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Of course you should calculate repeated subexpressions, like c/d or d/c, only once.
Complex square root is even more complicated, since we must both guard

intermediate results, and also enforce a chosen branch cut (here taken to be the
negative real axis). To take the square root of c + id, first compute

w ≡



0 c = d = 0√
|c|

√
1 +

√
1 + (d/c)2

2
|c| ≥ |d|

√
|d|

√
|c/d|+

√
1 + (c/d)2

2
|c| < |d|

(5.4.6)

Then the answer is

√
c+ id =



0 w = 0

w + i

(
d

2w

)
w 6= 0, c ≥ 0

|d|
2w

+ iw w 6= 0, c < 0, d ≥ 0

|d|
2w
− iw w 6= 0, c < 0, d < 0

(5.4.7)

CITED REFERENCES AND FURTHER READING:

Midy, P., and Yakovlev, Y. 1991, Mathematics and Computers in Simulation, vol. 33, pp. 33–49.

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley) [see solutions to exercises 4.2.1.16 and 4.6.4.41].

5.5 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, e.g.,

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (5.5.1)

Jn+1(x) =
2n

x
Jn(x)− Jn−1(x) (5.5.2)

nEn+1(x) = e−x − xEn(x) (5.5.3)

cosnθ = 2 cos θ cos(n − 1)θ − cos(n− 2)θ (5.5.4)

sinnθ = 2 cos θ sin(n− 1)θ − sin(n− 2)θ (5.5.5)

where the first three functions are Legendre polynomials, Bessel functions of the first
kind, and exponential integrals, respectively. (For notation see [1].) These relations
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are useful for extending computational methods from two successive values of n to
other values, either larger or smaller.

Equations (5.5.4) and (5.5.5) motivate us to say a few words about trigonometric
functions. If your program’s running time is dominated by evaluating trigonometric
functions, you are probably doing something wrong. Trig functions whose arguments
form a linear sequence θ = θ0 + nδ, n = 0, 1, 2, . . . , are efficiently calculated by
the following recurrence,

cos(θ + δ) = cos θ − [α cos θ + β sin θ]

sin(θ + δ) = sin θ − [α sin θ − β cos θ]
(5.5.6)

where α and β are the precomputed coefficients

α ≡ 2 sin2

(
δ

2

)
β ≡ sin δ (5.5.7)

The reason for doing things this way, rather than with the standard (and equivalent)
identities for sums of angles, is that here α and β do not lose significance if the
incremental δ is small. Likewise, the adds in equation (5.5.6) should be done in
the order indicated by square brackets. We will use (5.5.6) repeatedly in Chapter
12, when we deal with Fourier transforms.

Another trick, occasionally useful, is to note that both sin θ and cos θ can be
calculated via a single call to tan:

t ≡ tan

(
θ

2

)
cos θ =

1− t2
1 + t2

sin θ =
2t

1 + t2
(5.5.8)

The cost of getting both sin and cos, if you need them, is thus the cost of tan plus
2 multiplies, 2 divides, and 2 adds. On machines with slow trig functions, this can
be a savings. However, note that special treatment is required if θ → ±π. And also
note that many modern machines have very fast trig functions; so you should not
assume that equation (5.5.8) is faster without testing.

Stability of Recurrences

You need to be aware that recurrence relations are not necessarily stable
against roundoff error in the direction that you propose to go (either increasing n or
decreasing n). A three-term linear recurrence relation

yn+1 + anyn + bnyn−1 = 0, n = 1, 2, . . . (5.5.9)

has two linearly independent solutions, fn and gn say. Only one of these corresponds
to the sequence of functions fn that you are trying to generate. The other one gn
may be exponentially growing in the direction that you want to go, or exponentially
damped, or exponentially neutral (growing or dying as some power law, for example).
If it is exponentially growing, then the recurrence relation is of little or no practical
use in that direction. This is the case, e.g., for (5.5.2) in the direction of increasing
n, when x < n. You cannot generate Bessel functions of high n by forward
recurrence on (5.5.2).
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To state things a bit more formally, if

fn/gn → 0 as n→∞ (5.5.10)

then fn is called the minimal solution of the recurrence relation (5.5.9). Nonminimal
solutions like gn are called dominant solutions. The minimal solution is unique, if it
exists, but dominant solutions are not — you can add an arbitrary multiple of fn to
a given gn. You can evaluate any dominant solution by forward recurrence, but not
the minimal solution. (Unfortunately it is sometimes the one you want.)

Abramowitz and Stegun (in their Introduction) [1] give a list of recurrences that
are stable in the increasing or decreasing directions. That list does not contain all
possible formulas, of course. Given a recurrence relation for some function fn(x)
you can test it yourself with about five minutes of (human) labor: For a fixed x
in your range of interest, start the recurrence not with true values of fj(x) and
fj+1(x), but (first) with the values 1 and 0, respectively, and then (second) with
0 and 1, respectively. Generate 10 or 20 terms of the recursive sequences in the
direction that you want to go (increasing or decreasing from j), for each of the two
starting conditions. Look at the difference between the corresponding members of
the two sequences. If the differences stay of order unity (absolute value less than
10, say), then the recurrence is stable. If they increase slowly, then the recurrence
may be mildly unstable but quite tolerably so. If they increase catastrophically,
then there is an exponentially growing solution of the recurrence. If you know
that the function that you want actually corresponds to the growing solution, then
you can keep the recurrence formula anyway e.g., the case of the Bessel function
Yn(x) for increasing n, see §6.5; if you don’t know which solution your function
corresponds to, you must at this point reject the recurrence formula. Notice that
you can do this test before you go to the trouble of finding a numerical method for
computing the two starting functions fj(x) and fj+1(x): stability is a property of
the recurrence, not of the starting values.

An alternative heuristic procedure for testing stability is to replace the recur-
rence relation by a similar one that is linear with constant coefficients. For example,
the relation (5.5.2) becomes

yn+1 − 2γyn + yn−1 = 0 (5.5.11)

where γ ≡ n/x is treated as a constant. You solve such recurrence relations
by trying solutions of the form yn = an. Substituting into the above recur-
rence gives

a2 − 2γa + 1 = 0 or a = γ ±
√
γ2 − 1 (5.5.12)

The recurrence is stable if |a| ≤ 1 for all solutions a. This holds (as you can verify)
if |γ| ≤ 1 or n ≤ x. The recurrence (5.5.2) thus cannot be used, starting with J0(x)
and J1(x), to compute Jn(x) for large n.

Possibly you would at this point like the security of some real theorems on
this subject (although we ourselves always follow one of the heuristic procedures).
Here are two theorems, due to Perron [2]:

Theorem A. If in (5.5.9) an ∼ anα, bn ∼ bnβ as n→∞, and β < 2α, then

gn+1/gn ∼ −anα, fn+1/fn ∼ −(b/a)nβ−α (5.5.13)
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and fn is the minimal solution to (5.5.9).
Theorem B. Under the same conditions as Theorem A, but with β = 2α,

consider the characteristic polynomial

t2 + at+ b = 0 (5.5.14)

If the roots t1 and t2 of (5.5.14) have distinct moduli, |t1| > |t2| say, then

gn+1/gn ∼ t1nα, fn+1/fn ∼ t2nα (5.5.15)

and fn is again the minimal solution to (5.5.9). Cases other than those in these
two theorems are inconclusive for the existence of minimal solutions. (For more
on the stability of recurrences, see [3].)

How do you proceed if the solution that you desire is the minimal solution?
The answer lies in that old aphorism, that every cloud has a silver lining: If a
recurrence relation is catastrophically unstable in one direction, then that (undesired)
solution will decrease very rapidly in the reverse direction. This means that you
can start with any seed values for the consecutive fj and fj+1 and (when you have
gone enough steps in the stable direction) you will converge to the sequence of
functions that you want, times an unknown normalization factor. If there is some
other way to normalize the sequence (e.g., by a formula for the sum of the fn’s),
then this can be a practical means of function evaluation. The method is called
Miller’s algorithm. An example often given [1,4] uses equation (5.5.2) in just this
way, along with the normalization formula

1 = J0(x) + 2J2(x) + 2J4(x) + 2J6(x) + · · · (5.5.16)

Incidentally, there is an important relation between three-term recurrence
relations and continued fractions. Rewrite the recurrence relation (5.5.9) as

yn
yn−1

= − bn
an + yn+1/yn

(5.5.17)

Iterating this equation, starting with n, gives

yn
yn−1

= − bn
an −

bn+1

an+1 −
· · · (5.5.18)

Pincherle’s Theorem [2] tells us that (5.5.18) converges if and only if (5.5.9) has a
minimal solution fn, in which case it converges to fn/fn−1. This result, usually for
the case n = 1 and combined with some way to determine f0, underlies many of the
practical methods for computing special functions that we give in the next chapter.
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Clenshaw’s Recurrence Formula

Clenshaw’s recurrence formula [5] is an elegant and efficient way to evaluate a
sum of coefficients times functions that obey a recurrence formula, e.g.,

f(θ) =

N∑
k=0

ck cos kθ or f(x) =

N∑
k=0

ckPk(x)

Here is how it works: Suppose that the desired sum is

f(x) =

N∑
k=0

ckFk(x) (5.5.19)

and that Fk obeys the recurrence relation

Fn+1(x) = α(n, x)Fn(x) + β(n, x)Fn−1(x) (5.5.20)

for some functions α(n, x) and β(n, x). Now define the quantities yk (k =
N,N − 1, . . . , 1) by the following recurrence:

yN+2 = yN+1 = 0

yk = α(k, x)yk+1 + β(k + 1, x)yk+2 + ck (k = N,N − 1, . . . , 1)
(5.5.21)

If you solve equation (5.5.21) for ck on the left, and then write out explicitly the
sum (5.5.19), it will look (in part) like this:

f(x) = · · ·

+ [y8 − α(8, x)y9 − β(9, x)y10]F8(x)

+ [y7 − α(7, x)y8 − β(8, x)y9]F7(x)

+ [y6 − α(6, x)y7 − β(7, x)y8]F6(x)

+ [y5 − α(5, x)y6 − β(6, x)y7]F5(x)

+ · · ·

+ [y2 − α(2, x)y3 − β(3, x)y4]F2(x)

+ [y1 − α(1, x)y2 − β(2, x)y3]F1(x)

+ [c0 + β(1, x)y2 − β(1, x)y2]F0(x)

(5.5.22)

Notice that we have added and subtracted β(1, x)y2 in the last line. If you examine
the terms containing a factor of y8 in (5.5.22), you will find that they sum to zero as
a consequence of the recurrence relation (5.5.20); similarly all the other yk’s down
through y2. The only surviving terms in (5.5.22) are

f(x) = β(1, x)F0(x)y2 + F1(x)y1 + F0(x)c0 (5.5.23)
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Equations (5.5.21) and (5.5.23) are Clenshaw’s recurrence formula for doing the sum
(5.5.19): You make one pass down through the yk’s using (5.5.21); when you have
reached y2 and y1 you apply (5.5.23) to get the desired answer.

Clenshaw’s recurrence as written above incorporates the coefficients ck in a
downward order, with k decreasing. At each stage, the effect of all previous ck’s
is “remembered” as two coefficients which multiply the functions Fk+1 and Fk
(ultimately F0 and F1). If the functions Fk are small when k is large, and if the
coefficients ck are small when k is small, then the sum can be dominated by small
Fk’s. In this case the remembered coefficients will involve a delicate cancellation
and there can be a catastrophic loss of significance. An example would be to sum
the trivial series

J15(1) = 0× J0(1) + 0× J1(1) + . . .+ 0× J14(1) + 1× J15(1) (5.5.24)

Here J15, which is tiny, ends up represented as a canceling linear combination of
J0 and J1, which are of order unity.

The solution in such cases is to use an alternative Clenshaw recurrence that
incorporates ck’s in an upward direction. The relevant equations are

y−2 = y−1 = 0 (5.5.25)

yk =
1

β(k + 1, x)
[yk−2 − α(k, x)yk−1 − ck],

(k = 0, 1, . . . , N − 1) (5.5.26)

f(x) = cNFN(x)− β(N, x)FN−1(x)yN−1 − FN(x)yN−2 (5.5.27)

The rare case where equations (5.5.25)–(5.5.27) should be used instead of
equations (5.5.21) and (5.5.23) can be detected automatically by testing whether
the operands in the first sum in (5.5.23) are opposite in sign and nearly equal in
magnitude. Other than in this special case, Clenshaw’s recurrence is always stable,
independent of whether the recurrence for the functions Fk is stable in the upward
or downward direction.

CITED REFERENCES AND FURTHER READING:
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5.6 Quadratic and Cubic Equations

The roots of simple algebraic equations can be viewed as being functions of the
equations’ coefficients. We are taught these functions in elementary algebra. Yet,
surprisingly many people don’t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of the quadratic equation

ax2 + bx+ c = 0 (5.6.1)

with real coefficients a, b, c, namely

x =
−b ±

√
b2 − 4ac

2a
(5.6.2)

and

x =
2c

−b ±
√
b2 − 4ac

(5.6.3)

If you use either (5.6.2) or (5.6.3) to get the two roots, you are asking for trouble: If
either a or c (or both) are small, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very
inaccurately. The correct way to compute the roots is

q ≡ −1

2

[
b+ sgn(b)

√
b2 − 4ac

]
(5.6.4)

Then the two roots are

x1 =
q

a
and x2 =

c

q
(5.6.5)

If the coefficients a, b, c, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be
chosen so as to make

Re(b*
√
b2 − 4ac) ≥ 0 (5.6.6)

where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that
the inverse hyperbolic functions sinh−1 and cosh−1 are in fact just logarithms of
solutions to such equations,

sinh−1(x) = ln
(
x+

√
x2 + 1

)
(5.6.7)

cosh−1(x) = ± ln
(
x+

√
x2 − 1

)
(5.6.8)

Equation (5.6.7) is numerically robust for x ≥ 0. For negative x, use the symmetry
sinh−1(−x) = − sinh−1(x). Equation (5.6.8) is of course valid only for x ≥ 1.
Since FORTRAN mysteriously omits the inverse hyperbolic functions from its list of
intrinsic functions, equations (5.6.7)–(5.6.8) are sometimes quite essential.


