Chapter 20. Less-Numerical
Algorithms

20.0 Introduction

You can stop reading now. You are done with Numerical Recipes, as such. This
final chapter isan idiosyncratic collection of “less-numerical recipes’ which, for one
reason or another, we have decided to include between the covers of an otherwise
more-numerically oriented book. Authorsof computer science texts, we' ve noticed,
like to throw in a token numerical subject (usually quite a dull one — quadrature,
for example). We find that we are not free of the reverse tendency.

Our selection of material isnot completely arbitrary. Onetopic, Gray codes, was
already used in the construction of quasi-random sequences (§7.7), and here needs
only some additional explication. Two other topics, on diagnosing a computer’s
floating-point parameters, and on arbitrary precision arithmetic, give additiona
insight into the machinery behind the casua assumption that computers are useful
for doing thingswith numbers (as opposed to bits or characters). The latter of these
topics aso shows avery different use for Chapter 12'sfast Fourier transform.

The three other topics (checksums, Huffman and arithmetic coding) involve
different aspects of data coding, compression, and validation. If you handle alarge
amount of data — numerical data, even — then a passing familiarity with these
subjects might a some point come in handy. In §13.6, for example, we already
encountered a good use for Huffman coding.

But again, you don’t have to read this chapter. (And you should learn about
quadrature from Chapters 4 and 16, not from a computer science text!)

20.1 Diagnosing Machine Parameters

A convenient fiction is that a computer’s floating-point arithmetic is “ accurate
enough.” If you believe thisfiction, then numerical analysis becomes a very clean
subject. Roundoff error disappears from view; many finite algorithms become
“exact”; only docile truncation error (§1.2) stands between you and a perfect
calculation. Sounds rather naive, doesn't it?

Yes, it isnaive. Notwithstanding, it is afiction necessarily adopted throughout
most of thisbook. To do agood job of answering the question of how roundoff error
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882 Chapter 20.  Less-Numerical Algorithms

propagates, or can be bounded, for every agorithm that we have discussed would be
impractical. In fact, it would not be possible: Rigorous analysis of many practical
algorithms has never been made, by us or anyone.
Proper numerical analysts cringe when they hear a user say, “l was getting
roundoff errorswith single precision, so | switched to double.” The actual meaning
is, “for this particular algorithm, and my particular data, double precision seemed
able to restore my erroneous belief in the ‘ convenient fiction’.” We admit that most
of the mentionsof precision or roundoff in Numerical Recipes are only dightly more
guantitativein character. That comes along with our trying to be “practical .”
It is important to know what the limitations of your machine's floating-point
arithmetic actually are— the more so when your trestment of floating-point roundoff
error is going to be intuitive, experimental, or casual. Methods for determining
useful floating-point parameters experimentally have been developed by Cody [1],
Malcolm[2], and others, and are embodied in the routine machar, below, which
follows Cody’'s implementation.
All of machar’s arguments are returned values. Here iswhat they mean:
e ibeta (called B in §1.2) isthe radix in which numbers are represented,
almost always 2, but occasionaly 16, or even 10.

e it isthe number of base-ibeta digitsin the floating-point mantissa M
(see Figure 1.2.1).

e machep is the exponent of the smallest (most negative) power of ibeta
that, added to 1.0, gives something different from 1.0.

e eps isthe floating-point number ibeta™2CReP |oosdly referred to as the
“floating-point precision.”

e negep is the exponent of the smallest power of ibeta that, subtracted
from 1.0, gives something different from 1.0.

e epsnegisibeta™®8€P, another way of defining floating-point precision.
Not infrequently epsneg is 0.5 times eps; occasionaly eps and epsneg
are egual.

e iexp isthe number of bitsin the exponent (includingitssign or bias).

e minexp is the smallest (most negative) power of ibeta consistent with

there being no leading zeros in the mantissa.

e xmin is the floating-point number ibeta™1€XP generaly the smallest

(in magnitude) useable floating value.

e maxexp iSthe smallest (positive) power of ibeta that causes overflow.

e xmaxis(1—epsneg) x ibeta™@*€XP generdly thelargest (in magnitude)

useable floating value.

e irndreturnsacodeintherange0. . .5, givinginformation onwhat kind of

roundingisdoneinaddition, and on how underflow ishandled. See below.

e ngrd isthe number of “guard digits’ used when truncating the product of

two mantissas to fit the representation.

Thereisalot of subtlety in a program like machar, whose purpose s to ferret
out machine propertiesthat are supposed to betransparent to theuser. Further, it must
do so avoiding error conditions, like overflow and underflow, that might interrupt
its execution. In some cases the program is able to do this only by recognizing
certain characteristics of “standard” representations. For example, it recognizes
the |EEE standard representation [3] by its rounding behavior, and assumes certain
features of its exponent representation as a consequence. We refer you to[1] and
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20.1 Diagnosing Machine Parameters

Sample Results Returned by machar
typical IEEE-compliant machine| DEC VAX
precision single double single
ibeta 2 2 2
it 24 53 24
machep —23 —52 —24
eps 1.19x 1077 | 2.22x 10716 | 596 x 1078
negep —24 —53 —24
epsneg | 5.96 x 1078 | 1.11 x 107¢ |5.96 x 1078
iexp 8 11 8
minexp —126 —1022 —128
xmin |1.18 x 1073%| 2.23 x 107308 [2.94 x 10739
maxexp 128 1024 127
xmax | 3.40 x 103® 1.79 x 10398 1.70 x 1038
irnd 5 5 1
ngrd 0 0 0

references therein for details. Be aware that machar can give incorrect results on
some nonstandard machines.

The parameter irnd needs some additiona explanation. In the |EEE standard,
bit patterns correspond to exact, “representable’ numbers. The specified method
for rounding an addition is to add two representable numbers “exactly,” and then
round the sum to the closest representable number. If the sum is precisely hafway
between two representable numbers, it should be rounded to the even one (low-order
bit zero). The same behavior should hold for al the other arithmetic operations,
that is, they should be done in a manner equivaent to infinite precision, and then
rounded to the closest representable number.

If irnd returns2 or 5, then your computer is compliant with thisstandard. If it
returns 1 or 4, then it is doing some kind of rounding, but not the |EEE standard. If
irnd returnsO or 3, then it istruncating the result, not rounding it — not desirable.

The other issue addressed by irnd concerns underflow. If afloating valueis
less than xmin, many computers underflow its value to zero. Values irnd = 0, 1,
or 2 indicate this behavior. The |IEEE standard specifies a more graceful kind of
underflow: As a vaue becomes smaller than xmin, its exponent is frozen at the
smallest alowed value, whileits mantissais decreased, acquiring leading zeros and
“gracefully” losing precision. Thisisindicated by irnd = 3,4, or 5.
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884 Chapter 20.  Less-Numerical Algorithms

SUBROUTINE machar (ibeta,it,irnd,ngrd,machep,negep,iexp,minexp,
maxexp,eps, epsneg,xmin,xmax)
INTEGER ibeta,iexp,irnd,it,machep,maxexp,minexp,negep,ngrd
REAL eps,epsneg,xmax,xmin
Determines and returns machine-specific parameters affecting floating-point arithmetic. Re-
turned values include ibeta, the floating-point radix; it, the number of base-ibeta digits
in the floating-point mantissa; eps, the smallest positive number that, added to 1.0, is not
equal to 1.0; epsneg, the smallest positive number that, subtracted from 1.0, is not equal to
1.0; xmin, the smallest representable positive number; and xmax, the largest representable
positive number. See text for description of other returned parameters.
INTEGER i,itemp,iz,j,k,mx,nxres
REAL a,b,beta,betah,betain,one,t,temp,templ,tempa,two,y,z
,zero,CONV
CONV(i)=float(i) Change to dble(i), and change REAL declaration above to
one=CONV (1) DOUBLE PRECISION to find double precision parameters.
two=one+one
zero=one-one
a=one Determine ibeta and beta by the method of M. Malcolm.
continue
a=ata
temp=atone
templ=temp-a
if (templ-one.eq.zero) goto 1
b=one
continue
b=b+b
temp=a+b
itemp=int (temp-a)
if (itemp.eq.0) goto 2
ibeta=itemp
beta=CONV (ibeta)
it=0 Determine it and irnd.
b=one
continue
it=it+1
b=bxbeta
temp=b+one
templ=temp-b
if (templ-one.eq.zero) goto 3
irnd=0
betah=beta/two
temp=at+betah
if (temp-a.ne.zero) irnd=1
tempa=a+beta
temp=tempa+betah
if ((irnd.eq.0).and. (temp-tempa.ne.zero)) irnd=2

negep=it+3 Determine negep and epsneg
betain=one/beta
a=one

dou i=1, negep
a=a*betain
enddo 11
b=a
continue
temp=one-a
if (temp-one.ne.zero) goto 5
a=a*beta
negep=negep-1
goto 4
negep=-negep
epsneg=a
machep=-it-3 Determine machep and eps.
a=b
continue
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20.1 Diagnosing Machine Parameters 885

temp=one+a
if (temp-one.ne.zero) goto 7
a=axbeta
machep=machep+1
goto 6
eps=a
ngrd=0 Determine ngrd.
temp=one+eps
if ((irnd.eq.0).and. (temp*one-one.ne.zero)) ngrd=1
i=0 Determine iexp.
k=1
z=betain
t=one+eps
nxres=0
continue Loop until an underflow occurs, then exit.
y=z
Z=y*y
a=z*one Check here for the underflow.
temp=z*t
if ((ata.eq.zero).or. (abs(z).ge.y)) goto 9
templ=temp*betain
if (templ*beta.eq.z) goto 9
i=i+l
k=k+k
goto 8
if (ibeta.ne.10) then
iexp=i+1
mx=k+k
else For decimal machines only.
iexp=2
iz=ibeta
if (k.ge.iz) then
iz=iz*ibeta
iexp=iexp+1
goto 10
endif
mx=iz+iz-1
endif
xmin=y To determine minexp and xmin, loop until an underflow oc-
y=y*betain curs, then exit.
a=y*one Check here for the underflow.
temp=y*t
if (((a+a).ne.zero).and.(abs(y).lt.xmin)) then
k=k+1
templ=temp*betain
if ((templ*beta.ne.y).or.(temp.eq.y)) then
goto 20
else
nxres=3
xmin=y
endif
endif
minexp=-k Determine maxexp, xmax.
if ((mx.le.k+k-3).and.(ibeta.ne.10)) then
mx=mx-+mx
iexp=iexp+1
endif
maxexp=mx+minexp
irnd=irnd+nxres Adjust irnd to reflect partial underflow.
if (irnd.ge.2) maxexp=maxexp-2 Adjust for IEEE-style machines.
i=maxexp+minexp
Adjust for machines with implicit leading bit in binary mantissa, and machines with radix
point at extreme right of mantissa.
if ((ibeta.eq.2).and.(i.eq.0)) maxexp=maxexp-1
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886 Chapter 20.  Less-Numerical Algorithms

if (i.gt.20) maxexp=maxexp-1
if (a.ne.y) maxexp=maxexp-2
Xmax=one-epsneg
if (xmax*one.ne.xmax) xmax=one-betakepsneg
xmax=xmax/(betaxbeta*beta*xmin)
i=maxexp+minexp+3
do1z j=1,i
if (ibeta.eq.2) xmax=xmax+xmax
if (ibeta.ne.2) xmax=xmax*beta
enddo 12
return
END

Some typical values returned by machar are given in the table, above. |EEE-
compliant machines referred to in the table include most UNIX workstations (SUN,
DEC, MIPS), and Apple Macintosh Ils. IBM PCs with floating co-processors
are generally |EEE-compliant, except that some compilers underflow intermediate
resultsungracefully, yieldingirnd = 2 rather than 5. Notice, asinthecase of aVAX
(fourth column), that representations with a“phantom” leading 1 bit in the mantissa
achieve asmaller eps for the same wordlength, but cannot underflow gracefully.
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20.2 Gray Codes

A Gray code is afunction G (i) of the integers ¢, that for each integer N > 0
isone-to-onefor 0 < i < 2V — 1, and that has the following remarkable property:
The binary representation of G((¢7) and G (i + 1) differ in exactly onebit. An example
of a Gray code (in fact, the most commonly used one) is the sequence 0000, 0001,
0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001, and
1000, for ¢ = 0,...,15. The algorithm for generating this code is simply to form
the bitwise exclusive-or (XOR) of ¢ with i/2 (integer part). Think about how the
carries work when you add one to a number in binary, and you will be able to see
why thisworks. You will also seethat G(i) and G(i + 1) differ in the bit position of
the rightmost zero bit of i (prefixing a leading zero if necessary).

The spellingis“Gray,” not “gray”: The codes are named after one Frank Gray,
who first patented the ideafor use in shaft encoders. A shaft encoder isawhedl with
concentric coded stripes each of which is“read” by a fixed conducting brush. The
idea is to generate a binary code describing the angle of the wheel. The obvious,
but wrong, way to build a shaft encoder is to have one stripe (the innermost, say)
conducting on haf the wheel, but insulating on the other half; the next stripe is
conducting in quadrants 1 and 3; the next stripe is conducting in octants 1, 3, 5,
and 7; and so on. The brushes together then read a direct binary code for the
position of the whedl.
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