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sum=sum+c(i)*(e1/d1+1./(d2*e1))
d1=d1+2.
d2=d2-2.
e1=e2*e1

enddo 12

dawson=0.5641895835*sign(exp(-xp**2),x)*sum Constant is 1/
√
π.

endif
return
END

Other methods for computing Dawson’s integral are also known [2,3].

CITED REFERENCES AND FURTHER READING:

Rybicki, G.B. 1989, Computers in Physics, vol. 3, no. 2, pp. 85–87. [1]

Cody, W.J., Pociorek, K.A., and Thatcher, H.C. 1970, Mathematics of Computation, vol. 24,
pp. 171–178. [2]

McCabe, J.H. 1974, Mathematics of Computation, vol. 28, pp. 811–816. [3]

6.11 Elliptic Integrals and Jacobian Elliptic
Functions

Elliptic integrals occur in many applications, because any integral of the form∫
R(t, s) dt (6.11.1)

where R is a rational function of t and s, and s is the square root of a cubic or
quartic polynomial in t, can be evaluated in terms of elliptic integrals. Standard
references [1] describe how to carry out the reduction, which was originally done
by Legendre. Legendre showed that only three basic elliptic integrals are required.
The simplest of these is

I1 =

∫ x

y

dt√
(a1 + b1t)(a2 + b2t)(a3 + b3t)(a4 + b4t)

(6.11.2)

where we have written the quartic s2 in factored form. In standard integral tables [2],
one of the limits of integration is always a zero of the quartic, while the other limit
lies closer than the next zero, so that there is no singularity within the interval. To
evaluate I1, we simply break the interval [y, x] into subintervals, each of which
either begins or ends on a singularity. The tables, therefore, need only distinguish
the eight cases in which each of the four zeros (ordered according to size) appears as
the upper or lower limit of integration. In addition, when one of the b’s in (6.11.2)
tends to zero, the quartic reduces to a cubic, with the largest or smallest singularity
moving to ±∞; this leads to eight more cases (actually just special cases of the first
eight). The sixteen cases in total are then usually tabulated in terms of Legendre’s
standard elliptic integral of the 1st kind, which we will define below. By a change of
the variable of integration t, the zeros of the quartic are mapped to standard locations
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on the real axis. Then only two dimensionless parameters are needed to tabulate
Legendre’s integral. However, the symmetry of the original integral (6.11.2) under
permutation of the roots is concealed in Legendre’s notation. We will get back to
Legendre’s notation below. But first, here is a better way:

Carlson [3] has given a new definition of a standard elliptic integral of the first kind,

RF (x, y, z) =
1

2

∫ ∞
0

dt√
(t+ x)(t+ y)(t+ z)

(6.11.3)

where x, y, and z are nonnegative and at most one is zero. By standardizing the range
of integration, he retains permutation symmetry for the zeros. (Weierstrass’ canonical form
also has this property.) Carlson first shows that when x or y is a zero of the quartic in
(6.11.2), the integral I1 can be written in terms of RF in a form that is symmetric under
permutation of the remaining three zeros. In the general case when neither x nor y is a
zero, two such RF functions can be combined into a single one by an addition theorem,
leading to the fundamental formula

I1 = 2RF (U2
12, U

2
13, U

2
14) (6.11.4)

where
Uij = (XiXjYkYm + YiYjXkXm)/(x− y) (6.11.5)

Xi = (ai + bix)1/2, Yi = (ai + biy)1/2 (6.11.6)

and i, j, k, m is any permutation of 1, 2, 3, 4. A short-cut in evaluating these expressions is

U2
13 = U2

12 − (a1b4 − a4b1)(a2b3 − a3b2)

U2
14 = U2

12 − (a1b3 − a3b1)(a2b4 − a4b2)
(6.11.7)

The U ’s correspond to the three ways of pairing the four zeros, and I1 is thus manifestly
symmetric under permutation of the zeros. Equation (6.11.4) therefore reproduces all sixteen
cases when one limit is a zero, and also includes the cases when neither limit is a zero.

Thus Carlson’s function allows arbitrary ranges of integration and arbitrary positions of
the branch points of the integrand relative to the interval of integration. To handle elliptic
integrals of the second and third kind, Carlson defines the standard integral of the third kind as

RJ (x, y, z, p) =
3

2

∫ ∞
0

dt

(t+ p)
√

(t+ x)(t+ y)(t + z)
(6.11.8)

which is symmetric in x, y, and z. The degenerate case when two arguments are equal
is denoted

RD(x, y, z) = RJ(x, y, z, z) (6.11.9)

and is symmetric in x and y. The function RD replaces Legendre’s integral of the second
kind. The degenerate form of RF is denoted

RC(x, y) = RF (x, y, y) (6.11.10)

It embraces logarithmic, inverse circular, and inverse hyperbolic functions.
Carlson [4-7] gives integral tables in terms of the exponents of the linear factors of

the quartic in (6.11.1). For example, the integral where the exponents are (1
2

, 1
2

,− 1
2

,− 3
2

)
can be expressed as a single integral in terms of RD; it accounts for 144 separate cases in
Gradshteyn and Ryzhik [2]!

Refer to Carlson’s papers [3-7] for some of the practical details in reducing elliptic
integrals to his standard forms, such as handling complex conjugate zeros.
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Turn now to the numerical evaluation of elliptic integrals. The traditional methods [8]
are Gauss or Landen transformations. Descending transformations decrease the modulus
k of the Legendre integrals towards zero, increasing transformations increase it towards
unity. In these limits the functions have simple analytic expressions. While these methods
converge quadratically and are quite satisfactory for integrals of the first and second kinds,
they generally lead to loss of significant figures in certain regimes for integrals of the third
kind. Carlson’s algorithms [9,10], by contrast, provide a unified method for all three kinds
with no significant cancellations.

The key ingredient in these algorithms is the duplication theorem:

RF (x, y, z) = 2RF (x+ λ, y + λ, z + λ)

= RF

(
x+ λ

4
,
y + λ

4
,
z + λ

4

) (6.11.11)

where
λ = (xy)1/2 + (xz)1/2 + (yz)1/2 (6.11.12)

This theorem can be proved by a simple change of variable of integration [11]. Equation
(6.11.11) is iterated until the arguments ofRF are nearly equal. For equal arguments we have

RF (x, x, x) = x−1/2 (6.11.13)

When the arguments are close enough, the function is evaluated from a fixed Taylor expansion
about (6.11.13) through fifth-order terms. While the iterative part of the algorithm is only
linearly convergent, the error ultimately decreases by a factor of 46 = 4096 for each iteration.
Typically only two or three iterations are required, perhaps six or seven if the initial values
of the arguments have huge ratios. We list the algorithm for RF here, and refer you to
Carlson’s paper [9] for the other cases.

Stage 1: For n = 0, 1, 2, . . . compute

µn = (xn + yn + zn)/3

Xn = 1− (xn/µn), Yn = 1− (yn/µn), Zn = 1− (zn/µn)

εn = max(|Xn|, |Yn|, |Zn|)

If εn < tol go to Stage 2; else compute

λn = (xnyn)1/2 + (xnzn)1/2 + (ynzn)1/2

xn+1 = (xn + λn)/4, yn+1 = (yn + λn)/4, zn+1 = (zn + λn)/4

and repeat this stage.

Stage 2: Compute

E2 = XnYn − Z2
n, E3 = XnYnZn

RF = (1− 1
10
E2 + 1

14
E3 + 1

24
E2

2 − 3
44
E2E3)/(µn)1/2

In some applications the argument p in RJ or the argument y in RC is negative, and the
Cauchy principal value of the integral is required. This is easily handled by using the formulas

RJ (x, y,z, p) =

[(γ − y)RJ (x, y, z, γ)− 3RF (x, y, z) + 3RC(xz/y, pγ/y)] /(y − p)
(6.11.14)

where

γ ≡ y +
(z − y)(y − x)

y − p (6.11.15)
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is positive if p is negative, and

RC(x, y) =

(
x

x− y

)1/2

RC(x− y,−y) (6.11.16)

The Cauchy principal value of RJ has a zero at some value of p < 0, so (6.11.14) will give
some loss of significant figures near the zero.

FUNCTION rf(x,y,z)
REAL rf,x,y,z,ERRTOL,TINY,BIG,THIRD,C1,C2,C3,C4
PARAMETER (ERRTOL=.08,TINY=1.5e-38,BIG=3.E37,THIRD=1./3.,

* C1=1./24.,C2=.1,C3=3./44.,C4=1./14.)
Computes Carlson’s elliptic integral of the first kind, RF (x, y, z). x, y, and z must be
nonnegative, and at most one can be zero. TINY must be at least 5 times the machine
underflow limit, BIG at most one fifth the machine overflow limit.

REAL alamb,ave,delx,dely,delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt,zt
if(min(x,y,z).lt.0..or.min(x+y,x+z,y+z).lt.TINY.or.

* max(x,y,z).gt.BIG)pause ’invalid arguments in rf’
xt=x
yt=y
zt=z

1 continue
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
ave=THIRD*(xt+yt+zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave

if(max(abs(delx),abs(dely),abs(delz)).gt.ERRTOL)goto 1
e2=delx*dely-delz**2
e3=delx*dely*delz
rf=(1.+(C1*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave)
return
END

A value of 0.08 for the error tolerance parameter is adequate for single precision (7
significant digits). Since the error scales as ε6n, we see that 0.0025 will yield double precision
(16 significant digits) and require at most two or three more iterations. Since the coefficients
of the sixth-order truncation error are different for the other elliptic functions, these values for
the error tolerance should be changed to 0.04 and 0.0012 in the algorithm forRC , and 0.05 and
0.0015 forRJ andRD . As well as being an algorithm in its own right for certain combinations
of elementary functions, the algorithm for RC is used repeatedly in the computation of RJ .

The Fortran implementations test the input arguments against two machine-dependent
constants, TINY and BIG, to ensure that there will be no underflow or overflow during the
computation. We have chosen conservative values, corresponding to a machine minimum
of 3× 10−39 and a machine maximum of 1.7 × 1038. You can always extend the range of
admissible argument values by using the homogeneity relations (6.11.22), below.

FUNCTION rd(x,y,z)
REAL rd,x,y,z,ERRTOL,TINY,BIG,C1,C2,C3,C4,C5,C6
PARAMETER (ERRTOL=.05,TINY=1.e-25,BIG=4.5E21,C1=3./14.,C2=1./6.,

* C3=9./22.,C4=3./26.,C5=.25*C3,C6=1.5*C4)
Computes Carlson’s elliptic integral of the second kind, RD(x, y, z). x and y must be
nonnegative, and at most one can be zero. z must be positive. TINY must be at least twice
the negative 2/3 power of the machine overflow limit. BIG must be at most 0.1× ERRTOL
times the negative 2/3 power of the machine underflow limit.

REAL alamb,ave,delx,dely,delz,ea,eb,ec,ed,ee,fac,sqrtx,sqrty,
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* sqrtz,sum,xt,yt,zt
if(min(x,y).lt.0..or.min(x+y,z).lt.TINY.or.

* max(x,y,z).gt.BIG)pause ’invalid arguments in rd’
xt=x
yt=y
zt=z
sum=0.
fac=1.

1 continue
sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
sum=sum+fac/(sqrtz*(zt+alamb))
fac=.25*fac
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
ave=.2*(xt+yt+3.*zt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave

if(max(abs(delx),abs(dely),abs(delz)).gt.ERRTOL)goto 1
ea=delx*dely
eb=delz*delz
ec=ea-eb
ed=ea-6.*eb
ee=ed+ec+ec
rd=3.*sum+fac*(1.+ed*(-C1+C5*ed-C6*delz*ee)

* +delz*(C2*ee+delz*(-C3*ec+delz*C4*ea)))/(ave*sqrt(ave))
return
END

FUNCTION rj(x,y,z,p)
REAL rj,p,x,y,z,ERRTOL,TINY,BIG,C1,C2,C3,C4,C5,C6,C7,C8
PARAMETER (ERRTOL=.05,TINY=2.5e-13,BIG=9.E11,C1=3./14.,C2=1./3.,

* C3=3./22.,C4=3./26.,C5=.75*C3,C6=1.5*C4,C7=.5*C2,C8=C3+C3)
C USES rc,rf

Computes Carlson’s elliptic integral of the third kind, RJ(x, y, z, p). x, y, and z must be
nonnegative, and at most one can be zero. p must be nonzero. If p < 0, the Cauchy
principal value is returned. TINY must be at least twice the cube root of the machine
underflow limit, BIG at most one fifth the cube root of the machine overflow limit.

REAL a,alamb,alpha,ave,b,beta,delp,delx,dely,delz,ea,eb,ec,
* ed,ee,fac,pt,rcx,rho,sqrtx,sqrty,sqrtz,sum,tau,xt,
* yt,zt,rc,rf

if(min(x,y,z).lt.0..or.min(x+y,x+z,y+z,abs(p)).lt.TINY.or.
* max(x,y,z,abs(p)).gt.BIG)pause ’invalid arguments in rj’

sum=0.
fac=1.
if(p.gt.0.)then

xt=x
yt=y
zt=z
pt=p

else
xt=min(x,y,z)
zt=max(x,y,z)
yt=x+y+z-xt-zt
a=1./(yt-p)
b=a*(zt-yt)*(yt-xt)
pt=yt+b
rho=xt*zt/yt
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tau=p*pt/yt
rcx=rc(rho,tau)

endif
1 continue

sqrtx=sqrt(xt)
sqrty=sqrt(yt)
sqrtz=sqrt(zt)
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz
alpha=(pt*(sqrtx+sqrty+sqrtz)+sqrtx*sqrty*sqrtz)**2
beta=pt*(pt+alamb)**2
sum=sum+fac*rc(alpha,beta)
fac=.25*fac
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
zt=.25*(zt+alamb)
pt=.25*(pt+alamb)
ave=.2*(xt+yt+zt+pt+pt)
delx=(ave-xt)/ave
dely=(ave-yt)/ave
delz=(ave-zt)/ave
delp=(ave-pt)/ave

if(max(abs(delx),abs(dely),abs(delz),abs(delp)).gt.ERRTOL)goto 1
ea=delx*(dely+delz)+dely*delz
eb=delx*dely*delz
ec=delp**2
ed=ea-3.*ec
ee=eb+2.*delp*(ea-ec)
rj=3.*sum+fac*(1.+ed*(-C1+C5*ed-C6*ee)+eb*(C7+delp*(-C8+delp*C4))

* +delp*ea*(C2-delp*C3)-C2*delp*ec)/(ave*sqrt(ave))
if (p.le.0.) rj=a*(b*rj+3.*(rcx-rf(xt,yt,zt)))
return
END

FUNCTION rc(x,y)
REAL rc,x,y,ERRTOL,TINY,SQRTNY,BIG,TNBG,COMP1,COMP2,THIRD,

* C1,C2,C3,C4
PARAMETER (ERRTOL=.04,TINY=1.69e-38,SQRTNY=1.3e-19,BIG=3.E37,

* TNBG=TINY*BIG,COMP1=2.236/SQRTNY,COMP2=TNBG*TNBG/25.,
* THIRD=1./3.,C1=.3,C2=1./7.,C3=.375,C4=9./22.)

Computes Carlson’s degenerate elliptic integral, RC(x, y). x must be nonnegative and y
must be nonzero. If y < 0, the Cauchy principal value is returned. TINY must be at least
5 times the machine underflow limit, BIG at most one fifth the machine maximum overflow
limit.

REAL alamb,ave,s,w,xt,yt
if(x.lt.0..or.y.eq.0..or.(x+abs(y)).lt.TINY.or.(x+abs(y)).gt.BIG

* .or.(y.lt.-COMP1.and.x.gt.0..and.x.lt.COMP2))
* pause ’invalid arguments in rc’

if(y.gt.0.)then
xt=x
yt=y
w=1.

else
xt=x-y
yt=-y
w=sqrt(x)/sqrt(xt)

endif
1 continue

alamb=2.*sqrt(xt)*sqrt(yt)+yt
xt=.25*(xt+alamb)
yt=.25*(yt+alamb)
ave=THIRD*(xt+yt+yt)
s=(yt-ave)/ave
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if(abs(s).gt.ERRTOL)goto 1
rc=w*(1.+s*s*(C1+s*(C2+s*(C3+s*C4))))/sqrt(ave)
return
END

At times you may want to express your answer in Legendre’s notation. Alter-
natively, you may be given results in that notation and need to compute their values
with the programs given above. It is a simple matter to transform back and forth.
The Legendre elliptic integral of the 1st kind is defined as

F (φ, k) ≡
∫ φ

0

dθ√
1− k2 sin2 θ

(6.11.17)

The complete elliptic integral of the 1st kind is given by

K(k) ≡ F (π/2, k) (6.11.18)
In terms of RF ,

F (φ, k) = sinφRF (cos2 φ, 1− k2 sin2 φ, 1)

K(k) = RF (0, 1− k2, 1)
(6.11.19)

The Legendre elliptic integral of the 2nd kind and the complete elliptic integral of
the 2nd kind are given by

E(φ, k) ≡
∫ φ

0

√
1− k2 sin2 θ dθ

= sinφRF (cos2 φ, 1− k2 sin2 φ, 1)

− 1
3k

2 sin3 φRD(cos2 φ, 1− k2 sin2 φ, 1)

E(k) ≡ E(π/2, k) = RF (0, 1− k2, 1)− 1
3k

2RD(0, 1− k2, 1)

(6.11.20)

Finally, the Legendre elliptic integral of the 3rd kind is

Π(φ, n, k) ≡
∫ φ

0

dθ

(1 + n sin2 θ)
√

1− k2 sin2 θ

= sinφRF (cos2 φ, 1− k2 sin2 φ, 1)

− 1
3n sin3 φRJ(cos2 φ, 1− k2 sin2 φ, 1, 1 + n sin2 φ)

(6.11.21)

(Note that this sign convention for n is opposite that of Abramowitz and Stegun [12],
and that their sinα is our k.)

FUNCTION ellf(phi,ak)
REAL ellf,ak,phi

C USES rf
Legendre elliptic integral of the 1st kind F (φ, k), evaluated using Carlson’s function RF .
The argument ranges are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.

REAL s,rf
s=sin(phi)
ellf=s*rf(cos(phi)**2,(1.-s*ak)*(1.+s*ak),1.)
return
END
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FUNCTION elle(phi,ak)
REAL elle,ak,phi

C USES rd,rf
Legendre elliptic integral of the 2nd kind E(φ, k), evaluated using Carlson’s functions RD
and RF . The argument ranges are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.

REAL cc,q,s,rd,rf
s=sin(phi)
cc=cos(phi)**2
q=(1.-s*ak)*(1.+s*ak)
elle=s*(rf(cc,q,1.)-((s*ak)**2)*rd(cc,q,1.)/3.)
return
END

FUNCTION ellpi(phi,en,ak)
REAL ellpi,ak,en,phi

C USES rf,rj
Legendre elliptic integral of the 3rd kind Π(φ, n, k), evaluated using Carlson’s functions RJ
and RF . (Note that the sign convention on n is opposite that of Abramowitz and Stegun.)
The ranges of φ and k are 0 ≤ φ ≤ π/2, 0 ≤ k sinφ ≤ 1.

REAL cc,enss,q,s,rf,rj
s=sin(phi)
enss=en*s*s
cc=cos(phi)**2
q=(1.-s*ak)*(1.+s*ak)
ellpi=s*(rf(cc,q,1.)-enss*rj(cc,q,1.,1.+enss)/3.)
return
END

Carlson’s functions are homogeneous of degree −1
2

and −3
2

, so

RF (λx, λy, λz) = λ−1/2RF (x, y, z)

RJ(λx, λy, λz, λp) = λ−3/2RJ(x, y, z, p)
(6.11.22)

Thus to express a Carlson function in Legendre’s notation, permute the first three
arguments into ascending order, use homogeneity to scale the third argument to be
1, and then use equations (6.11.19)–(6.11.21).

Jacobian Elliptic Functions

The Jacobian elliptic function sn is defined as follows: instead of considering
the elliptic integral

u(y, k) ≡ u = F (φ, k) (6.11.23)

consider the inverse function

y = sinφ = sn(u, k) (6.11.24)

Equivalently,

u =

∫ sn

0

dy√
(1 − y2)(1 − k2y2)

(6.11.25)

When k = 0, sn is just sin. The functions cn and dn are defined by the relations

sn2 + cn2 = 1, k2sn2 + dn2 = 1 (6.11.26)

The routine given below actually takes mc ≡ k2
c = 1 − k2 as an input parameter.

It also computes all three functions sn, cn, and dn since computing all three is no
harder than computing any one of them. For a description of the method, see [8].



262 Chapter 6. Special Functions

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE sncndn(uu,emmc,sn,cn,dn)
REAL cn,dn,emmc,sn,uu,CA
PARAMETER (CA=.0003) The accuracy is the square of CA.

Returns the Jacobian elliptic functions sn(u, kc), cn(u, kc), and dn(u, kc). Here uu = u,
while emmc = k2

c .
INTEGER i,ii,l
REAL a,b,c,d,emc,u,em(13),en(13)
LOGICAL bo
emc=emmc
u=uu
if(emc.ne.0.)then

bo=(emc.lt.0.)
if(bo)then

d=1.-emc
emc=-emc/d
d=sqrt(d)
u=d*u

endif
a=1.
dn=1.
do 11 i=1,13

l=i
em(i)=a
emc=sqrt(emc)
en(i)=emc
c=0.5*(a+emc)
if(abs(a-emc).le.CA*a)goto 1
emc=a*emc
a=c

enddo 11

1 u=c*u
sn=sin(u)
cn=cos(u)
if(sn.eq.0.)goto 2
a=cn/sn
c=a*c
do 12 ii=l,1,-1

b=em(ii)
a=c*a
c=dn*c
dn=(en(ii)+a)/(b+a)
a=c/b

enddo 12

a=1./sqrt(c**2+1.)
if(sn.lt.0.)then

sn=-a
else

sn=a
endif
cn=c*sn

2 if(bo)then
a=dn
dn=cn
cn=a
sn=sn/d

endif
else

cn=1./cosh(u)
dn=cn
sn=tanh(u)

endif
return
END
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6.12 Hypergeometric Functions

As was discussed in §5.14, a fast, general routine for the the complex hyperge-
ometric function 2F1(a, b, c; z), is difficult or impossible. The function is defined as
the analytic continuation of the hypergeometric series,

2F1(a, b, c; z) = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · ·

+
a(a + 1) . . . (a + j − 1)b(b+ 1) . . . (b+ j − 1)

c(c+ 1) . . . (c+ j − 1)

zj

j!
+ · · ·
(6.12.1)

This series converges only within the unit circle |z| < 1 (see [1]), but one’s interest
in the function is not confined to this region.

Section 5.14 discussed the method of evaluating this function by direct path
integration in the complex plane. We here merely list the routines that result.

Implementation of the function hypgeo is straightforward, and is described by
comments in the program. The machinery associated with Chapter 16’s routine for
integrating differential equations, odeint, is only minimally intrusive, and need
not even be completely understood: use of odeint requires a common block with
one zeroed variable, one subroutine call, and a prescribed format for the derivative
routine hypdrv.

The subroutine hypgeo will fail, of course, for values of z too close to the
singularity at 1. (If you need to approach this singularity, or the one at ∞, use
the “linear transformation formulas” in §15.3 of [1].) Away from z = 1, and for
moderate values of a, b, c, it is often remarkable how few steps are required to
integrate the equations. A half-dozen is typical.


