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FUNCTION igray(n,is)
INTEGER igray,is,n

For zero or positive values of is, return the Gray code of n; if is is negative, return the
inverse Gray code of n.

INTEGER idiv,ish
if (is.ge.0) then This is the easy direction!

igray=ieor(n,n/2)
else This is the more complicated direction: In hierarchical stages,

starting with a one-bit right shift, cause each bit to be
XORed with all more significant bits.

ish=-1
igray=n

1 continue
idiv=ishft(igray,ish)
igray=ieor(igray,idiv)
if(idiv.le.1.or.ish.eq.-16)return
ish=ish+ish Double the amount of shift on the next cycle.

goto 1
endif
return
END

In numerical work, Gray codes can be useful when you need to do some task
that depends intimately on the bits of i, looping over many values of i. Then, if there
are economies in repeating the task for values differing by only one bit, it makes
sense to do things in Gray code order rather than consecutive order. We saw an
example of this in §7.7, for the generation of quasi-random sequences.

CITED REFERENCES AND FURTHER READING:

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (New York: Cambridge University
Press), §8.02.

Knuth, D.E. Combinatorial Algorithms, vol. 4 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §7.2.1. [Unpublished. Will it be always so?]

20.3 Cyclic Redundancy and Other Checksums

When you send a sequence of bits from point A to point B, you want to know
that it will arrive without error. A common form of insurance is the “parity bit,”
attached to 7-bit ASCII characters to put them into 8-bit format. The parity bit is
chosen so as to make the total number of one-bits (versus zero-bits) either always
even (“even parity”) or always odd (“odd parity”). Any single bit error in a character
will thereby be detected. When errors are sufficiently rare, and do not occur closely
bunched in time, use of parity provides sufficient error detection.

Unfortunately, in real situations, a single noise “event” is likely to disrupt more
than one bit. Since the parity bit has two possible values (0 and 1), it gives, on
average, only a 50% chance of detecting an erroneous character with more than one
wrong bit. That probability, 50%, is not nearly good enough for most applications.
Most communications protocols [1] use a multibit generalization of the parity bit
called a “cyclic redundancy check” or CRC. In typical applications the CRC is 16
bits long (two bytes or two characters), so that the chance of a random error going
undetected is 1 in 216 = 65536. Moreover, M -bit CRCs have the mathematical
property of detecting all errors that occur in M or fewer consecutive bits, for any
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length of message. (We prove this below.) Since noise in communication channels
tends to be “bursty,” with short sequences of adjacent bits getting corrupted, this
consecutive-bit property is highly desirable.

Normally CRCs lie in the province of communications software experts and
chip-level hardware designers — people with bits under their fingernails. However,
there are at least two kinds of situations where some understanding of CRCs can be
useful to the rest of us. First, we sometimes need to be able to communicate with
a lower-level piece of hardware or software that expects a valid CRC as part of its
input. For example, it can be convenient to have a program generate XMODEM
or Kermit [2] packets directly into the communications line rather than having to
store the data in a local file.

Second, in the manipulation of large quantities of (e.g., experimental) data, it
is useful to be able to tag aggregates of data (whether numbers, records, lines, or
whole files) with a statistically unique “key,” its CRC. Aggregates of any size can
then be compared for identity by comparing only their short CRC keys. Differing
keys imply nonidentical records. Identical keys imply, to high statistical certainty,
identical records. If you can’t tolerate the very small probability of being wrong, you
can do a full comparison of the records when the keys are identical. When there is a
possibility of files or data records being inadvertently or irresponsibly modified (for
example, by a computer virus), it is useful to have their prior CRCs stored externally
on a physically secure medium, like a floppy disk.

Sometimes CRCs can be used to compress data as it is recorded. If identical data
records occur frequently, one can keep sorted in memory the CRCs of previously
encountered records. A new record is archived in full if its CRC is different,
otherwise only a pointer to a previous record need be archived. In this application
one might desire a 4- or 8-byte CRC, to make the odds of mistakenly discarding
a different data record be tolerably small; or, if previous records can be randomly
accessed, a full comparison can be made to decide whether records with identical
CRCs are in fact identical.

Now let us briefly discuss the theory of CRCs. After that, we will give
implementations of various (related) CRCs that are used by the official or de facto
standard protocols [1-3] listed in the accompanying table.

The mathematics underlying CRCs is “polynomials over the integers modulo
2.” Any binary message can be thought of as a polynomial with coefficients 0 and 1.
For example, the message “1100001101” is the polynomial x9 + x8 + x3 + x2 + 1.
Since 0 and 1 are the only integers modulo 2, a power of x in the polynomial
is either present (1) or absent (0). Polynomials over the integers modulo 2 are a
so-called unique factorization domain. This means that any polynomial has a unique
factorization into so-called irreducible or “primitive” polynomials — analogs of the
prime integers. The polynomial x2 + x + 1 is primitive, while the polynomial
x2 + 1 is not: x2 + 1 = (x+ 1)(x+ 1). (Remember that the integer arithmetic is
done modulo two!) A related theorem says that if a polynomial p divides another
polynomial q, then it must divide at least one of q’s factors.

An M -bit long CRC is based on a particular primitive polynomial of degree
M , called the generator polynomial. The choice of which primitive polynomial
to use is only a matter of convention. For 16-bit CRC’s, the CCITT (Comité
Consultatif International Télégraphique et Téléphonique) has anointed the “CCITT
polynomial,” which is x16 + x12 + x5 + 1. This polynomial is used by all of the
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Conventions and Test Values for Various CRC Protocols

icrc args Test Values (C2C1 in hex) Packet

Protocol jinit jrev T CatMouse987654321 Format CRC

XMODEM 0 1 1A71 E556 S1S2 . . . SNC2C1 0

X.25 255 −1 1B26 F56E S1S2 . . . SNC1C2 F0B8

(no name) 255 −1 1B26 F56E S1S2 . . . SNC1C2 0

SDLC (IBM) same as X.25

HDLC (ISO) same as X.25

CRC-CCITT 0 −1 14A1 C28D S1S2 . . . SNC1C2 0

(no name) 0 −1 14A1 C28D S1S2 . . . SNC1C2 F0B8

Kermit same as CRC-CCITT see Notes

Notes: Overbar denotes bit complement. S1 . . . SN are character data. C1 is CRC’s least
significant 8 bits, C2 is its most significant 8 bits, so CRC = 256C2 + C1 (shown
in hex). Kermit (block check level 3) sends the CRC as 3 printable ASCII characters
(sends value +32). These contain, respectively, 4 most significant bits, 6 middle bits,
6 least significant bits.

protocols listed in the table. Another common choice is the “CRC-16” polynomial
x16 + x15 + x2 + 1, which is used for EBCDIC messages in IBM’s BISYNCH [1].
A common 12-bit choice, “CRC-12,” is x12 + x11 + x3 + x+ 1. A common 32-bit
choice, “AUTODIN-II,” is x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 +
x7 +x5 +x4 +x2 +x+1. For a table of some other primitive polynomials, see §7.4.

Given the generator polynomial G of degree M (which can be written either
in polynomial form or as a bit-string, e.g., 10001000000100001 for CCITT), here is
how you compute the CRC for a sequence of bitsS: First, multiplyS by xM , that is,
append M zero bits to it. Second divide — by long division — G into SxM . Keep
in mind that the subtractions in the long division are done modulo 2, so that there
are never any “borrows”: Modulo 2 subtraction is the same as logical exclusive-or
(XOR). Third, ignore the quotient you get. Fourth, when you eventually get to a
remainder, it is the CRC, call it C . C will be a polynomial of degree M − 1 or less,
otherwise you would not have finished the long division. Therefore, in bit string
form, it has M bits, which may include leading zeros. (C might even be all zeros,
see below.) See [3] for a worked example.

If you work through the above steps in an example, you will see that most of
what you write down in the long-division tableau is superfluous. You are actually
just left-shifting sequential bits of S, from the right, into an M -bit register. Every
time a 1 bit gets shifted off the left end of this register, you zap the register by an
XOR with the M low order bits of G (that is, all the bits of G except its leading
1). When a 0 bit is shifted off the left end you don’t zap the register. When the
last bit that was originally part of S gets shifted off the left end of the register,
what remains is the CRC.

You can immediately recognize how efficiently this procedure can be imple-
mented in hardware. It requires only a shift register with a few hard-wired XOR
taps into it. That is how CRCs are computed in communications devices, by a single
chip (or small part of one). In software, the implementation is not so elegant, since
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bit-shifting is not generally very efficient. One therefore typically finds (as in our
implementation below) table-driven routines that pre-calculate the result of a bunch
of shifts and XORs, say for each of 256 possible 8-bit inputs [4].

We can now see how the CRC gets its ability to detect all errors in M
consecutive bits. Suppose two messages, S and T , differ only within a frame of M
bits. Then their CRCs differ by an amount that is the remainder when G is divided
into (S−T )xM ≡ D. NowD has the form of leading zeros (which can be ignored),
followed by some 1’s in an M -bit frame, followed by trailing zeros (which are just
multiplicative factors of x). Since factorization is unique, G cannot possibly divide
D: G is primitive of degree M , while D is a power of x times a factor of (at most)
degree M − 1. Therefore S and T have inevitably different CRCs.

In most protocols, a transmitted block of data consists of some N data bits,
directly followed by the M bits of their CRC (or the CRC XORed with a constant,
see below). There are two equivalent ways of validating a block at the receiving end.
Most obviously, the receiver can compute the CRC of the data bits, and compare it to
the transmitted CRC bits. Less obviously, but more elegantly, the receiver can simply
compute the CRC of the total block, withN +M bits, and verify that a result of zero
is obtained. Proof: The total block is the polynomial SxM + C (data left-shifted to
make room for the CRC bits). The definition of C is that Sxm = QG + C , where
Q is the discarded quotient. But then SxM +C = QG+C +C = QG (remember
modulo 2), which is a perfect multiple of G. It remains a multiple of G when it gets
multiplied by an additional xM on the receiving end, so it has a zero CRC, q.e.d.

A couple of small variations on the basic procedure need to be mentioned [1,3]:
First, when the CRC is computed, the M -bit register need not be initialized to zero.
Initializing it to some otherM -bit value (e.g., all 1’s) in effect prefaces all blocks by
a phantom message that would have given the initialization value as its remainder.
It is advantageous to do this, since the CRC described thus far otherwise cannot
detect the addition or removal of any number of initial zero bits. (Loss of an initial
bit, or insertion of zero bits, are common “clocking errors.”) Second, one can add
(XOR) any M -bit constant K to the CRC before it is transmitted. This constant
can either be XORed away at the receiving end, or else it just changes the expected
CRC of the whole block by a known amount, namely the remainder of dividing G
into KxM . The constant K is frequently “all bits,” changing the CRC into its ones
complement. This has the advantage of detecting another kind of error that the CRC
would otherwise not find: deletion of an initial 1 bit in the message with spurious
insertion of a 1 bit at the end of the block.

The accompanying function icrc implements the above CRC calculation,
including the possibility of the mentioned variations. Input to the function is the
starting address of an array of characters, and the length of that array. (In practice,
FORTRAN allows you to use the address of any data structure; icrc will treat it as
a byte array.) Output is in both of two formats. The function value returns the
CRC as a 4-byte integer in the range 0 to 65535. The character array crc, of
length 2, returns the CRC as two 8-bit characters. icrc has two “switch” arguments
that specify variations in the CRC calculation. A zero or positive value of jinit
causes the 16-bit register to have each byte initialized with the value jinit. A
negative value of jrev causes each input character to be interpreted as its bit-reverse
image, and a similar bit reversal to be done on the output CRC. You do not have
to understand this; just use the values of jinit and jrev specified in the table.
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(If you insist on knowing, the explanation is that serial data ports send characters
least-significant bit first (!), and many protocols shift bits into the CRC register in
exactly the order received.) The table shows how to construct a block of characters
from the input array and output CRC of icrc. You should not need to do any
additional bit-reversal outside of icrc.

The switch jinit has one additional use: When negative it causes the input
value of the array crc to be used as initialization of the register. If crc is unmodified
since the last call to icrc, this in effect appends the current input array to that of the
previous call or calls. Use this feature, for example, to build up the CRC of a whole
file a line at a time, without keeping the whole file in memory.

At initialization, the routine icrc figures out the order in which the bytes occur
when a 4-byte character array is equivalenced to a 4-byte integer. This is not strictly
portable FORTRAN, but it should work on all machines with 32-bit word lengths.
icrc is loosely based on a more portable C function in [4], a good place to turn if
you have trouble running the program here.

Here is how to understand the operation of icrc: First look at the function
icrc1. This incorporates one input character into a 16-bit CRC register. The only
trick used is that character bits are XORed into the most significant bits, eight at a
time, instead of being fed into the least significant bit, one bit at a time, at the time
of the register shift. This works because XOR is associative and commutative — we
can feed in character bits any time before they will determine whether to zap with
the generator polynomial. (The decimal constant 4129 has the generator’s bits in it.)

FUNCTION icrc1(crc,onech,ib1,ib2,ib3)
INTEGER icrc1,ib1,ib2,ib3

Given a remainder up to now, return the new CRC after one character is added. This routine
is functionally equivalent to icrc(,,1,-1,1), but slower. It is used by icrc to initialize
its table.

INTEGER i,ichr,ireg
CHARACTER*1 onech,crc(4),creg(4)
EQUIVALENCE (creg,ireg)
ireg=0
creg(ib1)=crc(ib1) Here is where the character is folded into the register.
creg(ib2)=char(ieor(ichar(crc(ib2)),ichar(onech)))
do 11 i=1,8 Here is where 8 one-bit shifts, and some XORs with the gen-

erator polynomial, are done.ichr=ichar(creg(ib2))
ireg=ireg+ireg
creg(ib3)=char(0)
if(ichr.gt.127)ireg=ieor(ireg,4129)

enddo 11

icrc1=ireg
return
END

Now look at icrc. There are two parts to understand, how it builds a table
when it initializes, and how it uses that table later on. Go back to thinking about
a character’s bits being shifted into the CRC register from the least significant end.
The key observation is that while 8 bits are being shifted into the register’s low
end, all the generator zapping is being determined by the bits already in the high
end. Since XOR is commutative and associative, all we need is a table of the
result of all this zapping, for each of 256 possible high-bit configurations. Then we
can play catch-up and XOR an input character into the result of a lookup into this
table. The routine makes repeated use of an equivalenced 4-byte integer and 4-byte
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character array to get at different 8-bit chunks.The only other content to icrc is the
construction at initialization time of an 8-bit bit-reverse table from the 4-bit table
stored in it, and the logic associated with doing the bit reversals. References [4-6]

give further details on table-driven CRC computations.

FUNCTION icrc(crc,bufptr,len,jinit,jrev)
INTEGER icrc,jinit,jrev,len
CHARACTER*1 bufptr(*),crc(2)

C USES icrc1
Computes a 16-bit Cyclic Redundancy Check for an array bufptr of length len bytes,
using any of several conventions as determined by the settings of jinit and jrev (see
accompanying table). The result is returned both as an integer icrc and as a 2-byte array
crc. If jinit is negative, then crc is used on input to initialize the remainder register, in
effect concatenating bufptr to the previous call.

INTEGER ich,init,ireg,j,icrctb(0:255),it(0:15),icrc1,ib1,ib2,ib3
CHARACTER*1 creg(4),rchr(0:255)
SAVE icrctb,rchr,init,it,ib1,ib2,ib3
EQUIVALENCE (creg,ireg) Used to get at the 4 bytes in an integer.
DATA it/0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15/, init /0/

Table of 4-bit bit-reverses, and flag for initialization.
if (init.eq.0) then Do we need to initialize tables?

init=1
ireg=256*(256*ichar(’3’)+ichar(’2’))+ichar(’1’)
do 11 j=1,4 Figure out which component of creg addresses which

byte of ireg.if (creg(j).eq.’1’) ib1=j
if (creg(j).eq.’2’) ib2=j
if (creg(j).eq.’3’) ib3=j

enddo 11

do 12 j=0,255 The two tables are: CRCs of all characters, and bit-reverses
of all characters.ireg=j*256

icrctb(j)=icrc1(creg,char(0),ib1,ib2,ib3)
ich=it(mod(j,16))*16+it(j/16)
rchr(j)=char(ich)

enddo 12

endif
if (jinit.ge.0) then Initialize the remainder register.

crc(1)=char(jinit)
crc(2)=char(jinit)

else if (jrev.lt.0) then If not initializing, do we reverse the register?
ich=ichar(crc(1))
crc(1)=rchr(ichar(crc(2)))
crc(2)=rchr(ich)

endif
do 13 j=1,len Main loop over the characters in the array.

ich=ichar(bufptr(j))
if(jrev.lt.0)ich=ichar(rchr(ich))
ireg=icrctb(ieor(ich,ichar(crc(2))))
crc(2)=char(ieor(ichar(creg(ib2)),ichar(crc(1))))
crc(1)=creg(ib1)

enddo 13

if (jrev.ge.0) then Do we need to reverse the output?
creg(ib1)=crc(1)
creg(ib2)=crc(2)

else
creg(ib2)=rchr(ichar(crc(1)))
creg(ib1)=rchr(ichar(crc(2)))
crc(1)=creg(ib1)
crc(2)=creg(ib2)

endif
icrc=ireg
return
END
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What if you need a 32-bit checksum? For a true 32-bit CRC, you will need
to rewrite the routines given to work with a longer generating polynomial. For
example, x32 +x7 +x5 +x3 +x2 +x+1 is primitive modulo 2, and has nonleading,
nonzero bits only in its least significant byte (which makes for some simplification).
The idea of table lookup on only the most significant byte of the CRC register goes
through unchanged. Pay attention to the fact that FORTRAN does not have unsigned
integers, so half of your CRCs will appear to be negative in integer format.

If you do not care about the M -consecutive bit property of the checksum, but
rather only need a statistically random 32 bits, then you can use icrc as given
here: Call it once with jrev = 1 to get 16 bits, and again with jrev = −1 to get
another 16 bits. The internal bit reversals make these two 16-bit CRCs in effect
totally independent of each other.

Other Kinds of Checksums

Quite different from CRCs are the various techniques used to append a decimal
“check digit” to numbers that are handled by human beings (e.g., typed into a
computer). Check digits need to be proof against the kinds of highly structured
errors that humans tend to make, such as transposing consecutive digits. Wagner and
Putter [7] give an interesting introduction to this subject, including specific algorithms.

Checksums now in widespread use vary from fair to poor. The 10-digit ISBN
(International Standard Book Number) that you find on most books, including this
one, uses the check equation

10d1 + 9d2 + 8d3 + · · ·+ 2d9 + d10 = 0 (mod 11) (20.3.1)

where d10 is the right-hand check digit. The character “X” is used to represent a
check digit value of 10. Another popular scheme is the so-called “IBM check,” often
used for account numbers (including, e.g., MasterCard). Here, the check equation is

2#d1 + d2 + 2#d3 + d4 + · · · = 0 (mod 10) (20.3.2)

where 2#d means, “multiply d by two and add the resulting decimal digits.” United
States banks code checks with a 9-digit processing number whose check equation is

3a1 + 7a2 + a3 + 3a4 + 7a5 + a6 + 3a7 + 7a8 + a9 = 0 (mod 10) (20.3.3)

The bar code put on many envelopes by the U.S. Postal Service is decoded by
removing the single tall marker bars at each end, and breaking the remaining bars
into 6 or 10 groups of five. In each group the five bars signify (from left to right)
the values 7,4,2,1,0. Exactly two of them will be tall. Their sum is the represented
digit, except that zero is represented as 7 + 4. The 5- or 9-digit Zip Code is followed
by a check digit, with the check equation∑

di = 0 (mod 10) (20.3.4)

None of these schemes is close to optimal. An elegant scheme due to Verhoeff
is described in [7]. The underlying idea is to use the ten-element dihedral group D5,
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which corresponds to the symmetries of a pentagon, instead of the cyclic group of
the integers modulo 10. The check equation is

a1*f(a2)*f2(a3)* · · ·*fn−1(an) = 0 (20.3.5)

where * is (noncommutative) multiplication in D5, and f i denotes the ith iteration
of a certain fixed permutation. Verhoeff’s method finds all single errors in a string,
and all adjacent transpositions. It also finds about 95% of twin errors (aa → bb),
jump transpositions (acb → bca), and jump twin errors (aca → bcb). Here is an
implementation:

LOGICAL FUNCTION decchk(string,n,ch)
INTEGER n
CHARACTER string*(*),ch*1

Decimal check digit computation or verification. Returns as ch a check digit for appending
to string(1:n), that is, for storing into string(n+1:n+1). In this mode, ignore the
returned logical value. If string(1:n) already ends with a check digit (string(n:n)),
returns the function value .true. if the check digit is valid, otherwise .false. In this
mode, ignore the returned value of ch. Note that string and ch contain ASCII characters
corresponding to the digits 0-9, not byte values in that range. Other ASCII characters are
allowed in string, and are ignored in calculating the check digit.

INTEGER ij(10,10),ip(10,8),i,j,k,m
SAVE ij,ip Group multiplication and permutation tables.
DATA ip/0,1,2,3,4,5,6,7,8,9,1,5,7,6,2,8,3,0,9,4,

* 5,8,0,3,7,9,6,1,4,2,8,9,1,6,0,4,3,5,2,7,9,4,5,3,1,2,6,8,7,0,
* 4,2,8,6,5,7,3,9,0,1,2,7,9,3,8,0,6,4,1,5,7,0,4,6,9,1,3,2,5,8/,
* ij/0,1,2,3,4,5,6,7,8,9,1,2,3,4,0,9,5,6,7,8,2,3,4,0,1,8,9,5,6,
* 7,3,4,0,1,2,7,8,9,5,6,4,0,1,2,3,6,7,8,9,5,5,6,7,8,9,0,1,2,3,
* 4,6,7,8,9,5,4,0,1,2,3,7,8,9,5,6,3,4,0,1,2,8,9,5,6,7,2,3,4,0,
* 1,9,5,6,7,8,1,2,3,4,0/

k=0
m=0
do 11 j=1,n Look at successive characters.

i=ichar(string(j:j))
if (i.ge.48.and.i.le.57)then Ignore everything except digits.

k=ij(k+1,ip(mod(i+2,10)+1,mod(m,8)+1)+1)
m=m+1

endif
enddo 11

decchk=(k.eq.0)
do 12 i=0,9 Find which appended digit will check properly.

if (ij(k+1,ip(i+1,mod(m,8)+1)+1).eq.0) goto 1
enddo 12

1 ch=char(i+48) Convert to ASCII.
return
end
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20.4 Huffman Coding and Compression of Data

A lossless data compression algorithm takes a string of symbols (typically
ASCII characters or bytes) and translates it reversibly into another string, one that
is on the average of shorter length. The words “on the average” are crucial; it
is obvious that no reversible algorithm can make all strings shorter — there just
aren’t enough short strings to be in one-to-one correspondence with longer strings.
Compression algorithms are possible only when, on the input side, some strings, or
some input symbols, are more common than others. These can then be encoded in
fewer bits than rarer input strings or symbols, giving a net average gain.

There exist many, quite different, compression techniques, corresponding to
different ways of detecting and using departures from equiprobability in input strings.
In this section and the next we shall consider only variable length codes with defined
word inputs. In these, the input is sliced into fixed units, for example ASCII
characters, while the corresponding output comes in chunks of variable size. The
simplest such method is Huffman coding [1], discussed in this section. Another
example, arithmetic compression, is discussed in §20.5.

At the opposite extreme from defined-word, variable length codes are schemes
that divide up the input into units of variable length (words or phrases of English text,
for example) and then transmit these, often with a fixed-length output code. The most
widely used code of this type is the Ziv-Lempel code [2]. References [3-6] give the
flavor of some other compression techniques, with references to the large literature.

The idea behind Huffman coding is simply to use shorter bit patterns for more
common characters. We can make this idea quantitative by considering the concept
of entropy. Suppose the input alphabet has Nch characters, and that these occur in
the input string with respective probabilities pi, i = 1, . . . , Nch, so that

∑
pi = 1.

Then the fundamental theorem of information theory says that strings consisting of
independently random sequences of these characters (a conservative, but not always
realistic assumption) require, on the average, at least

H = −
∑

pi log2 pi (20.4.1)

bits per character. Here H is the entropy of the probability distribution. Moreover,
coding schemes exist which approach the bound arbitrarily closely. For the case of
equiprobable characters, with all pi = 1/Nch, one easily sees that H = log2 Nch,
which is the case of no compression at all. Any other set of pi’s gives a smaller
entropy, allowing some useful compression.

Notice that the bound of (20.4.1) would be achieved if we could encode character
i with a code of length Li = − log2 pi bits: Equation (20.4.1) would then be the
average

∑
piLi. The trouble with such a scheme is that − log2 pi is not generally

an integer. How can we encode the letter “Q” in 5.32 bits? Huffman coding makes
a stab at this by, in effect, approximating all the probabilities pi by integer powers
of 1/2, so that all the Li’s are integral. If all the pi’s are in fact of this form, then a
Huffman code does achieve the entropy bound H .

The construction of a Huffman code is best illustrated by example. Imagine
a language, Vowellish, with the Nch = 5 character alphabet A, E, I, O, and U,
occurring with the respective probabilities 0.12, 0.42, 0.09, 0.30, and 0.07. Then the
construction of a Huffman code for Vowellish is accomplished in the following table:


