For n larger than a dozen or so, betai is a much better way to evaluate the sum in (6.4.12) than would be the straightforward sum with concurrent computation of the binomial coefficients. (For n smaller than a dozen, either method is acceptable.)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, *Handbook of Mathematical Functions*, Applied Mathematics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by Dover Publications, New York), Chapters 6 and 26.

Pearson, E., and Johnson, N. 1968, *Tables of the Incomplete Beta Function* (Cambridge: Cambridge University Press).

6.5 Bessel Functions of Integer Order

This section and the next one present practical algorithms for computing various kinds of Bessel functions of integer order. In $\S6.7$ we deal with fractional order. In fact, the more complicated routines for fractional order work fine for integer order too. For integer order, however, the routines in this section (and $\S6.6$) are simpler and faster. Their only drawback is that they are limited by the precision of the underlying rational approximations. For full double precision, it is best to work with the routines for fractional order in $\S6.7$.

For any real ν , the Bessel function $J_{\nu}(x)$ can be defined by the series representation

$$J_{\nu}(x) = \left(\frac{1}{2}x\right)^{\nu} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}x^{2}\right)^{k}}{k!\Gamma(\nu+k+1)}$$
(6.5.1)

The series converges for all x, but it is not computationally very useful for $x\gg 1$. For ν not an integer the Bessel function $Y_{\nu}(x)$ is given by

$$Y_{\nu}(x) = \frac{J_{\nu}(x)\cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)}$$
(6.5.2)

The right-hand side goes to the correct limiting value $Y_n(x)$ as ν goes to some integer n, but this is also not computationally useful.

For arguments $x < \nu$, both Bessel functions look qualitatively like simple power laws, with the asymptotic forms for $0 < x \ll \nu$

$$J_{\nu}(x) \sim \frac{1}{\Gamma(\nu+1)} \left(\frac{1}{2}x\right)^{\nu} \qquad \nu \ge 0$$

$$Y_{0}(x) \sim \frac{2}{\pi} \ln(x) \qquad (6.5.3)$$

$$Y_{\nu}(x) \sim -\frac{\Gamma(\nu)}{\pi} \left(\frac{1}{2}x\right)^{-\nu} \qquad \nu > 0$$

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America). World Wide Web sample page from NUMERICAL RECIPES IN FORTRAN 77: Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright

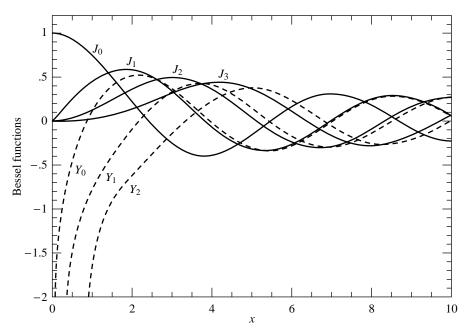


Figure 6.5.1. Bessel functions $J_0(x)$ through $J_3(x)$ and $Y_0(x)$ through $Y_2(x)$.

For $x>\nu$, both Bessel functions look qualitatively like sine or cosine waves whose amplitude decays as $x^{-1/2}$. The asymptotic forms for $x\gg\nu$ are

$$J_{\nu}(x) \sim \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{1}{2}\nu\pi - \frac{1}{4}\pi\right)$$

$$Y_{\nu}(x) \sim \sqrt{\frac{2}{\pi x}} \sin\left(x - \frac{1}{2}\nu\pi - \frac{1}{4}\pi\right)$$
(6.5.4)

In the transition region where $x \sim \nu$, the typical amplitudes of the Bessel functions are on the order

$$J_{\nu}(\nu) \sim \frac{2^{1/3}}{3^{2/3}\Gamma(\frac{2}{3})} \frac{1}{\nu^{1/3}} \sim \frac{0.4473}{\nu^{1/3}}$$

$$Y_{\nu}(\nu) \sim -\frac{2^{1/3}}{3^{1/6}\Gamma(\frac{2}{3})} \frac{1}{\nu^{1/3}} \sim -\frac{0.7748}{\nu^{1/3}}$$
(6.5.5)

which holds asymptotically for large ν . Figure 6.5.1 plots the first few Bessel functions of each kind.

The Bessel functions satisfy the recurrence relations

$$J_{n+1}(x) = \frac{2n}{x} J_n(x) - J_{n-1}(x)$$
(6.5.6)

and

$$Y_{n+1}(x) = \frac{2n}{x} Y_n(x) - Y_{n-1}(x)$$
(6.5.7)

As already mentioned in §5.5, only the second of these (6.5.7) is stable in the direction of increasing n for x < n. The reason that (6.5.6) is unstable in the

THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-X)

direction of increasing n is simply that it is the same recurrence as (6.5.7): A small amount of "polluting" Y_n introduced by roundoff error will quickly come to swamp the desired J_n , according to equation (6.5.3).

A practical strategy for computing the Bessel functions of integer order divides into two tasks: first, how to compute J_0 , J_1 , Y_0 , and Y_1 , and second, how to use the recurrence relations stably to find other J's and Y's. We treat the first task first:

For x between zero and some arbitrary value (we will use the value 8), approximate $J_0(x)$ and $J_1(x)$ by rational functions in x. Likewise approximate by rational functions the "regular part" of $Y_0(x)$ and $Y_1(x)$, defined as

$$Y_0(x) - \frac{2}{\pi} J_0(x) \ln(x)$$
 and $Y_1(x) - \frac{2}{\pi} \left[J_1(x) \ln(x) - \frac{1}{x} \right]$ (6.5.8)

For $8 < x < \infty$, use the approximating forms (n = 0, 1)

$$J_n(x) = \sqrt{\frac{2}{\pi x}} \left[P_n\left(\frac{8}{x}\right) \cos(X_n) - Q_n\left(\frac{8}{x}\right) \sin(X_n) \right]$$
 (6.5.9)

$$Y_n(x) = \sqrt{\frac{2}{\pi x}} \left[P_n\left(\frac{8}{x}\right) \sin(X_n) + Q_n\left(\frac{8}{x}\right) \cos(X_n) \right]$$
 (6.5.10)

where

$$X_n \equiv x - \frac{2n+1}{4}\pi \tag{6.5.11}$$

and where P_0, P_1, Q_0 , and Q_1 are each polynomials in their arguments, for 0 < 8/x < 1. The P's are even polynomials, the Q's odd.

Coefficients of the various rational functions and polynomials are given by Hart [1], for various levels of desired accuracy. A straightforward implementation is

```
FUNCTION bessj0(x)
REAL bessj0,x
   Returns the Bessel function J_0(x) for any real x.
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,
     {\tt r5,r6,s1,s2,s3,s4,s5,s6,y} \quad {\sf We'll \ accumulate \ polynomials \ in \ double \ precision.}
SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,
    s1,s2,s3,s4,s5,s6
DATA p1,p2,p3,p4,p5/1.d0,-.1098628627d-2,.2734510407d-4,
     -.2073370639d-5,.2093887211d-6/, q1,q2,q3,q4,q5/-.1562499995d-1,
     .1430488765d-3,-.6911147651d-5,.7621095161d-6,-.934945152d-7/
DATA r1,r2,r3,r4,r5,r6/57568490574.d0,-13362590354.d0,651619640.7d0
     -11214424.18d0,77392.33017d0,-184.9052456d0/,
     s1,s2,s3,s4,s5,s6/57568490411.d0,1029532985.d0,
     9494680.718d0,59272.64853d0,267.8532712d0,1.d0/
                                 Direct rational function fit.
if(abs(x).lt.8.)then
    bessj0=(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))
         /(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))
else
                                 Fitting function (6.5.9)
    ax=abs(x)
    z=8./ax
    v = z * * 2
    bessj0=sqrt(.636619772/ax)*(cos(xx)*(p1+y*(p2+y*(p3+y*(p4+y
```

```
*p5))))-z*\sin(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
endif
return
END
FUNCTION bessy0(x)
REAL bessy0,x
USES bessi0
   Returns the Bessel function Y_0(x) for positive x.
REAL xx,z,bessj0
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,
     q2,q3,q4,q5,r1,r2,r3,r4,
     r5,r6,s1,s2,s3,s4,s5,s6,y
                                    We'll accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,
     r5,r6,s1,s2,s3,s4,s5,s6
DATA p1,p2,p3,p4,p5/1.d0,-.1098628627d-2,.2734510407d-4,
     -.2073370639d-5,.2093887211d-6/, q1,q2,q3,q4,q5/-.1562499995d-1,
     .1430488765d-3,-.6911147651d-5,.7621095161d-6,-.934945152d-7/
DATA r1,r2,r3,r4,r5,r6/-2957821389.d0,7062834065.d0,-512359803.6d0,
     10879881.29d0,-86327.92757d0,228.4622733d0/,
     s1,s2,s3,s4,s5,s6/40076544269.d0,745249964.8d0,
     7189466.438d0,47447.26470d0,226.1030244d0,1.d0/
                                    Rational function approximation of (6.5.8).
    y=x**2
    bessy0=(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/(s1+y*(s2+y
         *(s3+y*(s4+y*(s5+y*s6))))+.636619772*bessj0(x)*log(x)
                                    Fitting function (6.5.10).
else
    z=8./x
    v = z * * 2
    xx=x-.785398164
    bessy0=sqrt(.636619772/x)*(sin(xx)*(p1+y*(p2+y*(p3+y*(p4+y*
         p5))))+z*cos(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
return
END
FUNCTION bessj1(x)
REAL bessj1,x
   Returns the Bessel function J_1(x) for any real x.
REAL ax, xx, z
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,
     r5,r6,s1,s2,s3,s4,s5,s6,y We'll accumulate polynomials in double precision.
SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,
     s1,s2,s3,s4,s5,s6
DATA r1,r2,r3,r4,r5,r6/72362614232.d0,-7895059235.d0,242396853.1d0,
     -2972611.439d0,15704.48260d0,-30.16036606d0/,
     s1,s2,s3,s4,s5,s6/144725228442.d0,2300535178.d0,
     18583304.74d0,99447.43394d0,376.9991397d0,1.d0/
DATA p1,p2,p3,p4,p5/1.d0,.183105d-2,-.3516396496d-4,.2457520174d-5,
     -.240337019d-6/, q1,q2,q3,q4,q5/.04687499995d0,-.2002690873d-3,
     .8449199096d-5,-.88228987d-6,.105787412d-6/
if(abs(x).lt.8.)then
                                Direct rational approximation.
    v=x**2
    bessj1=x*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))
         /(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))
                                Fitting function (6.5.9).
else
    ax=abs(x)
   z=8./ax
    y=z**2
```

xx=ax-2.356194491

World Wide Web sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

```
bessj1=sqrt(.636619772/ax)*(cos(xx)*(p1+y*(p2+y*(p3+y*(p4+y
         *p5))))-z*sin(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
         *sign(1.,x)
endif
return
F.ND
FUNCTION bessy1(x)
REAL bessy1,x
USES bessjl
   Returns the Bessel function Y_1(x) for positive x.
REAL xx.z.bessi1
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,
r5,r6,s1,s2,s3,s4,s5,s6,s7,y We'll accumulate polynomials in double precision. SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,
     r5,r6,s1,s2,s3,s4,s5,s6,s7
DATA p1,p2,p3,p4,p5/1.d0,.183105d-2,-.3516396496d-4,.2457520174d-5,
     -.240337019d-6/, q1,q2,q3,q4,q5/.04687499995d0,-.2002690873d-3,
     .8449199096d-5,-.88228987d-6,.105787412d-6/
DATA r1,r2,r3,r4,r5,r6/-.4900604943d13,.1275274390d13,-.5153438139d11,
     .7349264551d9,-.4237922726d7,.8511937935d4/,
     s1,s2,s3,s4,s5,s6,s7/.2499580570d14,.4244419664d12,
     .3733650367d10,.2245904002d8,.1020426050d6,.3549632885d3,1.d0/
                                     Rational function approximation of (6.5.8).
    v=x**2
    bessy1=x*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/(s1+y*(s2+y*
         (s3+y*(s4+y*(s5+y*(s6+y*s7)))))+.636619772
         *(bessj1(x)*log(x)-1./x)
else
                                      Fitting function (6.5.10).
    z=8./x
    y = z * * 2
    xx=x-2.356194491
    \verb|bessy1=sqrt(.636619772/x)*(sin(xx)*(p1+y*(p2+y*(p3+y*(p4+y))))|
         *p5))))+z*cos(xx)*(q1+y*(q2+y*(q3+y*(q4+y*q5)))))
endif
return
END
```

We now turn to the second task, namely how to use the recurrence formulas (6.5.6) and (6.5.7) to get the Bessel functions $J_n(x)$ and $Y_n(x)$ for $n \ge 2$. The latter of these is straightforward, since its upward recurrence is always stable:

```
FUNCTION bessy(n,x)
INTEGER n
REAL bessy, x
USES bessy0, bessy1
   Returns the Bessel function Y_n(x) for positive x and n \geq 2.
INTEGER j
REAL by, bym, byp, tox, bessy0, bessy1
if(n.lt.2)pause 'bad argument n in bessy'
tox=2./x
                               Starting values for the recurrence.
by=bessy1(x)
bym=bessy0(x)
                               Recurrence (6.5.7).
do 11 j=1,n-1
    byp=j*tox*by-bym
    bym=by
    by=byp
enddo 11
bessy=by
return
END
```

World Wide Web sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-) Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

The cost of this algorithm is the call to bessy1 and bessy0 (which generate a call to each of bessj1 and bessj0), plus O(n) operations in the recurrence.

As for $J_n(x)$, things are a bit more complicated. We can start the recurrence upward on n from J_0 and J_1 , but it will remain stable only while n does not exceed x. This is, however, just fine for calls with large x and small n, a case which occurs frequently in practice.

The harder case to provide for is that with x < n. The best thing to do here is to use Miller's algorithm (see discussion preceding equation 5.5.16), applying the recurrence downward from some arbitrary starting value and making use of the upward-unstable nature of the recurrence to put us *onto* the correct solution. When we finally arrive at J_0 or J_1 we are able to normalize the solution with the sum (5.5.16) accumulated along the way.

The only subtlety is in deciding at how large an n we need start the downward recurrence so as to obtain a desired accuracy by the time we reach the n that we really want. If you play with the asymptotic forms (6.5.3) and (6.5.5), you should be able to convince yourself that the answer is to start larger than the desired n by an additive amount of order [constant $\times n$]^{1/2}, where the square root of the constant is, very roughly, the number of significant figures of accuracy.

The above considerations lead to the following function.

```
FUNCTION bessj(n,x)
INTEGER n.IACC
REAL bessj,x,BIGNO,BIGNI
PARAMETER (IACC=40,BIGNO=1.e10,BIGNI=1.e-10)
USES bessj0,bessj1
   Returns the Bessel function J_n(x) for any real x and n \ge 2.
INTEGER j,jsum,m
REAL ax,bj,bjm,bjp,sum,tox,bessj0,bessj1
if(n.lt.2)pause 'bad argument n in bessj'
ax=abs(x)
if(ax.eq.0.)then
    bessj=0.
else if(ax.gt.float(n))then
                                     Upwards recurrence from J_0 and J_1.
    tox=2./ax
    bjm=bessj0(ax)
    bj=bessj1(ax)
    do 11 j=1,n-1
        bjp=j*tox*bj-bjm
        bim=bi
        bj=bjp
    enddo 11
    bessj=bj
                                     Downwards recurrence from an even m here com-
                                         puted. Make IACC larger to increase accuracy.
    tox=2./ax
    m=2*((n+int(sqrt(float(IACC*n))))/2)
    bessj=0.
                                     isum will alternate between 0 and 1: when it is 1. we
    jsum=0
    sum=0.
                                         accumulate in sum the even terms in (5.5.16).
    bjp=0.
    bj=1.
    do 12 j=m,1,-1
                                     The downward recurrence.
        bjm=j*tox*bj-bjp
        bjp=bj
        bi=bim
        if(abs(bj).gt.BIGNO)then
                                     Renormalize to prevent overflows.
            bj=bj*BIGNI
```

World Wide Web sample page from NUMERICAL RECIPES IN FORTRAN 77: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43064-Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software. Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America). 3-1992 by Numerical Recipes Software.
use. Further reproduction, or any copying of machine-

COMPUTING (ISBN 0-521-43064-X)

```
bjp=bjp*BIGNI
            bessj=bessj*BIGNI
            sum=sum*BIGNI
        if(jsum.ne.0)sum=sum+bj
                                     Accumulate the sum.
        jsum=1-jsum
                                     Change 0 to 1 or vice versa.
                                     Save the unnormalized answer.
        if(j.eq.n)bessj=bjp
    enddo 12
    sum=2.*sum-bj
                                     Compute (5.5.16)
    bessj=bessj/sum
                                     and use it to normalize the answer.
if(x.lt.0..and.mod(n,2).eq.1)bessj=-bessj
return
```

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, *Handbook of Mathematical Functions*, Applied Mathematics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by Dover Publications, New York), Chapter 9.

Hart, J.F., et al. 1968, Computer Approximations (New York: Wiley), §6.8, p. 141. [1]

6.6 Modified Bessel Functions of Integer Order

The modified Bessel functions $I_n(x)$ and $K_n(x)$ are equivalent to the usual Bessel functions J_n and Y_n evaluated for purely imaginary arguments. In detail, the relationship is

$$I_n(x) = (-i)^n J_n(ix)$$

$$K_n(x) = \frac{\pi}{2} i^{n+1} [J_n(ix) + iY_n(ix)]$$
(6.6.1)

The particular choice of prefactor and of the linear combination of J_n and Y_n to form K_n are simply choices that make the functions real-valued for real arguments x.

For small arguments $x \ll n$, both $I_n(x)$ and $K_n(x)$ become, asymptotically, simple powers of their argument

$$I_n(x) \approx \frac{1}{n!} \left(\frac{x}{2}\right)^n \qquad n \ge 0$$

$$K_0(x) \approx -\ln(x) \qquad (6.6.2)$$

$$K_n(x) \approx \frac{(n-1)!}{2} \left(\frac{x}{2}\right)^{-n} \qquad n > 0$$

These expressions are virtually identical to those for $J_n(x)$ and $Y_n(x)$ in this region, except for the factor of $-2/\pi$ difference between $Y_n(x)$ and $K_n(x)$. In the region

/isit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America)