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5.6 Quadratic and Cubic Equations

The roots of simple a gebraic equations can be viewed as being functions of the
equations’ coefficients. We are taught these functions in elementary algebra. Yet,
surprisingly many people don’t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of the quadratic equation
ar® +br+c=0 (5.6.1)

with real coefficients a, b, ¢, namely

b+t Vb2 -4
T = u (5.6.2)
2a
and )
c
r= - 56.3
—b+ Vb2 —4ac ( )

If you use either (5.6.2) or (5.6.3) to get the two roots, you are asking for trouble: If
either a or ¢ (or both) are smdl, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very
inaccurately. The correct way to compute the roots is

g= _% [b + sgn(b)v/b? — 4ac] (5.6.4)

Then the two roots are

sr=%  ad  zy=S (5.6.5)
a q

If the coefficients a, b, ¢, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be
chosen so as to make

Re(b*/b% — 4ac) > 0 (5.6.6)
where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that
the inverse hyperbolic functions sinh " and cosh™" are in fact just logarithms of
solutions to such eguations,

sinh™'(z) = In(z+ Va2 +1) (5.6.7)
cosh™'(z) = £In(z + Va2 — 1) (5.6.8)

Equation (5.6.7) is numerically robust for x > 0. For negative z, use the symmetry
sinh™*(—z) = —sinh™'(z). Equation (5.6.8) is of course valid only for z > 1.
Since FORTRAN mysteriously omits the inverse hyperbolic functions from its list of
intrinsic functions, equations (5.6.7)—(5.6.8) are sometimes quite essential .
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5.6 Quadratic and Cubic Equations 179

For the cubic equation
2* +ar® +br+c=0 (5.6.9)
with real or complex coefficients a, b, ¢, first compute

2 3
S 0 ad  R= W (5.6.10)

Q=

If Q and R are real (always true when a, b, c are real) and R? < @3, then the cubic
equation has three real roots. Find them by computing

9 = arccos(R/+/Q3) (5.6.11)

(5)-5
(=)
()

in terms of which the three roots are

>

r1 = —2+/Q cos

w

To = —24/Q cos

T3 = —2\/_c0s

(5.6.12)

0 — 2
3

wle wle

(This eguation first appears in Chapter VI of Francois Viéte's tregtise “De emen-
datione,” published in 1615!)
Otherwise, compute

1/3
A=— [R +V/R2 - Q?’} (5.6.13)
where the sign of the square root is chosen to make

Re(R*\/R2 — Q%) > 0 (5.6.14)

(asterisk again denoting complex conjugation). If @ and R are both real, equations
(5.6.13)(5.6.14) are equivaent to

1/3
A= —syn(R) [|R| + VR - Q?’} (5.6.15)
where the positive square root is assumed. Next compute
_je/Aa  (A#0)
B= {o (aZ 0) (5.6.16)

in terms of which the three roots are

a

(5.6.17)
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(the single red root when a, b, c are real) and

Ty = —%(A—l—B) - % +i?(A—B)
: S A (5.6.18)

(in that same case, a complex conjugate pair). Equations (5.6.13)—5.6.16) are
arranged both to minimize roundoff error, and a so (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the
spurious loss of a distinct root.

If you need to solve many cubic equations with only dlightly different coeffi-
cients, it is more efficient to use Newton's method (§9.4).

CITED REFERENCES AND FURTHER READING:
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Rubber Co.), pp. 130-133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), §6.1.

McKelvey, J.P. 1984, American Journal of Physics, vol. 52, pp. 269-270; see also vol. 53,
p. 775, and vol. 55, pp. 374-375.

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a function f(z), and now
you want to compute its derivative f'(z). Easy, right? The definition of the
derivative, the limit as h — 0 of

f(z) ~ M (5.7.1)
practically suggests the program: Pick a small value h; evaluate f(x + h); you
probably have f(x) aready evaluated, but if not, do it too; finaly apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is amost
guaranteed to produce inaccurate results. Applied properly, it can be the right way
to compute a derivative only when the function f is fiercely expensive to compute,
when you aready have invested in computing f(z), and when, therefore, you want
to get the derivativein no more than a single additional function evaluation. In such
asituation, the remaining issue isto choose h properly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

P+ h) = f(@) 4 hf' (@) + G025 @) + B @) 4 (872)
whence

flz+h) - f(z)

- =f+ %hf” T (5.7.3)
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