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don i=1,n Here we find the index ns of the closest table entry,
dift=abs(x-xa(i))
if (dift.1lt.dif) then

ns=i
dif=dift
endif
c(i)=ya(i) and initialize the tableau of ¢’s and d’s.
d(i)=ya(i)
enddo 11
y=ya(ns) This is the initial approximation to y.
ns=ns-1
do 13 m=1,n-1 For each column of the tableau,
do12 i=1,n-m we loop over the current c¢’s and d's and update them.

ho=xa(i)-x
hp=xa(i+m)-x
w=c(i+1)-d(i)
den=ho-hp
if(den.eq.0.)pause ’failure in polint’
This error can occur only if two input xa's are (to within roundoff) identical.
den=w/den

d(i)=hp*den Here the c's and d’s are updated.
c(i)=ho*den
enddo 12
if (2*ns.lt.n-m)then After each column in the tableau is completed, we decide
dy=c(ns+1) which correction, ¢ or d, we want to add to our accu-
else mulating value of y, i.e., which path to take through
dy=d(ns) the tableau—forking up or down. We do this in such a
ns=ns-1 way as to take the most “straight line” route through the
endif tableau to its apex, updating ns accordingly to keep track
y=y+dy of where we are. This route keeps the partial approxima-
enddo 13 tions centered (insofar as possible) on the target x. The
return last dy added is thus the error indication.

END

Quite often you will want to cal polint with the dummy arguments xa
and ya replaced by actua arrays with offsets. For example, the construction
call polint(xx(15),yy(15),4,x,y,dy) performs 4-point interpolation on the
tabulated values xx (15:18), yy (15:18). For more on this, see theend of §3.4.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §25.2.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.1.

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.

3.2 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials, but are well
approximated by rational functions, that is quotients of polynomials. We de-
note by Rj(it1)...(i+m) @ rationa function passing through the m + 1 points
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3.2 Rational Function Interpolation and Extrapolation 105

(i, ¥i) - - - (Titm, Yirm). More explicitly, suppose

Du(x) _potpia+---+pua”
Qu()  q+qar+- -+ gav

Sincethereare n + v + 1 unknown p’s and ¢'s (qo being arbitrary), we must have

RiGit1)...(i0m) = (3.2.1)

m+l=ptv+1 (32.2)

In specifying a rationa function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability to model functionswith poles, that is, zeros of the denominator
of eguation (3.2.1). These poles might occur for real values of z, if the function
to be interpolated itself has poles. More often, the function f(x) is finite for dl
finite real z, but has an analytic continuation with poles in the complex z-plane.
Such poles can themselves ruin a polynomia approximation, even one restricted to
real values of z, just as they can ruin the convergence of an infinite power series
in z. If you draw a circle in the complex plane around your m tabulated points,
then you should not expect polynomial interpolation to be good unless the nearest
poleis rather far outside the circle. A rational function approximation, by contrast,
will stay “good” as long as it has enough powers of x in its denominator to account
for (cancel) any nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should aso
mention in passing that rational function approximations can be used in anaytic
work. One sometimes constructs a rational function approximation by the criterion
that the rational function of equation (3.2.1) itself have a power series expansion
that agrees with the first m + 1 terms of the power series expansion of the desired
function f(x). Thisiscaled Padé approximation, and is discussed in §5.12.

Bulirsch and Stoer found an agorithm of the Neville type which performs
rational function extrapolation on tabulated data. A tableau like that of eguation
(3.1.2) is constructed column by column, leading to a result and an error estimate.
The Bulirsch-Stoer algorithm produces the so-called diagonal rational function, with
the degrees of numerator and denominator equal (if m is even) or with the degree
of the denominator larger by one (if m is odd, cf. equation 3.2.2 above). For the
derivation of thea gorithm, refer to [1]. The algorithmissummarized by arecurrence
relation exactly analogous to equation (3.1.3) for polynomial approximation:

Ri(iv1)...i4m) = Bit1)...(i+m)
Reiy1)...(i4m) — Ri. (i4m—1)
( z—x; )(1 _ _Ragy.Gtm) —Ril i4m—1 )_1
T—Titm Riig1y.. . (itm)—Rit1)...(i4m—1)

(32.3)

_|_

This recurrence generates the rational functions through m + 1 points from the
ones through m and (the term R(; 1), (i+m—1) iN €quation 3.2.3) m — 1 points.
It is started with
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106 Chapter 3. Interpolation and Extrapolation

and with

Now, exactly as in equations (3.1.4) and (3.1.5) above, we can convert the
recurrence (3.2.3) to one involving only the small differences

Cmni = Ri...(i+m) - Ri...(i+m—1)

(3.2.6)
Dii = Ry (i+m) — Bi+1)...(i4m)
Note that these satisfy the relation
Cm+1,i = Dmy1,i = Omjivr — Dii (3.2.7)
which is useful in proving the recurrences
Diypy1i = Cr’_zl(c S i)
(m) Dy — Crigr
(3.2.8)

(L) D i(Cnjit1r — D i)

T—Titm+1

Cm+1,i -
T—X;
(7) Dyyi — Ciga

LT—Titm+1

Thisrecurrence isimplemented in the foll owing subroutine, whose use is analogous
in every way to polint in §3.1.

SUBROUTINE ratint(xa,ya,n,x,y,dy)
INTEGER n,NMAX
REAL dy,x,y,xa(n),ya(n),TINY
PARAMETER (NMAX=10,TINY=1.e-25) Largest expected value of n, and a small number.
Given arrays xa and ya, each of length n, and given a value of x, this routine returns a
value of y and an accuracy estimate dy. The value returned is that of the diagonal rational
function, evaluated at x, which passes through the n points (Xai,yai), i=1..n.
INTEGER i,m,ns
REAL dd,h,hh,t,w,c(NMAX) ,d(NMAX)
ns=1
hh=abs (x-xa (1))
dou i=1,n
h=abs (x-xa(i))
if (h.eq.0.)then
y=ya(i)
dy=0.0
return
else if (h.1lt.hh) then
ns=i
hh=h
endif
c(i)=ya(i)
d(i)=ya(i)+TINY The TINY part is needed to prevent a rare zero-over-
enddo 11 zero condition.
y=ya(ns)
ns=ns-1
do 13 m=1,n-1
do 12 i=1,n-m
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3.3 Cubic Spline Interpolation 107

w=c(i+1)-d(1i)

h=xa(i+m)-x h will never be zero, since this was tested in the ini-
t=(xa(i)-x)*d(i)/h tializing loop.
dd=t-c(i+1)

if(dd.eq.0.)pause ’failure in ratint’
This error condition indicates that the interpolating function has a pole at the re-
quested value of x.
dd=w/dd
d(i)=c(i+1)*dd
c(i)=t=*dd
enddo 12
if (2#ns.lt.n-m)then
dy=c(ns+1)
else
dy=d(ns)
ns=ns-1
endif
y=y+dy
enddo 13
return
END

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.2. 1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.2.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 3.

3.3 Cubic Spline Interpolation

Given a tabulated function y; = y(z;), ¢« = 1...N, focus attention on one
particular interval, between «; and x ;1. Linear interpolation in that interval gives
the interpolation formula

y = Ay; + Byjn (331)
where
s i S - S R R (332)
$j+1 —xj $j+1—$j

Equations (3.3.1) and (3.3.2) are aspecia case of the genera Lagrange interpolation
formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in
the interior of each interval, and an undefined, or infinite, second derivative at the
abscissas ;. Thegoal of cubic splineinterpolationisto get an interpolationformula
that is smooth in the first derivative, and continuousin the second derivative, both
within an interva and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of y;, we
aso have tabulated values for the function’s second derivatives, y”, that is, a set
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