
8.6 Determination of Equivalence Classes 337

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

REAL arr(n),heap(m)
C USES sort

Returns in heap(1:m) the largest m elements of the array arr(1:n), with heap(1) guar-
anteed to be the the mth largest element. The array arr is not altered. For efficiency, this
routine should be used only when m � n.

INTEGER i,j,k
REAL swap
if (m.gt.n/2.or.m.lt.1) pause ’probable misuse of hpsel’
do 11 i=1,m

heap(i)=arr(i)
enddo 11

call sort(m,heap) Create initial heap by overkill! We assume m� n.
do 12 i=m+1,n For each remaining element...

if(arr(i).gt.heap(1))then Put it on the heap?
heap(1)=arr(i)
j=1

1 continue Sift down.
k=2*j
if(k.gt.m)goto 2
if(k.ne.m)then

if(heap(k).gt.heap(k+1))k=k+1
endif
if(heap(j).le.heap(k))goto 2
swap=heap(k)
heap(k)=heap(j)
heap(j)=swap
j=k

goto 1
2 continue

endif
enddo 12

return
end

CITED REFERENCES AND FURTHER READING:

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

A number of techniques for sorting and searching relate to data structures whose details
are beyond the scope of this book, for example, trees, linked lists, etc. These structures and
their manipulations are the bread and butter of computer science, as distinct from numerical
analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipulation,
namely the determination of equivalence classes, arises sufficiently often to justify inclusion
here.

The problem is this: There are N “elements” (or “data points” or whatever), numbered
1, . . . , N . You are given pairwise information about whether elements are in the same
equivalence class of “sameness,” by whatever criterion happens to be of interest. For
example, you may have a list of facts like: “Element 3 and element 7 are in the same class;
element 19 and element 4 are in the same class; element 7 and element 12 are in the same
class,” Alternatively, you may have a procedure, given the numbers of two elements

338 Chapter 8. Sorting

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

j and k, for deciding whether they are in the same class or different classes. (Recall that
an equivalence relation can be anything satisfying the RST properties: reflexive, symmetric,
transitive. This is compatible with any intuitive definition of “sameness.”)

The desired output is an assignment to each of the N elements of an equivalence class
number, such that two elements are in the same class if and only if they are assigned the
same class number.

Efficient algorithms work like this: LetF (j) be the class or “family” number of element
j. Start off with each element in its own family, so that F (j) = j. The array F (j) can be
interpreted as a tree structure, whereF (j) denotes the parent of j. If we arrange for each family
to be its own tree, disjoint from all the other “family trees,” then we can label each family
(equivalence class) by its most senior great-great-. . .grandparent. The detailed topology of
the tree doesn’t matter at all, as long as we graft each related element onto it somewhere.

Therefore, we process each elemental datum “j is equivalent to k” by (i) tracking j
up to its highest ancestor, (ii) tracking k up to its highest ancestor, (iii) giving j to k as a
new parent, or vice versa (it makes no difference). After processing all the relations, we go
through all the elements j and reset their F (j)’s to their highest possible ancestors, which
then label the equivalence classes.

The following routine, based on Knuth [1], assumes that there are m elemental pieces
of information, stored in two arrays of length m, lista,listb, the interpretation being
that lista(j) and listb(j), j=1...m, are the numbers of two elements which (we are
thus told) are related.

SUBROUTINE eclass(nf,n,lista,listb,m)
INTEGER m,n,lista(m),listb(m),nf(n)

Given m equivalences between pairs of n individual elements in the form of the input arrays
lista(1:m) and listb(1:m), this routine returns in nf(1:n) the number of the equiva-
lence class of each of the n elements, integers between 1 and n (not all such integers used).

INTEGER j,k,l
do 11 k=1,n Initialize each element its own class.

nf(k)=k
enddo 11

do 12 l=1,m For each piece of input information...
j=lista(l)

1 if(nf(j).ne.j)then Track first element up to its ancestor.
j=nf(j)

goto 1
endif
k=listb(l)

2 if(nf(k).ne.k)then Track second element up to its ancestor.
k=nf(k)

goto 2
endif
if(j.ne.k)nf(j)=k If they are not already related, make them so.

enddo 12

do 13 j=1,n Final sweep up to highest ancestors.
3 if(nf(j).ne.nf(nf(j)))then

nf(j)=nf(nf(j))
goto 3
endif

enddo 13

return
END

Alternatively, we may be able to construct a procedure equiv(j,k) that returns a value
.true. if elements j and k are related, or .false. if they are not. Then we want to loop
over all pairs of elements to get the complete picture. D. Eardley has devised a clever way of
doing this while simultaneously sweeping the tree up to high ancestors in a manner that keeps
it current and obviates most of the final sweep phase:

8.6 Determination of Equivalence Classes 339

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE eclazz(nf,n,equiv)
INTEGER n,nf(n)
LOGICAL equiv
EXTERNAL equiv

Given a user-supplied logical function equiv which tells whether a pair of elements, each
in the range 1...n, are related, return in nf equivalence class numbers for each element.

INTEGER jj,kk
nf(1)=1
do 12 jj=2,n Loop over first element of all pairs.

nf(jj)=jj
do 11 kk=1,jj-1 Loop over second element of all pairs.

nf(kk)=nf(nf(kk)) Sweep it up this much.
if (equiv(jj,kk)) nf(nf(nf(kk)))=jj Good exercise for the reader to figure

out why this much ancestry is
necessary!

enddo 11

enddo 12

do 13 jj=1,n Only this much sweeping is needed finally.
nf(jj)=nf(nf(jj))

enddo 13

return
END

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §2.3.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 30.

