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f(z,y, z). Multidimensional interpolation is often accomplished by a sequence of
one-dimensional interpolations. We discuss thisin §3.6.
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3.1 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points, a
unique quadratic. Et cetera. The interpolating polynomial of degree N — 1 through
the N points y; = f(z1),y2 = f(z2),...,yn = f(zn) is given explicitly by
Lagrange's classical formula,

(r —2z2)(x — x3)...(x — TN) (x —21)(z — x3)...(x — xN)
(21 — 22) (21 — 23)... (1 — 2n) " (22 — 21) (22 — 23)...(T2 — TN )
(x —x1)(z — x2)...(x — xN_-1)
(xny —x1)(xNy — z2)...(xN — TN—1)

P(x) = Yo

(3.1.1)
There are N terms, each a polynomial of degree N — 1 and each constructed to be
zero a al of the z; except one, at which it is constructed to be y;.

It is not terribly wrong to implement the Lagrange formula straightforwardly,
butitis not terribly right either. The resulting algorithm gives no error estimate, and
it isaso somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomidl) is Neville's algorithm, closely related to
and sometimes confused with Aitken’s algorithm, the latter now considered obsol ete.

Let P, be the value at = of the unique polynomia of degree zero (i.e,
a constant) passing through the point (x1,y1); S0 P1 = y1. Likewise define
Py, Ps, ..., Py. Now let Pj5 be the value at = of the unique polynomia of
degree one passing through both (z1,y1) and (z2,y2). Likewise Pa3, Pay,. ..,
P(n_1)n. Similarly, for higher-order polynomials, upto P23, n, Whichisthevalue
of the unique interpolating polynomial through al N points, i.e., the desired answer.
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3.1 Polynomial Interpolation and Extrapolation 103

The various P’s form a “tableau” with “ancestors’ on the left leading to a single
“descendant” at the extreme right. For example, with N = 4,

Z1: n="nr
P
T2 Y2 = P P1a3
Ps3 Pio3y (312)
z3: y3 = P3 Ps34
Psy
T4t Yys = Py

Neville's agorithm is a recursive way of filling in the numbers in the tableau
a column at a time, from left to right. It is based on the relationship between a
“daughter” P and its two “parents,”

(= Titm) Pigi1)...(i4m—1) T (@i — 2) P11y (i42)...i4m)

Piiy1)...G4m) = Ti — Titm

(3.1.3)

This recurrence works because the two parents already agree at points ;41 . ..
Litm—1-

An improvement on the recurrence (3.1.3) is to keep track of the small
differences between parents and daughters, namely to define (for m = 1,2,.. .,
N - 1),

Cmi = Pi..,(i+m) - Pi...(i+m—1)
(3.1.4)
D = B (i1m) — Plat1)...(i4m) -

Then one can easily derive from (3.1.3) the relations

(Titmt+1 — 2)(Crmit1 — D)
Ti — Ti4+m+1
3.15
(i —2)(Cmiv1 — D) ( :
Ti — Ti+m+1

D1, =

Cm+1,i -

At each level m, the C’sand D’s are the corrections that make the interpol ation one
order higher. The final answer P; _  isequal to the sum of any y; plusaset of C's
and/or D’s that form a path through the family tree to the rightmost daughter.

Here is a routine for polynomial interpolation or extrapol ation:

SUBROUTINE polint(xa,ya,n,x,y,dy)

INTEGER n,NMAX

REAL dy,x,y,xa(n),ya(n)

PARAMETER (NMAX=10) Largest anticipated value of n.
Given arrays xa and ya, each of length n, and given a value x, this routine returns a
value y, and an error estimate dy. If P(z) is the polynomial of degree N — 1 such that
P(xa;) = ya;,« = 1,...,n, then the returned value y = P(x).

INTEGER i,m,ns

REAL den,dif,dift,ho,hp,w,c(NMAX) ,d(NMAX)

ns=1

dif=abs(x-xa(1))
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104 Chapter 3. Interpolation and Extrapolation

don i=1,n Here we find the index ns of the closest table entry,
dift=abs(x-xa(i))
if (dift.1lt.dif) then

ns=i
dif=dift
endif
c(i)=ya(i) and initialize the tableau of ¢’s and d’s.
d(i)=ya(i)
enddo 11
y=ya(ns) This is the initial approximation to y.
ns=ns-1
do 13 m=1,n-1 For each column of the tableau,
do12 i=1,n-m we loop over the current c¢’s and d's and update them.

ho=xa(i)-x
hp=xa(i+m)-x
w=c(i+1)-d(i)
den=ho-hp
if(den.eq.0.)pause ’failure in polint’
This error can occur only if two input xa's are (to within roundoff) identical.
den=w/den

d(i)=hp*den Here the c's and d’s are updated.
c(i)=ho*den
enddo 12
if (2*ns.lt.n-m)then After each column in the tableau is completed, we decide
dy=c(ns+1) which correction, ¢ or d, we want to add to our accu-
else mulating value of y, i.e., which path to take through
dy=d(ns) the tableau—forking up or down. We do this in such a
ns=ns-1 way as to take the most “straight line” route through the
endif tableau to its apex, updating ns accordingly to keep track
y=y+dy of where we are. This route keeps the partial approxima-
enddo 13 tions centered (insofar as possible) on the target x. The
return last dy added is thus the error indication.

END

Quite often you will want to cal polint with the dummy arguments xa
and ya replaced by actua arrays with offsets. For example, the construction
call polint(xx(15),yy(15),4,x,y,dy) performs 4-point interpolation on the
tabulated values xx (15:18), yy (15:18). For more on this, see theend of §3.4.
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3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, but are well
approximated by rational functions, that is quotients of polynomials. We de-
note by Rj(it1)...(i+m) @ rationa function passing through the m + 1 points
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