Chapter 3. Interpolation and
Extrapolation

3.0 Introduction

Wesometimesknow thevaueof afunction f(x) at aset of pointsx1, zo, ..., N
(say, withzy < ... < zy), butwedon'thavean analyticexpressionfor f(x) that lets
uscalculateitsvalueat an arbitrary point. For example, the f(x;)’smight result from
some physical measurement or from long numerical calculation that cannot be cast
into asimple functiona form. Often the x;’s are equally spaced, but not necessarily.

The task now is to estimate f(x) for arbitrary « by, in some sense, drawing a
smooth curve through (and perhaps beyond) the z;. If thedesired = isin between the
largest and smallest of the x;’s, the problem is called interpolation; if x is outside
that range, it is called extrapolation, which is considerably more hazardous (as many
former stock-market analysts can attest).

Interpolation and extrapolation schemes must model the function, between or
beyond the known points, by some plausible functional form. The form should
be sufficiently general so as to be able to approximate large classes of functions
which might arise in practice. By far most common among the functional forms
used are polynomials (§3.1). Rationa functions (quotientsof polynomials) also turn
out to be extremely useful (§3.2). Trigonometric functions, sines and cosines, give
rise to trigonometric interpolation and related Fourier methods, which we defer to
Chapters 12 and 13.

There is an extensive mathematical literature devoted to theorems about what
sort of functions can be well approximated by which interpolating functions. These
theorems are, aas, amost completely useless in day-to-day work: If we know
enough about our function to apply a theorem of any power, we are usually not in
the pitiful state of having to interpolate on atable of its values!

Interpolationis related to, but distinct from, function approximation. That task
consists of finding an approximate (but easily computable) function to use in place
of amore complicated one. Inthe case of interpolation, you are given the function f
at points not of your own choosing. For the case of function approximation, you are
allowed to computethefunction f at any desired pointsfor the purpose of devel oping
your approximation. We deal with function approximation in Chapter 5.

One can easily find pathological functionsthat make a mockery of any interpo-
lation scheme. Consider, for example, the function

f(z) =32 + % In[(m—2)%] +1 (3.0.1)
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100 Chapter 3. Interpolation and Extrapolation

which is well-behaved everywhere except at x = 7, very mildly singular a = = 7,
and otherwise takes on all positive and negative values. Any interpolation based
onthevauesz = 3.13, 3.14, 3.15, 3.16, will assuredly get avery wrong answer for
the value z = 3.1416, even though a graph plotting those five points looks really
quite smooth! (Try it on your calculator.)

Because pathologies can lurk anywhere, it is highly desirable that an interpo-
lation and extrapolation routine should return an estimate of its own error. Such an
error estimate can never be foolproof, of course. We could have a function that,
for reasons known only to its maker, takes off wildly and unexpectedly between
two tabulated points. Interpolation always presumes some degree of smoothness
for the function interpolated, but within this framework of presumption, deviations
from smoothness can be detected.

Conceptually, the interpolation process has two stages: (1) Fit an interpolating
function to the data points provided. (2) Evauate that interpolating function at
the target point .

However, this two-stage method is generally not the best way to proceed in
practice. Typically it is computationaly less efficient, and more susceptible to
roundoff error, than methods which construct a functional estimate f(x) directly
from the IV tabulated values every time oneis desired. Most practical schemes start
at a nearby point f(x;), then add a sequence of (hopefully) decreasing corrections,
as information from other f(x;)’s is incorporated. The procedure typically takes
O(N?) operations. |If everything is well behaved, the last correction will be the
smallest, and it can be used as an informal (though not rigorous) bound on the error.

In the case of polynomial interpolation, it sometimes does happen that the
coefficients of the interpolating polynomia are of interest, even though their use
in evaluating the interpolating function should be frowned on. We dea with this
eventuality in §3.5.

Loca interpolation, using a finite number of “nearest-neighbor” points, gives
interpolated values f(z) that do not, in general, have continuous first or higher
derivatives. That happens because, as = crosses the tabulated values z;, the
interpolation scheme switches which tabulated points are the “local” ones. (If such
aswitch is allowed to occur anywhere el se, then there will be a discontinuity in the
interpolated function itself at that point. Bad idea!)

In situations where continuity of derivatives is a concern, one must use
the “stiffer” interpolation provided by a so-called spline function. A spline is
a polynomia between each pair of table points, but one whose coefficients are
determined “dlightly” nonlocally. The nonlocality is designed to guarantee global
smoothnessin theinterpolated function up to some order of derivative. Cubic splines
(§3.3) arethemost popular. They produce an interpol ated function that is continuous
through the second derivative. Splinestend to be stabler than polynomials, with less
possibility of wild oscillation between the tabulated points.

The number of points (minus one) used in an interpolation scheme is called
the order of the interpolation. Increasing the order does not necessarily increase
the accuracy, especialy in polynomial interpolation. If the added points are distant
fromthe point of interest -, the resulting higher-order polynomial, with its additional
constrained points, tends to oscillate wildly between the tabulated values. This
oscillation may have no relation at all to the behavior of the “true” function (see
Figure 3.0.1). Of course, adding points close to the desired point usualy does help,
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3.0 Introduction 101

Figure 3.0.1. (@ A smooth function (solid line) is more accurately interpolated by a high-order
polynomial (shown schematically as dotted line) than by a low-order polynomial (shown as a piecewise
linear dashed line). (b) A function with sharp corners or rapidly changing higher derivatives is less
accurately approximated by a high-order polynomial (dotted line), whichistoo “stiff,” than by alow-order
polynomial (dashed lines). Even some smooth functions, such as exponentials or rational functions, can
be badly approximated by high-order polynomials.

but a finer mesh implies a larger table of values, not dways available.

Unlessthereis solid evidence that the interpolating function is close in form to
the true function f, it is a good idea to be cautious about high-order interpolation.
We enthusiastically endorse interpolationswith 3 or 4 points, we are perhapstol erant
of 5 or 6; but we rarely go higher than that unless there is quite rigorous monitoring
of estimated errors.

When your table of values contains many more points than the desirable order
of interpolation, you must begin each interpol ation with a search for theright “local”
place in thetable. While not strictly apart of the subject of interpolation, thistask is
important enough (and often enough botched) that we devote §3.4 to its discussion.

The routines given for interpolation are also routines for extrapolation. An
important application, in Chapter 16, is their use in the integration of ordinary
differential equations. There, considerable care is taken with the monitoring of
errors. Otherwise, the dangers of extrapolation cannot be overemphasized: An
interpolating function, which is perforce an extrapolating function, will typicaly go
berserk when the argument x is outside the range of tabulated values by more than
the typical spacing of tabulated points.

Interpolation can be done in more than one dimension, e.g., for a function
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102 Chapter 3. Interpolation and Extrapolation

f(z,y, z). Multidimensional interpolation is often accomplished by a sequence of
one-dimensional interpolations. We discuss thisin §3.6.
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3.1 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points, a
unique quadratic. Et cetera. The interpolating polynomial of degree N — 1 through
the N points y; = f(z1),y2 = f(z2),...,yn = f(zn) is given explicitly by
Lagrange's classical formula,

(r —2z2)(x — x3)...(x — TN) (x —21)(z — x3)...(x — xN)
(21 — 22) (21 — 23)... (1 — 2n) " (22 — 21) (22 — 23)...(T2 — TN )
(x —x1)(z — x2)...(x — xN_-1)
(xny —x1)(xNy — z2)...(xN — TN—1)

P(x) = Yo

(3.1.1)
There are N terms, each a polynomial of degree N — 1 and each constructed to be
zero a al of the z; except one, at which it is constructed to be y;.

It is not terribly wrong to implement the Lagrange formula straightforwardly,
butitis not terribly right either. The resulting algorithm gives no error estimate, and
it isaso somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomidl) is Neville's algorithm, closely related to
and sometimes confused with Aitken’s algorithm, the latter now considered obsol ete.

Let P, be the value at = of the unique polynomia of degree zero (i.e,
a constant) passing through the point (x1,y1); S0 P1 = y1. Likewise define
Py, Ps, ..., Py. Now let Pj5 be the value at = of the unique polynomia of
degree one passing through both (z1,y1) and (z2,y2). Likewise Pa3, Pay,. ..,
P(n_1)n. Similarly, for higher-order polynomials, upto P23, n, Whichisthevalue
of the unique interpolating polynomial through al N points, i.e., the desired answer.
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