
376 Chapter 9. Root Finding and Nonlinear Sets of Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

9.7 Globally Convergent Methods for Nonlinear
Systems of Equations

We have seen that Newton’s method for solving nonlinear equations has an
unfortunate tendency to wander off into the wild blue yonder if the initial guess
is not sufficiently close to the root. A global method is one that converges to
a solution from almost any starting point. In this section we will develop an
algorithm that combines the rapid local convergence of Newton’s method with a
globally convergent strategy that will guarantee some progress towards the solution
at each iteration. The algorithm is closely related to the quasi-Newton method of
minimization which we will describe in §10.7.

Recall our discussion of §9.6: the Newton step for the set of equations

F(x) = 0 (9.7.1)

is
xnew = xold + δx (9.7.2)

where
δx = −J−1 · F (9.7.3)

Here J is the Jacobian matrix. How do we decide whether to accept the Newton step
δx? A reasonable strategy is to require that the step decrease |F|2 = F · F. This is
the same requirement we would impose if we were trying to minimize

f =
1

2
F · F (9.7.4)

(The 1
2 is for later convenience.) Every solution to (9.7.1) minimizes (9.7.4), but

there may be local minima of (9.7.4) that are not solutions to (9.7.1). Thus, as
already mentioned, simply applying one of our minimum finding algorithms from
Chapter 10 to (9.7.4) is not a good idea.

To develop a better strategy, note that the Newton step (9.7.3) is a descent
direction for f :

∇f · δx = (F · J) · (−J−1 · F) = −F · F < 0 (9.7.5)

Thus our strategy is quite simple: We always first try the full Newton step,
because once we are close enough to the solution we will get quadratic convergence.
However, we check at each iteration that the proposed step reduces f . If not, we
backtrack along the Newton direction until we have an acceptable step. Because the
Newton step is a descent direction for f , we are guaranteed to find an acceptable step
by backtracking. We will discuss the backtracking algorithm in more detail below.

Note that this method essentially minimizes f by taking Newton steps designed
to bring F to zero. This is not equivalent to minimizing f directly by taking Newton
steps designed to bring∇f to zero. While the method can still occasionally fail by
landing on a local minimum of f , this is quite rare in practice. The routine newt

below will warn you if this happens. The remedy is to try a new starting point.

9.7 Globally Convergent Methods for Nonlinear Systems of Equations 377

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Line Searches and Backtracking

When we are not close enough to the minimum of f , taking the full Newton step p = δx
need not decrease the function; we may move too far for the quadratic approximation to
be valid. All we are guaranteed is that initially f decreases as we move in the Newton
direction. So the goal is to move to a new point xnew along the direction of the Newton
step p, but not necessarily all the way:

xnew = xold + λp, 0 < λ ≤ 1 (9.7.6)

The aim is to find λ so that f(xold + λp) has decreased sufficiently. Until the early 1970s,
standard practice was to choose λ so that xnew exactly minimizes f in the direction p.
However, we now know that it is extremely wasteful of function evaluations to do so. A
better strategy is as follows: Since p is always the Newton direction in our algorithms, we
first try λ = 1, the full Newton step. This will lead to quadratic convergence when x is
sufficiently close to the solution. However, if f(xnew) does not meet our acceptance criteria,
we backtrack along the Newton direction, trying a smaller value of λ, until we find a suitable
point. Since the Newton direction is a descent direction, we are guaranteed to decrease f
for sufficiently small λ.

What should the criterion for accepting a step be? It is not sufficient to require merely
that f(xnew) < f(xold). This criterion can fail to converge to a minimum of f in one of
two ways. First, it is possible to construct a sequence of steps satisfying this criterion with
f decreasing too slowly relative to the step lengths. Second, one can have a sequence where
the step lengths are too small relative to the initial rate of decrease of f . (For examples of
such sequences, see [1], p. 117.)

A simple way to fix the first problem is to require the average rate of decrease of f to
be at least some fraction α of the initial rate of decrease ∇f · p:

f(xnew) ≤ f(xold) + α∇f · (xnew − xold) (9.7.7)

Here the parameter α satisfies 0 < α < 1. We can get away with quite small values of
α; α = 10−4 is a good choice.

The second problem can be fixed by requiring the rate of decrease of f at xnew to be
greater than some fraction β of the rate of decrease of f at xold. In practice, we will not
need to impose this second constraint because our backtracking algorithm will have a built-in
cutoff to avoid taking steps that are too small.

Here is the strategy for a practical backtracking routine: Define

g(λ) ≡ f(xold + λp) (9.7.8)

so that

g′(λ) = ∇f · p (9.7.9)

If we need to backtrack, then we model g with the most current information we have and
choose λ to minimize the model. We start with g(0) and g′(0) available. The first step is
always the Newton step, λ = 1. If this step is not acceptable, we have available g(1) as
well. We can therefore model g(λ) as a quadratic:

g(λ) ≈ [g(1) − g(0) − g′(0)]λ2 + g′(0)λ+ g(0) (9.7.10)

Taking the derivative of this quadratic, we find that it is a minimum when

λ = − g′(0)

2[g(1) − g(0) − g′(0)]
(9.7.11)

Since the Newton step failed, we can show that λ <∼ 1
2

for small α. We need to guard against
too small a value of λ, however. We set λmin = 0.1.

On second and subsequent backtracks, we model g as a cubic in λ, using the previous
value g(λ1) and the second most recent value g(λ2):

g(λ) = aλ3 + bλ2 + g′(0)λ+ g(0) (9.7.12)

378 Chapter 9. Root Finding and Nonlinear Sets of Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Requiring this expression to give the correct values of g at λ1 and λ2 gives two equations
that can be solved for the coefficients a and b:[

a

b

]
=

1

λ1 − λ2

[
1/λ2

1 −1/λ2
2

−λ2/λ
2
1 λ1/λ

2
2

]
·
[
g(λ1) − g′(0)λ1 − g(0)

g(λ2) − g′(0)λ2 − g(0)

]
(9.7.13)

The minimum of the cubic (9.7.12) is at

λ =
−b+

√
b2 − 3ag′(0)

3a
(9.7.14)

We enforce that λ lie between λmax = 0.5λ1 and λmin = 0.1λ1.
The routine has two additional features, a minimum step length alamin and a maximum

step length stpmax. lnsrch will also be used in the quasi-Newton minimization routine
dfpmin in the next section.

SUBROUTINE lnsrch(n,xold,fold,g,p,x,f,stpmax,check,func)
INTEGER n
LOGICAL check
REAL f,fold,stpmax,g(n),p(n),x(n),xold(n),func,ALF,TOLX
PARAMETER (ALF=1.e-4,TOLX=1.e-7)
EXTERNAL func

C USES func
Given an n-dimensional point xold(1:n), the value of the function and gradient there,
fold and g(1:n), and a direction p(1:n), finds a new point x(1:n) along the direction
p from xold where the function func has decreased “sufficiently.” The new function value
is returned in f. stpmax is an input quantity that limits the length of the steps so that you
do not try to evaluate the function in regions where it is undefined or subject to overflow.
p is usually the Newton direction. The output quantity check is false on a normal exit.
It is true when x is too close to xold. In a minimization algorithm, this usually signals
convergence and can be ignored. However, in a zero-finding algorithm the calling program
should check whether the convergence is spurious.
Parameters: ALF ensures sufficient decrease in function value; TOLX is the convergence
criterion on ∆x.

INTEGER i
REAL a,alam,alam2,alamin,b,disc,f2,fold2,rhs1,rhs2,slope,

* sum,temp,test,tmplam
check=.false.
sum=0.
do 11 i=1,n

sum=sum+p(i)*p(i)
enddo 11

sum=sqrt(sum)
if(sum.gt.stpmax)then Scale if attempted step is too big.

do 12 i=1,n
p(i)=p(i)*stpmax/sum

enddo 12

endif
slope=0.
do 13 i=1,n

slope=slope+g(i)*p(i)
enddo 13

test=0. Compute λmin.
do 14 i=1,n

temp=abs(p(i))/max(abs(xold(i)),1.)
if(temp.gt.test)test=temp

enddo 14

alamin=TOLX/test
alam=1. Always try full Newton step first.

1 continue Start of iteration loop.
do 15 i=1,n

x(i)=xold(i)+alam*p(i)
enddo 15

f=func(x)

9.7 Globally Convergent Methods for Nonlinear Systems of Equations 379

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(alam.lt.alamin)then Convergence on ∆x. For zero finding,
the calling program should verify the
convergence.

do 16 i=1,n
x(i)=xold(i)

enddo 16

check=.true.
return

else if(f.le.fold+ALF*alam*slope)then Sufficient function decrease.
return

else Backtrack.
if(alam.eq.1.)then First time.

tmplam=-slope/(2.*(f-fold-slope))
else Subsequent backtracks.

rhs1=f-fold-alam*slope
rhs2=f2-fold2-alam2*slope
a=(rhs1/alam**2-rhs2/alam2**2)/(alam-alam2)
b=(-alam2*rhs1/alam**2+alam*rhs2/alam2**2)/

* (alam-alam2)
if(a.eq.0.)then

tmplam=-slope/(2.*b)
else

disc=b*b-3.*a*slope
if(disc.lt.0.) pause ’roundoff problem in lnsrch’
tmplam=(-b+sqrt(disc))/(3.*a)

endif
if(tmplam.gt..5*alam)tmplam=.5*alam λ ≤ 0.5λ1.

endif
endif
alam2=alam
f2=f
fold2=fold
alam=max(tmplam,.1*alam) λ ≥ 0.1λ1.

goto 1 Try again.
END

Here now is the globally convergent Newton routine newt that uses lnsrch. A feature
of newt is that you need not supply the Jacobian matrix analytically; the routine will attempt to
compute the necessary partial derivatives of F by finite differences in the routine fdjac. This
routine uses some of the techniques described in §5.7 for computing numerical derivatives. Of
course, you can always replace fdjac with a routine that calculates the Jacobian analytically
if this is easy for you to do.

SUBROUTINE newt(x,n,check)
INTEGER n,nn,NP,MAXITS
LOGICAL check
REAL x(n),fvec,TOLF,TOLMIN,TOLX,STPMX
PARAMETER (NP=40,MAXITS=200,TOLF=1.e-4,TOLMIN=1.e-6,TOLX=1.e-7,

* STPMX=100.)
COMMON /newtv/ fvec(NP),nn Communicates with fmin.
SAVE /newtv/

C USES fdjac,fmin,lnsrch,lubksb,ludcmp
Given an initial guess x(1:n) for a root in n dimensions, find the root by a globally
convergent Newton’s method. The vector of functions to be zeroed, called fvec(1:n)
in the routine below, is returned by a user-supplied subroutine that must be called funcv
and have the declaration subroutine funcv(n,x,fvec). The output quantity check
is false on a normal return and true if the routine has converged to a local minimum of the
function fmin defined below. In this case try restarting from a different initial guess.
Parameters: NP is the maximum expected value of n; MAXITS is the maximum number of
iterations; TOLF sets the convergence criterion on function values; TOLMIN sets the criterion
for deciding whether spurious convergence to a minimum of fmin has occurred; TOLX is
the convergence criterion on δx; STPMX is the scaled maximum step length allowed in line
searches.

INTEGER i,its,j,indx(NP)
REAL d,den,f,fold,stpmax,sum,temp,test,fjac(NP,NP),

380 Chapter 9. Root Finding and Nonlinear Sets of Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

* g(NP),p(NP),xold(NP),fmin
EXTERNAL fmin
nn=n
f=fmin(x) The vector fvec is also computed by this call.
test=0. Test for initial guess being a root. Use more strin-

gent test than simply TOLF.do 11 i=1,n
if(abs(fvec(i)).gt.test)test=abs(fvec(i))

enddo 11

if(test.lt..01*TOLF)then
check=.false.
return

endif
sum=0. Calculate stpmax for line searches.
do 12 i=1,n

sum=sum+x(i)**2
enddo 12

stpmax=STPMX*max(sqrt(sum),float(n))
do 21 its=1,MAXITS Start of iteration loop.

call fdjac(n,x,fvec,NP,fjac)
If analytic Jacobian is available, you can replace the routine fdjac below with your own
routine.

do 14 i=1,n Compute ∇f for the line search.
sum=0.
do 13 j=1,n

sum=sum+fjac(j,i)*fvec(j)
enddo 13

g(i)=sum
enddo 14

do 15 i=1,n Store x,
xold(i)=x(i)

enddo 15

fold=f and f .
do 16 i=1,n Right-hand side for linear equations.

p(i)=-fvec(i)
enddo 16

call ludcmp(fjac,n,NP,indx,d) Solve linear equations by LU decomposition.
call lubksb(fjac,n,NP,indx,p)
call lnsrch(n,xold,fold,g,p,x,f,stpmax,check,fmin)
lnsrch returns new x and f . It also calculates fvec at the new x when it calls fmin.

test=0. Test for convergence on function values.
do 17 i=1,n

if(abs(fvec(i)).gt.test)test=abs(fvec(i))
enddo 17

if(test.lt.TOLF)then
check=.false.
return

endif
if(check)then Check for gradient of f zero, i.e., spurious con-

vergence.test=0.
den=max(f,.5*n)
do 18 i=1,n

temp=abs(g(i))*max(abs(x(i)),1.)/den
if(temp.gt.test)test=temp

enddo 18

if(test.lt.TOLMIN)then
check=.true.

else
check=.false.

endif
return

endif
test=0. Test for convergence on δx.
do 19 i=1,n

temp=(abs(x(i)-xold(i)))/max(abs(x(i)),1.)

9.7 Globally Convergent Methods for Nonlinear Systems of Equations 381

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(temp.gt.test)test=temp
enddo 19

if(test.lt.TOLX)return
enddo 21

pause ’MAXITS exceeded in newt’
END

SUBROUTINE fdjac(n,x,fvec,np,df)
INTEGER n,np,NMAX
REAL df(np,np),fvec(n),x(n),EPS
PARAMETER (NMAX=40,EPS=1.e-4)

C USES funcv
Computes forward-difference approximation to Jacobian. On input, x(1:n) is the point
at which the Jacobian is to be evaluated, fvec(1:n) is the vector of function values at
the point, and np is the physical dimension of the Jacobian array df(1:n,1:n) which is
output. subroutine funcv(n,x,f) is a fixed-name, user-supplied routine that returns
the vector of functions at x.
Parameters: NMAX is the maximum value of n; EPS is the approximate square root of the
machine precision.

INTEGER i,j
REAL h,temp,f(NMAX)
do 12 j=1,n

temp=x(j)
h=EPS*abs(temp)
if(h.eq.0.)h=EPS
x(j)=temp+h Trick to reduce finite precision error.
h=x(j)-temp
call funcv(n,x,f)
x(j)=temp
do 11 i=1,n Forward difference formula.

df(i,j)=(f(i)-fvec(i))/h
enddo 11

enddo 12

return
END

FUNCTION fmin(x)
INTEGER n,NP
REAL fmin,x(*),fvec
PARAMETER (NP=40)
COMMON /newtv/ fvec(NP),n
SAVE /newtv/

C USES funcv
Returns f = 1

2
F · F at x. subroutine funcv(n,x,f) is a fixed-name, user-supplied

routine that returns the vector of functions at x. The common block newtv communicates
the function values back to newt.

INTEGER i
REAL sum
call funcv(n,x,fvec)
sum=0.
do 11 i=1,n

sum=sum+fvec(i)**2
enddo 11

fmin=0.5*sum
return
END

The routine newt assumes that typical values of all components of x and of F are of order
unity, and it can fail if this assumption is badly violated. You should rescale the variables by
their typical values before invoking newt if this problem occurs.

382 Chapter 9. Root Finding and Nonlinear Sets of Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Multidimensional Secant Methods: Broyden’s Method

Newton’s method as implemented above is quite powerful, but it still has several
disadvantages. One drawback is that the Jacobian matrix is needed. In many problems
analytic derivatives are unavailable. If function evaluation is expensive, then the cost of
finite-difference determination of the Jacobian can be prohibitive.

Just as the quasi-Newton methods to be discussed in §10.7 provide cheap approximations
for the Hessian matrix in minimization algorithms, there are quasi-Newton methods that
provide cheap approximations to the Jacobian for zero finding. These methods are often called
secant methods, since they reduce to the secant method (§9.2) in one dimension (see, e.g., [1]).
The best of these methods still seems to be the first one introduced, Broyden’s method [2].

Let us denote the approximate Jacobian by B. Then the ith quasi-Newton step δxi
is the solution of

Bi · δxi = −Fi (9.7.15)

where δxi = xi+1 − xi (cf. equation 9.7.3). The quasi-Newton or secant condition is that
Bi+1 satisfy

Bi+1 · δxi = δFi (9.7.16)

where δFi = Fi+1 − Fi. This is the generalization of the one-dimensional secant approxima-
tion to the derivative, δF/δx. However, equation (9.7.16) does not determine Bi+1 uniquely
in more than one dimension.

Many different auxiliary conditions to pin down Bi+1 have been explored, but the
best-performing algorithm in practice results from Broyden’s formula. This formula is based
on the idea of getting Bi+1 by making the least change to Bi consistent with the secant
equation (9.7.16). Broyden showed that the resulting formula is

Bi+1 = Bi +
(δFi − Bi · δxi)⊗ δxi

δxi · δxi
(9.7.17)

You can easily check that Bi+1 satisfies (9.7.16).
Early implementations of Broyden’s method used the Sherman-Morrison formula,

equation (2.7.2), to invert equation (9.7.17) analytically,

B−1
i+1 = B−1

i +
(δxi − B−1

i · δFi) ⊗ δxi · B−1
i

δxi · B−1
i · δFi

(9.7.18)

Then instead of solving equation (9.7.3) by e.g., LU decomposition, one determined

δxi = −B−1
i · Fi (9.7.19)

by matrix multiplication in O(N2) operations. The disadvantage of this method is that
it cannot easily be embedded in a globally convergent strategy, for which the gradient of
equation (9.7.4) requires B, not B−1,

∇(1
2 F · F) ' BT · F (9.7.20)

Accordingly, we implement the update formula in the form (9.7.17).
However, we can still preserve theO(N2) solution of (9.7.3) by usingQR decomposition

(§2.10) instead ofLU decomposition. The reason is that because of the special form of equation
(9.7.17), the QR decomposition of Bi can be updated into the QR decomposition of Bi+1 in
O(N2) operations (§2.10). All we need is an initial approximation B0 to start the ball rolling.
It is often acceptable to start simply with the identity matrix, and then allowO(N) updates to
produce a reasonable approximation to the Jacobian. We prefer to spend the firstN function
evaluations on a finite-difference approximation to initialize B via a call to fdjac.

Since B is not the exact Jacobian, we are not guaranteed that δx is a descent direction for
f = 1

2 F ·F (cf. equation 9.7.5). Thus the line search algorithm can fail to return a suitable step
if B wanders far from the true Jacobian. In this case, we reinitialize B by another call to fdjac.

Like the secant method in one dimension, Broyden’s method converges superlinearly
once you get close enough to the root. Embedded in a global strategy, it is almost as robust

9.7 Globally Convergent Methods for Nonlinear Systems of Equations 383

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

as Newton’s method, and often needs far fewer function evaluations to determine a zero.
Note that the final value of B is not always close to the true Jacobian at the root, even
when the method converges.

The routine broydn given below is very similar to newt in organization. The principal
differences are the use ofQR decomposition instead ofLU , and the updating formula instead
of directly determining the Jacobian. The remarks at the end of newt about scaling the
variables apply equally to broydn.

SUBROUTINE broydn(x,n,check)
INTEGER n,nn,NP,MAXITS
REAL x(n),fvec,EPS,TOLF,TOLMIN,TOLX,STPMX
LOGICAL check
PARAMETER (NP=40,MAXITS=200,EPS=1.e-7,TOLF=1.e-4,TOLMIN=1.e-6,

* TOLX=EPS,STPMX=100.)
COMMON /newtv/ fvec(NP),nn Communicates with fmin.

C USES fdjac,fmin,lnsrch,qrdcmp,qrupdt,rsolv
Given an initial guess x(1:n) for a root in n dimensions, find the root by Broyden’s method
embedded in a globally convergent strategy. The vector of functions to be zeroed, called
fvec(1:n) in the routine below, is returned by a user-supplied subroutine that must be
called funcv and have the declaration subroutine funcv(n,x,fvec). The subroutine
fdjac and the function fmin from newt are used. The output quantity check is false on a
normal return and true if the routine has converged to a local minimum of the function fmin
or if Broyden’s can make no further progress. In this case try restarting from a different
initial guess.
Parameters: NP is the maximum expected value of n; MAXITS is the maximum number of
iterations; EPS is close to the machine precision; TOLF sets the convergence criterion on
function values; TOLMIN sets the criterion for deciding whether spurious convergence to a
minimum of fmin has occurred; TOLX is the convergence criterion on δx; STPMX is the
scaled maximum step length allowed in line searches.

INTEGER i,its,j,k
REAL den,f,fold,stpmax,sum,temp,test,c(NP),d(NP),fvcold(NP),

* g(NP),p(NP),qt(NP,NP),r(NP,NP),s(NP),t(NP),w(NP),
* xold(NP),fmin

LOGICAL restrt,sing,skip
EXTERNAL fmin
nn=n
f=fmin(x) The vector fvec is also computed by this call.
test=0. Test for initial guess being a root. Use more strin-

gent test than simply TOLF.do 11 i=1,n
if(abs(fvec(i)).gt.test)test=abs(fvec(i))

enddo 11

if(test.lt..01*TOLF)then
check=.false.
return

endif
sum=0. Calculate stpmax for line searches.
do 12 i=1,n

sum=sum+x(i)**2
enddo 12

stpmax=STPMX*max(sqrt(sum),float(n))
restrt=.true. Ensure initial Jacobian gets computed.
do 44 its=1,MAXITS Start of iteration loop.

if(restrt)then
call fdjac(n,x,fvec,NP,r) Initialize or reinitialize Jacobian in r.
call qrdcmp(r,n,NP,c,d,sing) QR decomposition of Jacobian.
if(sing) pause ’singular Jacobian in broydn’

do 14 i=1,n Form QT explicitly.
do 13 j=1,n

qt(i,j)=0.
enddo 13

qt(i,i)=1.
enddo 14

do 18 k=1,n-1

384 Chapter 9. Root Finding and Nonlinear Sets of Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if(c(k).ne.0.)then
do 17 j=1,n

sum=0.
do 15 i=k,n

sum=sum+r(i,k)*qt(i,j)
enddo 15

sum=sum/c(k)
do 16 i=k,n

qt(i,j)=qt(i,j)-sum*r(i,k)
enddo 16

enddo 17

endif
enddo 18

do 21 i=1,n Form R explicitly.
r(i,i)=d(i)
do 19 j=1,i-1

r(i,j)=0.
enddo 19

enddo 21

else Carry out Broyden update.
do 22 i=1,n s = δx.

s(i)=x(i)-xold(i)
enddo 22

do 24 i=1,n t = R · s.
sum=0.
do 23 j=i,n

sum=sum+r(i,j)*s(j)
enddo 23

t(i)=sum
enddo 24

skip=.true.
do 26 i=1,n w = δF − B · s.

sum=0.
do 25 j=1,n

sum=sum+qt(j,i)*t(j)
enddo 25

w(i)=fvec(i)-fvcold(i)-sum
if(abs(w(i)).ge.EPS*(abs(fvec(i))+abs(fvcold(i))))then

Don’t update with noisy components of w.
skip=.false.

else
w(i)=0.

endif
enddo 26

if(.not.skip)then

do 28 i=1,n t = QT · w.
sum=0.
do 27 j=1,n

sum=sum+qt(i,j)*w(j)
enddo 27

t(i)=sum
enddo 28

den=0.
do 29 i=1,n

den=den+s(i)**2
enddo 29

do 31 i=1,n Store s/(s · s) in s.
s(i)=s(i)/den

enddo 31

call qrupdt(r,qt,n,NP,t,s) Update R and QT .
do 32 i=1,n

if(r(i,i).eq.0.) pause ’r singular in broydn’
d(i)=r(i,i) Diagonal of R stored in d.

enddo 32

9.7 Globally Convergent Methods for Nonlinear Systems of Equations 385

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

endif
endif
do 34 i=1,n Compute ∇f ≈ (Q · R)T · F for the line search.

sum=0.
do 33 j=1,n

sum=sum+qt(i,j)*fvec(j)
enddo 33

g(i)=sum
enddo 34

do 36 i=n,1,-1
sum=0.
do 35 j=1,i

sum=sum+r(j,i)*g(j)
enddo 35

g(i)=sum
enddo 36

do 37 i=1,n Store x and F.
xold(i)=x(i)
fvcold(i)=fvec(i)

enddo 37

fold=f Store f .
do 39 i=1,n Right-hand side for linear equations is −QT · F.

sum=0.
do 38 j=1,n

sum=sum+qt(i,j)*fvec(j)
enddo 38

p(i)=-sum
enddo 39

call rsolv(r,n,NP,d,p) Solve linear equations.
call lnsrch(n,xold,fold,g,p,x,f,stpmax,check,fmin)
lnsrch returns new x and f . It also calculates fvec at the new x when it calls fmin.

test=0. Test for convergence on function values.
do 41 i=1,n

if(abs(fvec(i)).gt.test)test=abs(fvec(i))
enddo 41

if(test.lt.TOLF)then
check=.false.
return

endif
if(check)then True if line search failed to find a new x.

if(restrt)then Failure; already tried reinitializing the Jacobian.
return

else Check for gradient of f zero, i.e., spurious con-
vergence.test=0.

den=max(f,.5*n)
do 42 i=1,n

temp=abs(g(i))*max(abs(x(i)),1.)/den
if(temp.gt.test)test=temp

enddo 42

if(test.lt.TOLMIN)then
return

else Try reinitializing the Jacobian.
restrt=.true.

endif
endif

else Successful step; will use Broyden update for next
step.restrt=.false.

test=0. Test for convergence on δx.
do 43 i=1,n

temp=(abs(x(i)-xold(i)))/max(abs(x(i)),1.)
if(temp.gt.test)test=temp

enddo 43

if(test.lt.TOLX)return
endif

386 Chapter 9. Root Finding and Nonlinear Sets of Equations

W
orld W

ide W
eb sam

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1988-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1988-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

enddo 44

pause ’MAXITS exceeded in broydn’
END

More Advanced Implementations

One of the principal ways that the methods described so far can fail is if J (in Newton’s
method) or B in (Broyden’s method) becomes singular or nearly singular, so that δx cannot
be determined. If you are lucky, this situation will not occur very often in practice. Methods
developed so far to deal with this problem involve monitoring the condition number of J and
perturbing J if singularity or near singularity is detected. This is most easily implemented
if the QR decomposition is used instead of LU in Newton’s method (see [1] for details).
Our personal experience is that, while such an algorithm can solve problems where J is
exactly singular and the standard Newton’s method fails, it is occasionally less robust on
other problems where LU decomposition succeeds. Clearly implementation details involving
roundoff, underflow, etc., are important here and the last word is yet to be written.

Our global strategies both for minimization and zero finding have been based on line
searches. Other global algorithms, such as the hook step and dogleg step methods, are based
instead on the model-trust region approach, which is related to the Levenberg-Marquardt
algorithm for nonlinear least-squares (§15.5). While somewhat more complicated than line
searches, these methods have a reputation for robustness even when starting far from the
desired zero or minimum [1].

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall). [1]

Broyden, C.G. 1965, Mathematics of Computation, vol. 19, pp. 577–593. [2]

