in fact have
f ′′′(u) = −1/u2 < 0.

In more picturesque language, the nonlinearity acts to “create” nonzero values
for the unmeasured ci’s, so as to suppress the low-intensity ripple and sharpen the
point sources.

Is MEM Really Magical?

How unique is the negentropy functional (18.7.9)? Recall that that equation is
based on the assumption that luminance elements are a priori distributed over the
pixels uniformly. If we instead had some other preferred a priori image in mind, one
with pixel intensities mµ, then it is easy to show that the negentropy becomes

H(u) =

M∑
µ=1

uµ ln(uµ/mµ) + constant (18.7.17)

(the constant can then be ignored). All the rest of the discussion then goes through.
More fundamentally, and despite statements by zealots to the contrary [7], there

is actually nothing universal about the functional form f(u) = u lnu. In some
other physical situations (for example, the entropy of an electromagnetic field in the
limit of many photons per mode, as in radio-astronomy) the physical negentropy
functional is actually f(u) = − lnu (see [5] for other examples). In general, the
question, “Entropy of what?” is not uniquely answerable in any particular situation.
(See reference [9] for an attempt at articulating a more general principle that reduces
to one or another entropy functional under appropriate circumstances.)

The four numbered properties summarized above, plus the desirable sign for
nonlinearity, f ′′′(u) < 0, are all as true for f(u) = − lnu as for f(u) = u lnu. In
fact these properties are shared by a nonlinear function as simple as f(u) = −

√
u,

which has no information theoretic justification at all (no logarithms!). MEM
reconstructions of test images using any of these entropy forms are virtually
indistinguishable [5].

By all available evidence, MEM seems to be neither more nor less than one
usefully nonlinear version of the general regularization scheme A+λB that we have
by now considered in many forms. Its peculiarities become strengths when applied
to the reconstruction from incomplete Fourier data of images that are expected
to be dominated by very bright point sources, but which also contain interesting
low-intensity, extended sources. For images of some other character, there is no
reason to suppose that MEM methods will generally dominate other regularization
schemes, either ones already known or yet to be invented.
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Algorithms for MEM

The goal is to find the vector û that minimizes A + λB where in the notation
of equations (18.5.5), (18.5.6), and (18.7.13),

A = |b−A · û|2 B =
∑
µ

f(ûµ) (18.7.18)

Compared with a “general” minimization problem, we have the advantage that
we can compute the gradients and the second partial derivative matrices (Hessian
matrices) explicitly,

∇A = 2(AT · A · û− AT · b)
∂2A

∂ûµ∂ûρ
= [2AT · A]µρ

[∇B]µ = f ′(ûµ)
∂2B

∂ûµ∂ûρ
= δµρf

′′(ûµ)

(18.7.19)

It is important to note that while A’s second partial derivative matrix cannot be
stored (its size is the square of the number of pixels), it can be applied to any vector
by first applying A, then AT . In the case of reconstruction from incomplete Fourier
data, or in the case of convolution with a translation invariant point spread function,
these applications will typically involve several FFTs. Likewise, the calculation of
the gradient ∇A will involve FFTs in the application of A and AT .

While some success has been achieved with the classical conjugate gradient
method (§10.6), it is often found that the nonlinearity in f(u) = u lnu causes
problems. Attempted steps that give û with even one negative value must be cut in
magnitude, sometimes so severely as to slow the solution to a crawl. The underlying
problem is that the conjugate gradient method develops its information about the
inverse of the Hessian matrix a bit at a time, while changing its location in the search
space. When a nonlinear function is quite different from a pure quadratic form, the
old information becomes obsolete before it gets usefully exploited.

Skilling and collaborators [6,7,10,11] developed a complicated but highly suc-
cessful scheme, wherein a minimum is repeatedly sought not along a single search
direction, but in a small- (typically three-) dimensional subspace, spanned by vectors
that are calculated anew at each landing point. The subspace basis vectors are
chosen in such a way as to avoid directions leading to negative values. One of the
most successful choices is the three-dimensional subspace spanned by the vectors
with components given by

e(1)
µ = ûµ[∇A]µ

e(2)
µ = ûµ[∇B]µ

e(3)
µ =

ûµ
∑

ρ(∂
2A/∂ûµ∂ûρ)ûρ[∇B]ρ√∑
ρ ûρ ([∇B]ρ)

2
−
ûµ
∑

ρ(∂
2A/∂ûµ∂ûρ)ûρ[∇A]ρ√∑
ρ ûρ ([∇A]ρ)

2

(18.7.20)

(In these equations there is no sum overµ.) The form of the e(3) has some justification
if one views dot products as occurring in a space with the metric gµν = δµν/uµ,
chosen to make zero values “far away”; see [6].
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Within the three-dimensional subspace, the three-component gradient and nine-
component Hessian matrix are computed by projection from the large space, and
the minimum in the subspace is estimated by (trivially) solving three simultaneous
linear equations, as in §10.7, equation (10.7.4). The size of a step ∆û is required
to be limited by the inequality∑

µ

(∆ûµ)2/ûµ < (0.1 to 0.5)U (18.7.21)

Because the gradient directions∇A and ∇B are separately available, it is possible
to combine the minimum search with a simultaneous adjustment of λ so as finally to
satisfy the desired constraint. There are various further tricks employed.

A less general, but in practice often equally satisfactory, approach is due to
Cornwell and Evans [12]. Here, noting that B’s Hessian (second partial derivative)
matrix is diagonal, one asks whether there is a useful diagonal approximation to
A’s Hessian, namely 2AT · A. If Λµ denotes the diagonal components of such an
approximation, then a useful step in û would be

∆ûµ = − 1

Λµ + λf ′′(ûµ)
(∇A+ λ∇B) (18.7.22)

(again compare equation 10.7.4). Even more extreme, one might seek an approx-
imation with constant diagonal elements, Λµ = Λ, so that

∆ûµ = − 1

Λ + λf ′′(ûµ)
(∇A + λ∇B) (18.7.23)

Since AT · A has something of the nature of a doubly convolved point spread
function, and since in real cases one often has a point spread function with a sharp
central peak, even the more extreme of these approximations is often fruitful. One
starts with a rough estimate of Λ obtained from the Aiµ’s, e.g.,

Λ ∼
〈∑

i

[Aiµ]2

〉
(18.7.24)

An accurate value is not important, since in practice Λ is adjusted adaptively: If Λ
is too large, then equation (18.7.23)’s steps will be too small (that is, larger steps in
the same direction will produce even greater decrease inA+ λB). If Λ is too small,
then attempted steps will land in an unfeasible region (negative values of ûµ), or will
result in an increasedA+λB. There is an obvious similarity between the adjustment
of Λ here and the Levenberg-Marquardt method of §15.5; this should not be too
surprising, since MEM is closely akin to the problem of nonlinear least-squares
fitting. Reference [12] also discusses how the value of Λ + λf ′′(ûµ) can be used to
adjust the Lagrange multiplier λ so as to converge to the desired value of χ2.

All practical MEM algorithms are found to require on the order of 30 to 50
iterations to converge. This convergence behavior is not now understood in any
fundamental way.

“Bayesian” versus “Historic” Maximum Entropy

Several more recent developments in maximum entropy image restoration
go under the rubric “Bayesian” to distinguish them from the previous “historic”
methods. See [13] for details and references.
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• Better priors: We already noted that the entropy functional (equation
18.7.13) is invariant under scrambling all pixels and has no notion of
smoothness. The so-called “instrinsic correlation function” (ICF) model is
similar enough to the entropy functional to allow similar algorithms, but it
makes the values of neighboring pixels correlated, enforcing smoothness.

• Better estimation of λ: Above we chose λ to bring χ2 into its expected
narrow statistical range of N ± (2N)1/2. This in effect overestimates χ2,
however, since some effective number γ of parameters are being “fitted”
in doing the reconstruction. A Bayesian approach leads to a self-consistent
estimate of this γ and an objectively better choice for λ.
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