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If you think for a minute, you will realize that equation (7.6.7) was useful only
because the part of the integrand that we wanted to eliminate (e5z) was both integrable
analytically, and had an integral that could be analytically inverted. (Compare §7.2.)
In general these properties will not hold. Question: What then? Answer: Pull out
of the integrand the “best” factor that can be integrated and inverted. The criterion
for “best” is to try to reduce the remaining integrand to a function that is as close
as possible to constant.

The limiting case is instructive: If you manage to make the integrand f exactly
constant, and if the region V , of known volume, exactly encloses the desired region
W , then the average of f that you compute will be exactly its constant value, and the
error estimate in equation (7.6.1) will exactly vanish. You will, in fact, have done
the integral exactly, and the Monte Carlo numerical evaluations are superfluous. So,
backing off from the extreme limiting case, to the extent that you are able to make f
approximately constant by change of variable, and to the extent that you can sample a
region only slightly larger thanW , you will increase the accuracy of the Monte Carlo
integral. This technique is generically called reduction of variance in the literature.

The fundamental disadvantage of simple Monte Carlo integration is that its
accuracy increases only as the square root of N , the number of sampled points. If
your accuracy requirements are modest, or if your computer budget is large, then
the technique is highly recommended as one of great generality. In the next two
sections we will see that there are techniques available for “breaking the square root
of N barrier” and achieving, at least in some cases, higher accuracy with fewer
function evaluations.

CITED REFERENCES AND FURTHER READING:

Hammersley, J.M., and Handscomb, D.C. 1964, Monte Carlo Methods (London: Methuen).

Shreider, Yu. A. (ed.) 1966, The Monte Carlo Method (Oxford: Pergamon).

Sobol’, I.M. 1974, The Monte Carlo Method (Chicago: University of Chicago Press).

Kalos, M.H., and Whitlock, P.A. 1986, Monte Carlo Methods (New York: Wiley).

7.7 Quasi- (that is, Sub-) Random Sequences

We have just seen that choosing N points uniformly randomly in an n-
dimensional space leads to an error term in Monte Carlo integration that decreases
as 1/

√
N . In essence, each new point sampled adds linearly to an accumulated sum

that will become the function average, and also linearly to an accumulated sum of
squares that will become the variance (equation 7.6.2). The estimated error comes
from the square root of this variance, hence the power N−1/2.

Just because this square root convergence is familiar does not, however, mean
that it is inevitable. A simple counterexample is to choose sample points that lie
on a Cartesian grid, and to sample each grid point exactly once (in whatever order).
The Monte Carlo method thus becomes a deterministic quadrature scheme — albeit
a simple one — whose fractional error decreases at least as fast asN−1 (even faster
if the function goes to zero smoothly at the boundaries of the sampled region, or
is periodic in the region).
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The trouble with a grid is that one has to decide in advance how fine it should
be. One is then committed to completing all of its sample points. With a grid, it is
not convenient to “sample until” some convergence or termination criterion is met.
One might ask if there is not some intermediate scheme, some way to pick sample
points “at random,” yet spread out in some self-avoiding way, avoiding the chance
clustering that occurs with uniformly random points.

A similar question arises for tasks other than Monte Carlo integration. We might
want to search an n-dimensional space for a point where some (locally computable)
condition holds. Of course, for the task to be computationally meaningful, there
had better be continuity, so that the desired condition will hold in some finite n-
dimensional neighborhood. We may not know a priori how large that neighborhood
is, however. We want to “sample until” the desired point is found, moving smoothly
to finer scales with increasing samples. Is there any way to do this that is better
than uncorrelated, random samples?

The answer to the above question is “yes.” Sequences of n-tuples that fill
n-space more uniformly than uncorrelated random points are called quasi-random
sequences. That term is somewhat of a misnomer, since there is nothing “random”
about quasi-random sequences: They are cleverly crafted to be, in fact, sub-random.
The sample points in a quasi-random sequence are, in a precise sense, “maximally
avoiding” of each other.

A conceptually simple example is Halton’s sequence [1]. In one dimension, the
jth number Hj in the sequence is obtained by the following steps: (i) Write j as a
number in base b, where b is some prime. (For example j = 17 in base b = 3 is
122.) (ii) Reverse the digits and put a radix point (i.e., a decimal point base b) in
front of the sequence. (In the example, we get 0.221 base 3.) The result is Hj . To
get a sequence of n-tuples in n-space, you make each component a Halton sequence
with a different prime base b. Typically, the first n primes are used.

It is not hard to see how Halton’s sequence works: Every time the number of
digits in j increases by one place, j’s digit-reversed fraction becomes a factor of
b finer-meshed. Thus the process is one of filling in all the points on a sequence
of finer and finer Cartesian grids — and in a kind of maximally spread-out order
on each grid (since, e.g., the most rapidly changing digit in j controls the most
significant digit of the fraction).

Other ways of generating quasi-random sequences have been suggested by
Faure, Sobol’, Niederreiter, and others. Bratley and Fox [2] provide a good review
and references, and discuss a particularly efficient variant of the Sobol’ [3] sequence
suggested by Antonov and Saleev [4]. It is this Antonov-Saleev variant whose
implementation we now discuss.

The Sobol’ sequencegenerates numbers between zero and one directly as binary fractions
of lengthw bits, from a set ofw special binary fractions, Vi, i = 1, 2, . . . , w, called direction
numbers. In Sobol’s original method, the jth number Xj is generated by XORing (bitwise
exclusive or) together the set of Vi’s satisfying the criterion on i, “the ith bit of j is nonzero.”
As j increments, in other words, different ones of the Vi’s flash in and out of Xj on different
time scales. V1 alternates between being present and absent most quickly, while Vk goes from
present to absent (or vice versa) only every 2k−1 steps.

Antonov and Saleev’s contribution was to show that instead of using the bits of the
integer j to select direction numbers, one could just as well use the bits of the Gray code of j,
G(j). (For a quick review of Gray codes, look at §20.2.)

Now G(j) andG(j + 1) differ in exactly one bit position, namely in the position of the
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Figure 7.7.1. First 1024 points of a two-dimensional Sobol’ sequence. The sequence is generated
number-theoretically, rather than randomly, so successive points at any stage “know” how to fill in the
gaps in the previously generated distribution.

rightmost zero bit in the binary representation of j (adding a leading zero to j if necessary). A
consequence is that the j + 1st Sobol’-Antonov-Saleev number can be obtained from the jth
by XORing it with a single Vi , namely with i the position of the rightmost zero bit in j. This
makes the calculation of the sequence very efficient, as we shall see.

Figure 7.7.1 plots the first 1024 points generated by a two-dimensional Sobol’ sequence.
One sees that successive points do “know” about the gaps left previously, and keep filling
them in, hierarchically.

We have deferred to this point a discussionof how the direction numbersVi are generated.
Some nontrivial mathematics is involved in that, so we will content ourself with a cookbook
summary only: Each different Sobol’ sequence (or component of an n-dimensional sequence)
is based on a different primitive polynomial over the integers modulo 2, that is, a polynomial
whose coefficients are either 0 or 1, and which cannot be factored (using modulo 2 integer
arithmetic) into polynomials of lower order. (Primitive polynomials modulo 2 were used in
§7.4, and are further discussed in §20.3.) Suppose P is such a polynomial, of degree q,

P = xq + a1x
q−1 + a2x

q−2 + · · · + aq−1 + 1 (7.7.1)
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Degree Primitive Polynomials Modulo 2*

1 0 (i.e., x + 1)

2 1 (i.e., x2 + x + 1)

3 1, 2 (i.e., x3 + x + 1 and x3 + x2 + 1)

4 1, 4 (i.e., x4 + x + 1 and x4 + x3 + 1)

5 2, 4, 7, 11, 13, 14

6 1, 13, 16, 19, 22, 25

7 1, 4, 7, 8, 14, 19, 21, 28, 31, 32, 37, 41, 42, 50, 55, 56, 59, 62

8 14, 21, 22, 38, 47, 49, 50, 52, 56, 67, 70, 84, 97, 103, 115, 122

9 8, 13, 16, 22, 25, 44, 47, 52, 55, 59, 62, 67, 74, 81, 82, 87, 91, 94, 103, 104, 109, 122,

124, 137, 138, 143, 145, 152, 157, 167, 173, 176, 181, 182, 185, 191, 194, 199, 218, 220,

227, 229, 230, 234, 236, 241, 244, 253

10 4, 13, 19, 22, 50, 55, 64, 69, 98, 107, 115, 121, 127, 134, 140, 145, 152, 158, 161, 171,

181, 194, 199, 203, 208, 227, 242, 251, 253, 265, 266, 274, 283, 289, 295, 301, 316,

319, 324, 346, 352, 361, 367, 382, 395, 398, 400, 412, 419, 422, 426, 428, 433, 446,

454, 457, 472, 493, 505, 508

*Expressed as a decimal integer representing the interior bits (that is, omitting the
high-order bit and the unit bit).

Define a sequence of integers Mi by the q-term recurrence relation,

Mi = 2a1Mi−1 ⊕ 22a2Mi−2 ⊕ · · · ⊕ 2q−1Mi−q+1aq−1 ⊕ (2qMi−q ⊕Mi−q) (7.7.2)

Here bitwise XOR is denoted by⊕. The starting values for this recurrence are thatM1, . . . ,Mq

can be arbitrary odd integers less than 2, . . . , 2q , respectively. Then, the direction numbers
Vi are given by

Vi = Mi/2
i i = 1, . . . , w (7.7.3)

The accompanying table lists all primitive polynomials modulo 2 with degree q ≤ 10.
Since the coefficients are either 0 or 1, and since the coefficients of xq and of 1 are predictably
1, it is convenient to denote a polynomial by its middle coefficients taken as the bits of a binary
number (higher powers of x being more significant bits). The table uses this convention.

Turn now to the implementation of the Sobol’ sequence. Successive calls to the function
sobseq (after a preliminary initializing call) return successive points in an n-dimensional
Sobol’ sequence based on the first n primitive polynomials in the table. As given, the
routine is initialized for maximum n of 6 dimensions, and for a word length w of 30 bits.
These parameters can be altered by changing MAXBIT (≡ w) and MAXDIM, and by adding
more initializing data to the arrays ip (the primitive polynomials from the table), mdeg (their
degrees), and iv (the starting values for the recurrence, equation 7.7.2). A second table,
below, elucidates the initializing data in the routine.

SUBROUTINE sobseq(n,x)
INTEGER n,MAXBIT,MAXDIM
REAL x(*)
PARAMETER (MAXBIT=30,MAXDIM=6)

When n is negative, internally initializes a set of MAXBIT direction numbers for each of
MAXDIM different Sobol’ sequences. When n is positive (but ≤MAXDIM), returns as the
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Initializing Values Used in sobseq

Degree Polynomial Starting Values

1 0 1 (3) (5) (15) . . .

2 1 1 1 (7) (11) . . .

3 1 1 3 7 (5) . . .

3 2 1 3 3 (15) . . .

4 1 1 1 3 13 . . .

4 4 1 1 5 9 . . .

Parenthesized values are not freely specifiable, but are forced by the required recurrence
for this degree.

vector x(1..n) the next values from n of these sequences. (n must not be changed between
initializations.)

INTEGER i,im,in,ipp,j,k,l,ip(MAXDIM),iu(MAXDIM,MAXBIT),
* iv(MAXBIT*MAXDIM),ix(MAXDIM),mdeg(MAXDIM)

REAL fac
SAVE ip,mdeg,ix,iv,in,fac
EQUIVALENCE (iv,iu) To allow both 1D and 2D addressing.
DATA ip /0,1,1,2,1,4/, mdeg /1,2,3,3,4,4/, ix /6*0/
DATA iv /6*1,3,1,3,3,1,1,5,7,7,3,3,5,15,11,5,15,13,9,156*0/
if (n.lt.0) then Initialize, don’t return a vector.

do 11 k=1,MAXDIM
ix(k)=0

enddo 11

in=0
if(iv(1).ne.1)return
fac=1./2.**MAXBIT
do 15 k=1,MAXDIM

do 12 j=1,mdeg(k) Stored values only require normalization.
iu(k,j)=iu(k,j)*2**(MAXBIT-j)

enddo 12

do 14 j=mdeg(k)+1,MAXBIT Use the recurrence to get other values.
ipp=ip(k)
i=iu(k,j-mdeg(k))
i=ieor(i,i/2**mdeg(k))
do 13 l=mdeg(k)-1,1,-1

if(iand(ipp,1).ne.0)i=ieor(i,iu(k,j-l))
ipp=ipp/2

enddo 13

iu(k,j)=i
enddo 14

enddo 15

else Calculate the next vector in the sequence.
im=in
do 16 j=1,MAXBIT Find the rightmost zero bit.

if(iand(im,1).eq.0)goto 1
im=im/2

enddo 16

pause ’MAXBIT too small in sobseq’
1 im=(j-1)*MAXDIM

do 17 k=1,min(n,MAXDIM) XOR the appropriate direction number into each com-
ponent of the vector and convert to a floating
number.

ix(k)=ieor(ix(k),iv(im+k))
x(k)=ix(k)*fac

enddo 17

in=in+1 Increment the counter.
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endif
return
END

How good is a Sobol’ sequence, anyway? For Monte Carlo integration of a smooth
function in n dimensions, the answer is that the fractional error will decrease with N , the
number of samples, as (lnN)n/N , i.e., almost as fast as 1/N . As an example, let us integrate
a function that is nonzero inside a torus (doughnut) in three-dimensional space. If the major
radius of the torus is R0, the minor radial coordinate r is defined by

r =
(

[(x2 + y2)1/2 − R0]2 + z2
)1/2

(7.7.4)

Let us try the function

f(x, y, z) =

 1 + cos

(
πr2

a2

)
r < r0

0 r ≥ r0

(7.7.5)

which can be integrated analytically in cylindrical coordinates, giving∫ ∫ ∫
dx dy dz f(x, y, z) = 2π2a2R0 (7.7.6)

With parameters R0 = 0.6, r0 = 0.3, we did 100 successive Monte Carlo integrations of
equation (7.7.4), sampling uniformly in the region −1 < x, y, z < 1, for the two cases of
uncorrelated random points and the Sobol’ sequence generated by the routine sobseq. Figure
7.7.2 shows the results, plotting the r.m.s. average error of the 100 integrations as a function
of the number of points sampled. (For any single integration, the error of course wanders
from positive to negative, or vice versa, so a logarithmic plot of fractional error is not very
informative.) The thin, dashed curve corresponds to uncorrelated random points and shows
the familiar N−1/2 asymptotics. The thin, solid gray curve shows the result for the Sobol’
sequence. The logarithmic term in the expected (lnN)3/N is readily apparent as curvature
in the curve, but the asymptotic N−1 is unmistakable.

To understand the importance of Figure 7.7.2, suppose that a Monte Carlo integration of
f with 1% accuracy is desired. The Sobol’ sequence achieves this accuracy in a few thousand
samples, while pseudorandom sampling requires nearly 100,000 samples. The ratio would
be even greater for higher desired accuracies.

A different, not quite so favorable, case occurs when the function being integrated has
hard (discontinuous) boundaries inside the sampling region, for example the function that is
one inside the torus, zero outside,

f(x, y, z) =
{

1 r < r0
0 r ≥ r0

(7.7.7)

where r is defined in equation (7.7.4). Not by coincidence, this function has the same analytic
integral as the function of equation (7.7.5), namely 2π2a2R0.

The carefully hierarchical Sobol’ sequence is based on a set of Cartesian grids, but the
boundary of the torus has no particular relation to those grids. The result is that it is essentially
random whether sampled points in a thin layer at the surface of the torus, containing on the
order ofN2/3 points, come out to be inside, or outside, the torus. The square root law, applied
to this thin layer, gives N1/3 fluctuations in the sum, or N−2/3 fractional error in the Monte
Carlo integral. One sees this behavior verified in Figure 7.7.2 by the thicker gray curve. The
thicker dashed curve in Figure 7.7.2 is the result of integrating the function of equation (7.7.7)
using independent random points. While the advantage of the Sobol’ sequence is not quite so
dramatic as in the case of a smooth function, it can nonetheless be a significant factor (∼5)
even at modest accuracies like 1%, and greater at higher accuracies.

Note that we have not provided the routine sobseq with a means of starting the
sequence at a point other than the beginning, but this feature would be easy to add. Once
the initialization of the direction numbers iv has been done, the jth point can be obtained
directly by XORing together those direction numbers corresponding to nonzero bits in the
Gray code of j, as described above.
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Figure 7.7.2. Fractional accuracy of Monte Carlo integrations as a function of number of points sampled,
for two different integrands and two different methods of choosing random points. The quasi-random
Sobol’ sequence converges much more rapidly than a conventional pseudo-random sequence. Quasi-
random sampling does better when the integrand is smooth (“soft boundary”) than when it has step
discontinuities (“hard boundary”). The curves shown are the r.m.s. average of 100 trials.

The Latin Hypercube

We might here give passing mention the unrelated technique of Latin square or
Latin hypercube sampling, which is useful when you must sample anN -dimensional
space exceedingly sparsely, at M points. For example, you may want to test the
crashworthiness of cars as a simultaneous function of 4 different design parameters,
but with a budget of only three expendable cars. (The issue is not whether this is a
good plan — it isn’t — but rather how to make the best of the situation!)

The idea is to partition each design parameter (dimension) intoM segments, so
that the whole space is partitioned into MN cells. (You can choose the segments in
each dimension to be equal or unequal, according to taste.) With 4 parameters and 3
cars, for example, you end up with 3 × 3 × 3 × 3 = 81 cells.

Next, choose M cells to contain the sample points by the following algorithm:
Randomly choose one of the MN cells for the first point. Now eliminate all cells
that agree with this point on any of its parameters (that is, cross out all cells in the
same row, column, etc.), leaving (M − 1)N candidates. Randomly choose one of
these, eliminate new rows and columns, and continue the process until there is only
one cell left, which then contains the final sample point.

The result of this construction is that each design parameter will have been
tested in every one of its subranges. If the response of the system under test is
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dominated by one of the design parameters, that parameter will be found with
this sampling technique. On the other hand, if there is an important interaction
among different design parameters, then the Latin hypercube gives no particular
advantage. Use with care.
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7.8 Adaptive and Recursive Monte Carlo
Methods

This section discusses more advanced techniques of Monte Carlo integration. As
examples of the use of these techniques, we include two rather different, fairly sophisticated,
multidimensional Monte Carlo codes: vegas [1,2], and miser [3]. The techniques that we
discuss all fall under the general rubric of reduction of variance (§7.6), but are otherwise
quite distinct.

Importance Sampling

The use of importance sampling was already implicit in equations (7.6.6) and (7.6.7).
We now return to it in a slightly more formal way. Suppose that an integrand f can be written
as the product of a function h that is almost constant times another, positive, function g. Then
its integral over a multidimensional volume V is∫

f dV =

∫
(f/g) gdV =

∫
hgdV (7.8.1)

In equation (7.6.7) we interpreted equation (7.8.1) as suggesting a change of variable to
G, the indefinite integral of g. That made gdV a perfect differential. We then proceeded
to use the basic theorem of Monte Carlo integration, equation (7.6.1). A more general
interpretation of equation (7.8.1) is that we can integrate f by instead sampling h — not,
however, with uniform probability density dV , but rather with nonuniform density gdV . In
this second interpretation, the first interpretation follows as the special case, where the means
of generating the nonuniform sampling of gdV is via the transformation method, using the
indefinite integral G (see §7.2).

More directly, one can go back and generalize the basic theorem (7.6.1) to the case
of nonuniform sampling: Suppose that points xi are chosen within the volume V with a
probability density p satisfying ∫

pdV = 1 (7.8.2)


