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(the single red root when a, b, c are real) and

Ty = —%(A—l—B) - % +i?(A—B)
: S A (5.6.18)

(in that same case, a complex conjugate pair). Equations (5.6.13)—5.6.16) are
arranged both to minimize roundoff error, and a so (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the
spurious loss of a distinct root.

If you need to solve many cubic equations with only dlightly different coeffi-
cients, it is more efficient to use Newton's method (§9.4).

CITED REFERENCES AND FURTHER READING:

Weast, R.C. (ed.) 1967, Handbook of Tables for Mathematics, 3rd ed. (Cleveland: The Chemical
Rubber Co.), pp. 130-133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), §6.1.

McKelvey, J.P. 1984, American Journal of Physics, vol. 52, pp. 269-270; see also vol. 53,
p. 775, and vol. 55, pp. 374-375.

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a function f(z), and now
you want to compute its derivative f'(z). Easy, right? The definition of the
derivative, the limit as h — 0 of

f(z) ~ M (5.7.1)
practically suggests the program: Pick a small value h; evaluate f(x + h); you
probably have f(x) aready evaluated, but if not, do it too; finaly apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is amost
guaranteed to produce inaccurate results. Applied properly, it can be the right way
to compute a derivative only when the function f is fiercely expensive to compute,
when you aready have invested in computing f(z), and when, therefore, you want
to get the derivativein no more than a single additional function evaluation. In such
asituation, the remaining issue isto choose h properly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

P+ h) = f(@) 4 hf' (@) + G025 @) + B @) 4 (872)
whence

flz+h) - f(z)

- =f+ %hf” T (5.7.3)
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5.7 Numerical Derivatives 181

The roundoff error has various contributions. First there is roundoff error in h:
Suppose, by way of an example, that you are at a point x = 10.3 and you blindly
choose h = 0.0001. Neither z = 10.3 nor =z + A = 10.30001 is a number with
an exact representation in binary; each istherefore represented with some fractional
error characteristic of the machine's floating-point format, e,,,, whosevalue in single
precision may be~ 10~7. Theerror inthe effectivevalue of h, namely the difference
between = + h and x as represented in the machine, istherefore on the order of ¢,,, x,
whichimpliesafractiona error in & of order ~ €,z /h ~ 10~2! By equation (5.7.1)
thisimmediately implies at least the same large fractional error in the derivative.
Wearriveat Lesson 1: Alwayschoose h sothat x + h and z differ by an exactly
representable number. This can usually be accomplished by the program steps

temp=x+h

(5.7.4)
h =temp — x

Some optimizing compilers, and some computers whose floating-point chips have
higher internal accuracy than is stored externaly, can foil this trick; if so, it is
usually enough to call to adummy subroutine donothing (temp), between the two
equations (5.7.4). Thisforces temp into and out of addressable memory.

With h an “exact” number, the roundoff error in equation (5.7.1) is e, ~
er|f(x)/h|. Here ey isthe fractiona accuracy with which f is computed; for a
simple function thismay be comparable to the machine accuracy, €y ~ ¢,,, but for a
complicated cal cul ation with additional sources of inaccuracy it may be larger. The
truncation error in equation (5.7.3) is on the order of e; ~ |hf”(x)|. Varying h to
minimize the sum e,. + e; gives the optimal choice of h,

h~ eff NS (5.7.5)
where z. = (f/f")'/? isthe “curvature scal€’ of the function f, or “characteristic
scale’ over which it changes. In the absence of any other information, one often
assumes z. = x (except near x = 0 where some other estimate of the typica =
scale should be used).

With the choice of equation (5.7.5), the fractional accuracy of the computed
derivative is

(er +e) /|| ~ e (FF" ] 22 ~ Je7 (5.7.6)

Here the last order-of-magnitude equality assumes that f, f/, and f” al share
the same characteristic length scale, usualy the case. One sees that the simple
finite-difference equation (5.7.1) gives at best only the square root of the machine
accuracy €,.

If you can afford two function evaluations for each derivative calculation, then
it is significantly better to use the symmetrized form

fl@+h) - flz—h)
2h

f(z) ~ (5.7.7)
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182 Chapter 5.  Evaluation of Functions

In this case, by equation (5.7.2), the truncation error ise; ~ h2f"’. The roundoff
error e, isabout the same as before. The optimal choice of h, by a short calculation
analogous to the one above, is nhow

e\ 1/3
h~ (3{”{0 ) ~ ()P, (5.7.8)

and the fractiona error is

(er +e)/If'| ~ (e 2 fPR(" 21~ (e4)?? (5.7.9)

which will typically be an order of magnitude (single precision) or two orders of
magnitude (double precision) better than equation (5.7.6). We havearrived at Lesson
2: Choose h to be the correct power of € or €, times acharacteristic scale ..

You can easily derive the correct powers for other cases[1]. For afunction of
two dimensions, for example, and the mixed derivative formula

0*f _[flathy+h) —fle+hy—h]-[fl@—hy+h) —flz—hy—h)

oxdy 4h?
(5.7.10)
the correct scaling is h ~ e}/?’xc.

It is disappointing, certainly, that no simple finite-difference formula like
equation (5.7.1) or (5.7.7) gives an accuracy comparable to the machine accuracy
em, Or even the lower accuracy to which f is evaluated, ;. Are there no better
methods?

Yes, there are.  All, however, involve exploration of the function’s behavior
over scales comparable to z., plus some assumption of smoothness, or analyticity,
so that the high-order terms in a Taylor expansion like equation (5.7.2) have some
meaning. Such methods also involve multiple evaluations of the function f, so their
increased accuracy must be weighed against increased cost.

The general idea of “Richardson’sdeferred approach to thelimit” isparticularly
attractive. For numerical integrals, that idea leads to so-called Romberg integration
(for review, see §4.3). For derivatives, one seeks to extrapolate, to h — 0, the result
of finite-difference calculations with smaller and smaller finite values of h. By the
use of Neville'sagorithm (§3.1), one uses each new finite-difference calculation to
produce both an extrapolation of higher order, and also extrapolations of previous,
lower, orders but with smaller scales k. Ridders[2] has given a nice implementation
of thisidea; the following program, dfridr, is based on his algorithm, modified by
an improved termination criterion. Input to theroutineisafunction f (called func),
a position x, and a largest stepsize h (more analogous to what we have caled .
above than to what we have called h). Output isthereturned value of the derivative,
and an estimate of its error, err.

FUNCTION dfridr(func,x,h,err)

INTEGER NTAB

REAL dfridr,err,h,x,func,CON,CON2,BIG,SAFE

PARAMETER (CON=1.4,CON2=CON*CON,BIG=1.E30,NTAB=10,SAFE=2.)
EXTERNAL func

C USES func

Returns the derivative of a function func at a point x by Ridders’ method of polynomial
extrapolation. The value h is input as an estimated initial stepsize; it need not be small,
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5.7 Numerical Derivatives 183

but rather should be an increment in x over which func changes substantially. An estimate
of the error in the derivative is returned as err.
Parameters: Stepsize is decreased by CON at each iteration. Max size of tableau is set by
NTAB. Return when error is SAFE worse than the best so far.

INTEGER i, j

REAL errt,fac,hh,a(NTAB,NTAB)

if(h.eq.0.) pause ’h must be nonzero in dfridr’

hh=h
a(1,1)=(func(x+hh)-func(x-hh))/(2.0%hh)
err=BIG
do 12 i=2,NTAB Successive columns in the Neville tableau will go to smaller
hh=hh/CON stepsizes and higher orders of extrapolation.
a(1,i)=(func(x+hh)-func(x-hh))/(2.0%hh) Try new, smaller stepsize.
fac=CON2
don j=2,i Compute extrapolations of various orders, requiring no new
a(j,i)=(a(j-1,i)*fac-a(j-1,i-1))/(fac-1.) function evaluations.
fac=CON2x*fac
errt=max(abs(a(j,i)-a(j-1,1)),abs(a(j,i)-a(j-1,i-1)))
The error strategy is to compare each new extrapolation to one order lower, both at
the present stepsize and the previous one.
if (errt.le.err) then If error is decreased, save the improved answer.
err=errt
dfridr=a(j,i)
endif
enddo 11

if (abs(a(i,i)-a(i-1,i-1)).ge.SAFE*err)return
If higher order is worse by a significant factor SAFE, then quit early.
enddo 12
return
END

Indfridr, thenumber of evaluationsof funcistypicaly 6to 12, but isallowed
to be as great as 2xNTAB. As a function of input h, it istypical for the accuracy
to get better as h is made larger, until a sudden point is reached where nonsensica
extrapolation produces early return with alarge error. You should therefore choose
afairly large value for h, but monitor the returned value err, decreasing h if it is
not small. For functionswhose characteristic « scale is of order unity, we typically
take h to be a few tenths.

Besides Ridders' method, there are other possible techniques. If your function
is fairly smooth, and you know that you will want to evauate its derivative many
times at arbitrary points in some interval, then it makes sense to construct a
Chebyshev polynomial approximationto thefunctionin that interval, and to evaluate
the derivative directly from the resulting Chebyshev coefficients. This method is
described in §§5.8-5.9, following.

Another technique applies when the function consists of data that is tabulated
at equally spaced intervas, and perhaps aso noisy. One might then want, at each
point, to least-squares fit a polynomia of some degree M, using an additional
number nz, of pointsto the left and some number n of pointsto the right of each
desired = value. The estimated derivative is then the derivative of the resulting
fitted polynomial. A very efficient way to do this construction is via Savitzky-Golay
smoothing filters, which will be discussed later, in §14.8. There we will give a
routinefor getting filter coefficientsthat not only construct thefitting polynomial but,
in the accumulation of a single sum of data pointstimes filter coefficients, evaluate
it aswell. In fact, the routine given, savgol, has an argument 1d that determines
which derivative of the fitted polynomial is evaluated. For the first derivative, the
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184 Chapter 5.  Evaluation of Functions

appropriate setting is 1d=1, and the value of the derivative is the accumulated sum
divided by the sampling interval h.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall), §§5.4-5.6. [1]

Ridders, C.J.F. 1982, Advances in Engineering Software, vol. 4, no. 2, pp. 75-76. [2]

5.8 Chebyshev Approximation

The Chebyshev polynomial of degree n is denoted T,,(z), and is given by

the explicit formula
T, (x) = cos(n arccos x) (5.8.1)
This may look trigonometric at first glance (and there is in fact a close relation
between the Chebyshev polynomias and the discrete Fourier transform); however

(5.8.1) can be combined with trigonometric identities to yield explicit expressions
for T, (x) (see Figure 5.8.1),

(5.8.2)

Tot1(x) = 22T, () — Th—1(xz) n>1.

(There also exist inverse formulas for the powers of z in terms of the T,,’s — see
equations 5.11.2-5.11.3.)

The Chebyshev polynomiasare orthogonal intheinterval [—1, 1] over aweight
(1 — 22)71/2. In particular,

1 0 1]
Ti(x)Ty(x) , i
[ e { I .

The polynomia T,,(x) has n zerosin the interval [—1, 1], and they are located
a the points

(5.8.4)
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