124 Chapter 4.  Integration of Functions

of various orders, with higher order sometimes, but not always, giving higher
accuracy. “Romberg integration,” which isdiscussed in §4.3, isa genera formalism
for making use of integration methods of a variety of different orders, and we
recommend it highly.

Apart from the methods of this chapter and of Chapter 16, there are yet
other methods for obtaining integrals. One important class is based on function
approximation. We discuss explicitly the integration of functions by Chebyshev
approximation (“Clenshaw-Curtis’ quadrature) in §5.9. Although not explicitly
discussed here, you ought to be able to figure out how to do cubic spline quadrature
using the output of the routine spline in §3.3. (Hint: Integrate equation 3.3.3
over x andyticaly. See[ll.)

Some integrals related to Fourier transforms can be calculated using the fast
Fourier transform (FFT) agorithm. Thisis discussed in §13.9.

Multidimensional integrals are another whole multidimensional bag of worms.
Section 4.6 is an introductory discussion in this chapter; the important technique of
Monte-Carlo integration is treated in Chapter 7.

CITED REFERENCES AND FURTHER READING:

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Chapter 2.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods (New York: Wiley), Chapter 7.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 3.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood ClIiffs,
NJ: Prentice Hall), Chapter 5.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §5.2, p. 89. [1]

Davis, P., and Rabinowitz, P. 1984, Methods of Numerical Integration, 2nd ed. (Orlando, FL:
Academic Press).

4.1 Classical Formulas for Equally Spaced
Abscissas

Where would any book on numerical analysis be without Mr. Simpson and his
“rule’? The classical formulas for integrating a function whose value is known at
equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modern numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as the time
of Newton, if not farther. Alas, times do change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended
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4.1 Classical Formulas for Equally Spaced Abscissas 125

—~

open formulas use these points

closed formulas use these points

Figure 4.1.1. Quadrature formulas with equally spaced abscissas compute the integral of a function
between z¢ and xy41. Closed formulas evaluate the function on the boundary points, while open
formulasrefrain from doing so (useful if the evaluation algorithm breaks down on the boundary points).

midpoint rule,” equation 4.1.19, see §4.2), the classical formulas are amost entirely
useless. They are museum pieces, but beautiful ones.

Some notation: We have a sequence of abscissas, denoted xg, z1, ..., xnN,
xn+1 Which are spaced apart by a constant step h,

A function f(x) has known values at the x;’s,

We want to integrate the function f () between alower limit ¢ and an upper limit
b, where a and b are each equa to one or the other of the z;'s. An integration
formula that uses the value of the function at the endpoints, f(a) or f(b), iscaled
aclosed formula. Occasiondly, we want to integrate a function whose value a one
or both endpointsis difficult to compute (e.g., the computation of f goesto alimit
of zero over zero there, or worse yet has an integrable singularity there). In this
case we want an open formula, which estimates the integral using only z;’s strictly
between o and b (see Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over a small number of intervals. As that number increases, we can find
rules that are exact for polynomials of increasingly high order. (Keep in mind that
higher order does not aways imply higher accuracy in real cases.) A sequence of
such closed formulas is now given.

Closed Newton-Cotes Formulas

Trapezoidal rule
/ - f(z)dz = h[%fl + %fz] + O f") (4.1.3)

Here the error term O( ) signifies that the true answer differs from the estimate by
an amount that isthe product of some numerical coefficient times h2 timesthe value

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad
(X-790€¥-T2S-0 N9SI) ONILNINOD DIHILNIIDS 4O LYV IHL 122 NVHLHOd NI S3dI03H TvOI4INNN woyy abed sjdwes gap spim plIOM

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA



126 Chapter 4.  Integration of Functions

of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evaluate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write only O( ), instead of the coefficient.
Equation (4.1.3) isatwo-point formula (z;, and z2). It isexact for polynomials
up to and including degree 1, i.e, f(x) = xz. One anticipates that there is a
three-point formulaexact up to polynomialsof degree 2. Thisistrue; moreover, by a
cancellation of coefficients dueto left-right symmetry of the formula, the three-point
formulais exact for polynomias up to and including degree 3, i.e., f(z) = x3:

Smpson’s rule:
o 1, 4, 1 5
/ f(x)dz = h|:§f1 +3h+3fs| + O(h® ™) (4.1.4)

Here f*) means the fourth derivative of the function f evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an interval
of size 2h, s0 the coefficients add up to 2.

There is no lucky cancellation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

y 3 .
Smpson’s ¢ rule:

o 3 9 9 3
/ f(z)dz = h|:§f1 +oftgfst §f4] + O’ fW) (4.1.5)
The five-point formula again benefits from a cancellation:

Bode's rule:

" ayde = n| My 8 My 84, 1 7 0)
/Il f(x)dx—h[45f1+45f2+45f3+45f4+45f5] +O(hf©)) (4.1.6)

This is exact for polynomias up to and including degree 5.
At this point the formulas stop being named after famous personages, so we
will not go any further. Consult[1] for additional formulasin the sequence.
Extrapolative Formulas for a Single Interval
We are going to depart from historical practice for a moment. Many texts

would give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.”
Here is an example:

" nlPop B D 0D 5 p(4)
[ s =n[he grs e ] 0uer)
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4.1 Classical Formulas for Equally Spaced Abscissas 127

Notice that the integral from a = ¢ to b = x5 isestimated, using only the interior
points x1, x2, 3, z4. N our opinion, formulas of this type are not useful for the
reasons that (i) they cannot usefully be strung together to get “extended” rules, aswe
are about to do with the closed formulas, and (ii) for all other possible uses they are
dominated by the Gaussian integration formulas which we will introducein §4.5.

Instead of the Newton-Cotes open formulas, let us set out the formulas for
estimating the integral in the single interval from xo to x;, using values of the
function f a x1,xs,.... These will be useful building blocks for the “extended”
open formulas.

/rl f(x)dz =h[fi]  +OM®*f) (4.1.7)
o -3 1 3 g/

f@)dw =h|Zfi - §f2] + O3 f") (4.1.8)

: f(x)dz =h _%fl - %fz + f—zfg] +O(n* ) (4.1.9)

ml f(z)dz =h _%fl - %fz + %fg - 29—4f4] +O(h° f)(4.1.10)

Perhaps a word here would be in order about how formulas like the above can
be derived. There are elegant ways, but themost straightforwardisto writedown the
basic form of the formula, replacing the numerical coefficients with unknowns, say
p, q, 7, s. Without loss of generdlity takexg = 0 andx; = 1, S0 h = 1. Subgtitutein
turnfor f(x) (and for f1, fa, f3, f1) thefunctions f(x) = 1, f(z) = z, f(z) = 22,
and f(z) = x3. Doing the integra in each case reduces the left-hand side to a
number, and the right-hand side to a linear equation for the unknowns p, ¢, r, s.
Solving the four equations produced in this way gives the coefficients.

Extended Formulas (Closed)

If we use equation (4.1.3) N — 1 times, to do the integration in the intervals
(z1,22), (x2,23), ..., (xN_1,2nN), and then add theresults, we obtain an “ extended”
or “composite” formula for the integral from z; to z .

Extended trapezoidal rule:

[ rwyde =3+ 5t
= (4.1.11)

_ \3 N
"'+fN—1+%fN:| +O(%)

Here we have written the error estimate in terms of theinterval b — a and the number
of points N instead of in terms of h. Thisis clearer, since one is usualy holding
a and b fixed and wanting to know (e.g.) how much the error will be decreased
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128 Chapter 4.  Integration of Functions

by taking twice as many steps (in this case, it is by a factor of 4). In subsequent
equations we will show only the scaling of the error term with the number of steps.
For reasons that will not become clear until §4.2, equation (4.1.11) is in fact
the most important equation in this section, the basis for most practical quadrature
schemes.
The extended formula of order 1/N3 is.

[t = n| b+ s i i
(4.1.12)

4 2+ EfN—l + EfN] +0 (]¢3>

(We will see in a moment where this comes from.)
If we apply equation (4.1.4) to successive, nonoverlapping pairs of intervals,
we get the extended Smpson’s rule:

/IN F@)da = h[lfl A
; g/t T3z gty
1 (4.1.13)

2 4 1 1
S+ ng—z—F ng—1 + ng] +0 (N4>

Notice that the 2/3, 4/3 dternation continues throughout the interior of the evalu-
ation. Many people believe that the wobbling alternation somehow contains deep
information about the integral of their function that is not apparent to morta eyes.
In fact, the aternation is an artifact of using the building block (4.1.4). Another
extended formula with the same order as Simpson’srule is

[ rwre=n[35 4 Sk St fat it

23 7 3
ot fnoa+ fnos+ ﬂf}\/—z + EfN—l + ng (4.1.14)

~0(5)

This equation is constructed by fitting cubic polynomialsthrough successive groups
of four points; we defer details to §18.3, where a similar technique is used in the
solution of integral equations. We can, however, tell you where equation (4.1.12)
came from. It is Simpson’s extended rule, averaged with a modified version of
itself in which thefirst and last step are done with the trapezoida rule (4.1.3). The
trapezoidal step is two orders lower than Simpson’s rule; however, its contribution
to the integral goes down as an additional power of N (sinceit is used only twice,
not N times). Thismakes the resulting formulaof degree one less than Simpson.

"alemyjos sadinay feouswnN Aq z66T-886T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq z66T-886T (O) WbLAdoD

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad
(X-790€¥-T2S-0 N9SI) ONILNINOD DIHILNIIDS 4O LYV IHL 122 NVHLHOd NI S3dI03H TvOI4INNN woyy abed sjdwes gap spim plIOM

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA



4.1 Classical Formulas for Equally Spaced Abscissas 129

Extended Formulas (Open and Semi-open)

We can construct open and semi-open extended formulas by adding the closed
formulas (4.1.11)—(4.1.14), evauated for the second and subsequent steps, to the
extrapolative open formulas for the first step, (4.1.7)«4.1.10). As discussed
immediately above, it is consistent to use an end step that is of one order lower
than the (repeated) interior step. The resulting formulas for an interval open at

both ends are as follows:
Equations (4.1.7) and (4.1.11) give

/mN f(z)dz = h[gf2+f3+f4—|—. et o+ ng—l] +0 (NL> (4.1.15)

Equations (4.1.8) and (4.1.12) give
N 23 7
/Il f(@)de = h[ﬁfﬂ— Sl fat fot
7 23
ot st g2t EfN—l] (4.1.16)
1
+0(NQ
Equations (4.1.9) and (4.1.13) give
N 27 13 4
/Il f(2)dz :h[ﬁfﬂ—(ﬂ— Sl Sl
4 13 27
cee ng—4 + EfN—B +0+ EfN—l (4.1.17)

~0(5)

The interior points aternate 4/3 and 2/3. If we want to avoid this alternation,
we can combine equations (4.1.9) and (4.1.14), giving

N 95 1 11
[ faas=n| - ot g St Sk fr
11 1 95
ot s st v - e g
1
+0(m)

We should mention in passing another extended open formula, for use where
thelimitsof integration are located halfway between tabulated abscissas. Thisoneis
known as the extended midpoint rule, and is accurate to the same order as (4.1.15):

(4.1.18)

/ i f(x)dx = h|fs/2 + f5)2 + fr/2+

X (4.1.19)

ot fnozpet fno1e] +O (W)
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130 Chapter 4.  Integration of Functions

(total after N=4)

Figure4.2.1. Sequential callsto theroutine trapzd incorporate the information from previous calls and
evaluate the integrand only at those new points necessary to refine the grid. The bottom line shows the
totality of function evaluations after the fourth call. The routine gsimp, by weighting the intermediate
results, transforms the trapezoid rule into Simpson’s rule with essentially no additional overhead.

There are also formulas of higher order for this situation, but we will refrain from
giving them.

The semi-open formulasarejust the obvious combinations of equations(4.1.11)—
(4.1.14) with (4.1.15)—(4.1.18), respectively. At the closed end of the integration,
use the weights from the former equations; at the open end use the weights from
the latter equations. One example should give the idea, the formulawith error term
decreasing as 1/NN? which is closed on the right and open on the | ft:

/IN F@)da = h[%fz n %fg ¥t fot
o (4.1.20)

13 5 1
ot fyat Tt EfN] ‘o (W)
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4.2 Elementary Algorithms

Our gtarting point is equation (4.1.11), the extended trapezoidal rule. There are
two facts about the trapezoidal rule which make it the starting point for a variety of
algorithms. One fact is rather obvious, while the second is rather “deep.”

The obviousfact isthat, for afixed function f(x) to be integrated between fixed
limits a and b, one can double the number of intervals in the extended trapezoidal
rule without losing the benefit of previous work. The coarsest implementation of
the trapezoidal rule is to average the function at its endpoints a and b. The first
stage of refinement isto add to this average the value of the function at the halfway
point. The second stage of refinement isto add the values at the 1/4 and 3/4 points.
And so on (see Figure 4.2.1).

Without further ado we can write aroutine with thiskind of logic to it:
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