Chapter 4. Integration of Functions

4.0 Introduction

Numerical integration, which isalso called quadrature, has ahistory extending
back to the invention of calculus and before. The fact that integrals of e ementary
functions could not, in general, be computed analytically, while derivatives could
be, served to give thefield a certain panache, and to set it a cut above the arithmetic
drudgery of numerical analysis during the whole of the 18th and 19th centuries.

With theinvention of automatic computing, quadrature became just one numer-
ical task among many, and not avery interesting one at that. Automatic computing,
even themost primitivesort involvingdesk cal culatorsand roomsfull of “computers”
(that were, until the 1950s, people rather than machines), opened to feasibility the
much richer field of numerical integration of differential equations. Quadrature is
merely the simplest special case: The evaluation of the integral

b
I= / f(z)dx (4.0.2)

is precisely equivalent to solving for thevaue I = y(b) the differentia equation

d

d—y = f(z) (4.0.2)

X
with the boundary condition

y(a) =0 (4.0.3)

Chapter 16 of this book deals with the numerical integration of differential
equations. In that chapter, much emphasis is given to the concept of “variable’ or
“adaptive’ choices of stepsize. We will not, therefore, develop that materia here.
If the function that you propose to integrate is sharply concentrated in one or more
peaks, or if its shape is not readily characterized by a single length-scale, then it
is likely that you should cast the problem in the form of (4.0.2)—«4.0.3) and use
the methods of Chapter 16.

The quadrature methodsin this chapter are based, in one way or another, on the
obvious device of adding up the value of the integrand at a sequence of abscissas
within the range of integration. The game is to obtain the integral as accurately
as possible with the smallest number of function evaluations of the integrand. Just
as in the case of interpolation (Chapter 3), one has the freedom to choose methods
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of various orders, with higher order sometimes, but not always, giving higher
accuracy. “Romberg integration,” which isdiscussed in §4.3, isa genera formalism
for making use of integration methods of a variety of different orders, and we
recommend it highly.

Apart from the methods of this chapter and of Chapter 16, there are yet
other methods for obtaining integrals. One important class is based on function
approximation. We discuss explicitly the integration of functions by Chebyshev
approximation (“Clenshaw-Curtis’ quadrature) in §5.9. Although not explicitly
discussed here, you ought to be able to figure out how to do cubic spline quadrature
using the output of the routine spline in §3.3. (Hint: Integrate equation 3.3.3
over x andyticaly. See[ll.)

Some integrals related to Fourier transforms can be calculated using the fast
Fourier transform (FFT) agorithm. Thisis discussed in §13.9.

Multidimensional integrals are another whole multidimensional bag of worms.
Section 4.6 is an introductory discussion in this chapter; the important technique of
Monte-Carlo integration is treated in Chapter 7.
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4.1 Classical Formulas for Equally Spaced
Abscissas

Where would any book on numerical analysis be without Mr. Simpson and his
“rule’? The classical formulas for integrating a function whose value is known at
equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modern numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as the time
of Newton, if not farther. Alas, times do change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended
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