# Energy Levels of Light Nuclei $A=5$ 

F. Ajzenberg-Selove<br>University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396


#### Abstract

An evaluation of $A=5-10$ was published in Nuclear Physics A490 (1995), p. 1. This version of $A=5$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Also, reference key numbers have been changed to the NNDC/TUNL format see introduction to references for more information.


(References closed June 1, 1988)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-FG0286ER40279]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).

## ${ }^{5} n$

${ }^{5} \mathrm{n}$ has not been observed. It is suggested that it is unbound by 10 MeV : see (84AJ01). See also (84DE1D).

## ${ }^{5} \mathrm{H}$

The ${ }^{9} \mathrm{Be}\left({ }^{11} \mathrm{~B},{ }^{15} \mathrm{O}\right)$ reaction at $E\left({ }^{11} \mathrm{~B}\right)=52-76 \mathrm{MeV}$ shows no evidence for the formation of ${ }^{5} \mathrm{H}$ (86BE35, 87BO40). For the earlier work see (84AJ01). See also (87KO47, 88SE1C). There is some evidence for the formation of a very broad ( $8 \pm 3 \mathrm{MeV}$ ) state of ${ }^{5} \mathrm{H}$ at $E_{\mathrm{x}}=7.4 \pm 0.7 \mathrm{MeV}$ in the ${ }^{9} \mathrm{Be}\left(\pi^{-}\right.$, pt) reaction (87GO25). ${ }^{5} \mathrm{H}$ is calculated to have $J^{\pi}=\frac{1}{2}^{+}$, to be unstable with respect to two neutron emission and to have excited states at $E_{\mathrm{x}}=2.44,4.29$ and 7.39 MeV with $J^{\pi}=\frac{5}{2}^{+}, \frac{3}{2}^{+}$, and $\frac{3}{2}^{+}[(0+1) \hbar \omega$ model space $]$, and at $E_{v}=2.85,3.46$ and 6.02 MeV with $J^{\pi}=\frac{3}{2}^{+}, \frac{5}{2}^{+}$and $\frac{3}{2}^{+}[(0+2) \hbar \omega$ model space $]$ (85PO10). See also (82SM1B, 86BE44, 87PE1C) and (83ANZQ; theor.).

## ${ }^{5} \mathrm{He}$

GENERAL: See also (84AJ01).
Model discussions: (83JA09, 84VA06, 84ZW1A, 85FI1E, 85GE06, 85KW02, 86KR12, 88WO04).

Special states: (82PO12, 83VO02, 84BE1B, 84FI1G, 84GL1C, 84VA06, 84VA1C, 84ZW1A, 85BA68, 85FI1E, 87SV1A, 88BA75, 88KW1A 88US1B).

Electromagnetic transitions: (85FI1E).
Astrophysical questions: (84SU1A, 85BO1E).
Complex reactions involving ${ }^{5} \mathrm{He}$ : $85 \mathrm{BO} 1 \mathrm{~J}, 85 \mathrm{DE} 17,85 \mathrm{PO} 11,86 \mathrm{CS} 1 \mathrm{~A}, 86 \mathrm{PO} 06,87 \mathrm{BL} 1 \mathrm{~K}$, 87BO40, 87KI16, 87PE1C).

Reactions involving pions: (84DE1D, 85BE1C, 85GE06, 86CE04).
Hypernuclei: (82KA1D, 83BA1D, 83BE1G, 83MO1C, 83SH1E, 83SH38, 84AS1D, 34BO1A. 84BO1H, $84 \mathrm{CH} 1 \mathrm{G}, 84 \mathrm{HU1B}, 84 \mathrm{KO1F}, 84 \mathrm{MIIE}, 84 \mathrm{SH} 07$, $84 \mathrm{SH} 1 \mathrm{~J}, ~ 84 \mathrm{ZH} 1 \mathrm{~B}, 85 \mathrm{AH} 1 \mathrm{~A}$. 85BA1F, 85 GI 1 E, , 85IK1A, $85 \mathrm{KO1G}, 85 \mathrm{KU1A}, 85 \mathrm{MO} 1 \mathrm{~F}, ~ 85 \mathrm{OS1C}, ~ 85 \mathrm{TA} 1 \mathrm{E}, ~ 85 \mathrm{YA} 05$, 85YA1B, 86AN1R, 86BA1H, 86BA1W, 86BO1E, 86CH1I, 86DA1B, 86DO1B, 86LI1L, 86MA1C. 86SH1I, 86SH1K, 86SH1V, 36SZ1A, 86WA1J, 86YA1F, 87BO1L, 87BO1O, 87KA1Q, 87MI1A, $87 \mathrm{PO} 1 \mathrm{H}, ~ 87 \mathrm{SH} 1 \mathrm{H}, ~ 87 \mathrm{YA1C}, ~ 87 \mathrm{YA} 1 \mathrm{M}, ~ 88 \mathrm{BA} \mathrm{G}, ~ 88 \mathrm{BO} 1 \mathrm{E}, ~ 88 \mathrm{LA} 1 \mathrm{~B}, ~ 88 \mathrm{LI} 1 \mathrm{C}$, 88NO1A 88PO1H, 88TA1B).

Other topics: (83BE55, 84BE1B, 84PO11, 85AN28, 85GI1E, 86BL1D, 87SV1A, 88KW1A, 88US1B).

Table 5.1
Energy levels of ${ }^{5} \mathrm{He}^{\mathrm{a}}$ )

| $E_{\mathrm{x}}(\mathrm{MeV})^{\mathrm{b}}$ ) | $J^{\pi} ; T$ | $\Gamma_{\text {c.m. }}(\mathrm{MeV})$ | Decay | Reactions |
| :---: | :---: | :---: | :---: | :---: |
| g.s. | $\frac{3}{2}^{-} ; \frac{1}{2}$ | $0.60 \pm 0.02{ }^{\text {a }}$ ) | n, $\alpha$ | $1,4,6,7,8,9$, 10, 11, 12,  <br> 13, $14,15,16$, 17, 18,19  <br> 20. 21,22, 23, 24, 25, <br> 27. 26,29    |
| $4 \pm 1$ | $\frac{1}{2} ; \frac{1}{2}$ | $4 \pm 1$ | n, $\alpha$ | 4, 6, 9, 10, 16 20, 21, 29 |
| $16.75 \pm 0.05$ | $\frac{3}{2}^{+} ; \frac{1}{2}$ | $0.076 \pm 0.012$ | $\gamma, \mathrm{n}, \mathrm{d}, \mathrm{t}, \alpha$ | $\frac{1,2,5,6,8,10,11,12,20,}{21,22}$ |
| $19.8 \pm 0.4^{\text {c }}$ ) | $\left(\frac{3}{2}, \frac{5}{2}\right)^{+} ; \frac{1}{2}$ | $2.5 \pm 0.5$ | $\mathrm{n}, \mathrm{d}, \mathrm{t}, \alpha$ | $\frac{2,3,5,8,10,12,14,18,20}{21,22}$ |
| 24-25 ${ }^{\text {c }}$ ) |  | broad |  | 20, 21 |
| $(35.7 \pm 0.4)$ |  | $\approx 2$ |  | 18, 22 |

${ }^{\text {a }}$ ) See table 5.2 in (66LA04) and table 5.2 here. A study by G.M. Hale, D. Dodder and K. Witte on the $S$-matrix pole parameters for ${ }^{5} \mathrm{He}$ is underway. I thank Dr. Hale for his comments concerning questions regarding $R$ - and $S$-matrix calculations.
${ }^{\text {b }}$ ) Positive-parity states are predicted to lie at $E_{\mathrm{x}} \sim 5 \mathrm{MeV}\left(\frac{1}{2}^{+}\right)$and $12 \mathrm{MeV}\left(\frac{3}{2}^{+}, \frac{5}{2}^{+}\right)$: see (88WO10).
${ }^{\text {c }}$ ) See (74AJ01), pp. 7-8.
Ground state of ${ }^{5} \mathrm{He}$ : $83 \mathrm{ANZQ}, 84 \mathrm{FR} 13$ 85AN28, 85FI1E, 85TA1F, 85WA1D, 87SV1A, 88WA08, 88WO04).

1. ${ }^{3} \mathrm{H}(\mathrm{d}, \gamma){ }^{5} \mathrm{He} \quad Q_{\mathrm{m}}=16.70$

At low energies the reaction is dominated by a resonance at $E_{\mathrm{d}}=107 \mathrm{keV}$; the mirror reaction shows resonance at $E_{\mathrm{d}}=430 \mathrm{keV}$. The branching ratio $\Gamma_{\gamma_{0}} / \Gamma_{\mathrm{n}}$ integrated over the resonance from 0 to 275 keV is $(5.6 \pm 0.6) \times 10^{-5}(86 \mathrm{MO} 05)$, in very good agreement with the earlier value of $(5.4 \pm 1.3) \times 10^{-5}$ for $E_{\mathrm{d}}=45$ to 146 keV (84CE08) Assuming $\Gamma_{\mathrm{n}}$ of ${ }^{5} \mathrm{He}^{*}(16.7)$ is $37 \pm 5 \mathrm{keV}$ (see reaction 6), then $\Gamma_{\gamma_{0}}=2.1 \pm 0.4 \mathrm{eV}$. (86MO05) also report branching ratios up to $E_{\mathrm{d}}=0.72 \mathrm{MeV}$ and summarize the earlier work to 5 MeV . For measurements of TAP and VAP at $E_{\vec{d}}=0.4$ and 8.6 MeV , see (87RI1D; prelim.). See also (85RI1A), (79AJ01) and (84NE1B. 86LA1F, 88KI1C; applications).
2.
(a) ${ }^{3} \mathrm{H}(\mathrm{d}, \mathrm{n}){ }^{4} \mathrm{He}$
$Q_{\mathrm{m}}=17.5894$
$E_{\mathrm{b}}=16.70$
(b) ${ }^{3} \mathrm{H}(\mathrm{d}, 2 \mathrm{n})^{3} \mathrm{He}$
$Q_{\mathrm{m}}=-2.9883$
(c) ${ }^{3} \mathrm{H}(\mathrm{d}, \mathrm{pn})^{3} \mathrm{H}$
$Q_{\mathrm{m}}=-2.2259$

The cross section has been measured in the range $E_{\mathrm{t}}=12.5$ to 117 keV (84JA08) $[0.525( \pm 4.8 \%) \mathrm{mb}$ to $3.739( \pm 1.4 \%) \mathrm{b}]$ and in the range $E_{\mathrm{d}}=79.913$ to 115.901 keV
$( \pm 0.015 \mathrm{keV})(87 \mathrm{BR} 10)[3.849$ to $4.734 \mathrm{~b}( \pm 1.6 \%)]$. See also (85FI1G; $E_{\mathrm{d}}=13.8$ to $114.3 \mathrm{keV})$. A strong resonance, $\sigma($ peak $)=4.88 \mathrm{~b}$, appears at $E_{\mathrm{d}}=105 \mathrm{keV}$ : see table 5.2 in (79AJ01) and (87BR10). For a discussion of $R$-matrix analysis and evidence for a "shadow" pole, see (87BR10, 87HA20). See also (87HA1W, 87MO1K). From $E_{\mathrm{d}}=10$ to 500 keV , the cross section is well fitted with the assumption of s-wave formation of a $J^{\pi}=\frac{3}{2}^{+}$state. Measurements of cross sections and angular distributions for reaction (a) have been reported to $E_{\mathrm{d}}=21 \mathrm{MeV}$ and $E_{\mathrm{t}}=20.0 \mathrm{MeV}$ [see (74AJ01, 79AJ01, 84AJ01)] as well as at $1.0,1.5$ and 2.0 MeV (87LI07).

A study of reaction (a) with polarized deuterons at $E_{\mathrm{d}}=0.2$ to 1.0 MeV indicates intervention of the s-wave, $J^{\pi}=\frac{1}{2}^{+}$channel, as well as possible p-waves above $E_{\mathrm{d}}=$ 0.3 MeV . The polarization increases monotonically from 0.03 at $E_{\mathrm{d}}=3 \mathrm{MeV}$ to $\approx 0.5$ at $E_{\mathrm{d}}=6.5 \mathrm{MeV}$ and then with a lower slope to 0.69 at $E_{\mathrm{d}}=13 \mathrm{MeV}$. The change in the slope may be caused by excited states of ${ }^{5} \mathrm{He}$ near 20 MeV . Comparison with the ${ }^{3} \mathrm{He}(\mathrm{d}, \mathrm{p}){ }^{4} \mathrm{He}$ mirror reaction at corresponding c.m. energies shows excellent agreement between the polarization values in the two reactions up to $E_{\mathrm{d}}=6 \mathrm{MeV}$, but then the proton polarization becomes $\approx 15 \%$ higher, converging back to the neutron values at $E_{\mathrm{d}} \approx 12-13 \mathrm{MeV}$. This may be due to experimental factors. Vector polarization transfer coefficients, $K_{y}^{y^{\prime}}\left(0^{\circ}\right)$ have been measured for $E_{\vec{d}}=5$ to $11 \mathrm{MeV}(85 \mathrm{HO} 1 \mathrm{C}, 86 \mathrm{HO} 1 \mathrm{E}$; prelim.). For other polarization work see (84AJ01).
(87BR10) have derived astrophysical $S$-factors in the range $E_{\mathrm{d}}=79.9$ to 115.9 keV $[S(0)=11.71 \pm 0.08 \mathrm{MeV} \cdot \mathrm{b}$; multilevel fit], as well as reactivities. See (84JA08) for the earlier work, and (85CA41, 87VA36).

Reaction (b) has been studied for $E_{\mathrm{d}}=10.9$ to 83 MeV . A study of reaction (c) leads to the suggestion of a resonance at $E_{\text {c.m. }}=2.9 \pm 0.3 \mathrm{MeV}\left[E_{\mathrm{x}}=19.6 \mathrm{MeV}\right], \Gamma_{\text {c.m. }}=$ $1.9 \pm 0.2 \mathrm{MeV}$, consistent with $J^{\pi}=\frac{3}{2}^{-}$[see, however, table 5.1]: see (74AJ01, 79AJ01). See also (83BA1C, 84SL1A, 87GO1O), (86BR1K, 86RA1F) and (84SH1A, 85FI1C, 86CO1J, 86IL1A, 86KO21, 86VA1E; theor.). For applications see (83GO1C, 83HU1A, 84BA1D, 84HU04, 84MA71, 84VL1A, 86AL1H, 86CA1E, 86EN1A, 86GR1H, 86HA1N, 86HA1V, 86KE1H, 86KN1A, 86KU1G, 86LE1F, 86LO1B, 86OK1B, 86PA1G, 86PE1H, 86SA1M, 86TA1K, 86WI1B, 87BA2I, 87BO1Q, 87KA1O, 87LE1G, 87SO1A, 87WU1C, 87ZW1A, 88KU1E).

For recent developments in muon-catalyzed fusion see (86JO1B, 87BA2P, 87BR1G) and (83JO1B, 83TA1C, 84AN1A, 84BA1V, 84BR1G, 84CA1B, 87AC1A, 87BA2L, 87BE1Y, 87BR1T, 87CA1O, 87NA1K, 87PE1D), (83PO1E, 84AJ01, 84AN1C, 84CH1F, 84HA1J, 84KR1B, 84MO1G, 84OT1A, 86BR1H, 86JO1C, 86KA1K, 87BR1W, 87JO1A, 87PO1M) and (83SG1A. 84BU1E, 84BY1B. 84FI1F, 84ME1B 85BA1G, 85CO1C, 85FR1D 85GO1E, 85GU1G, 85HI1A, 85KA1C, 85KA1N, 85ME1C, 85ME1D, 85RA1B, 85VA1B, 86BL15, 86BO1F, 86CO1K. 86DA1D, 86HU1C, 86JO1C, 86KH1B, 86ME1D, 86TA1J, 86TA1L, 87AK1B. 87BE1W, 87CO1N, 87CO1P, 87CO1W, 87CO1Y, 87KA1Z, 87KO1R, 87ME1E, 87RA1L, 87TA1I, 87WY1A, 88JA1C, 88RO1G; theor.).

$$
\text { 3. }{ }^{3} \mathrm{H}(\mathrm{~d}, \mathrm{~d})^{3} \mathrm{H} \quad E_{\mathrm{b}}=16.70
$$

The elastic scattering has been studied for $E_{\mathrm{d}}=2.6$ to 11.0 MeV : see (84AJ01). The
excitation curves show an interference at $E_{\mathrm{x}} \approx 19 \mathrm{MeV}$ and a broad ( $\Gamma>1 \mathrm{MeV}$ ) resonance corresponding to $E_{\mathrm{x}}=20.0 \pm 0.5 \mathrm{MeV}$, similar to that seen in ${ }^{3} \mathrm{He}\left(\mathrm{d}\right.$, d) [see $\left.{ }^{5} \mathrm{Li}\right]$. Together with data from ${ }^{3} \mathrm{H}(\mathrm{d}, \mathrm{n})^{4} \mathrm{He}$, this work favors an assignment $\mathrm{D}_{3 / 2}$ or $\mathrm{D}_{5 / 2}$ with a mixture of doublet and quartet components (channel spin $\frac{1}{2}$ and $\frac{3}{2}$ ) if only one state is involved [any appreciable doublet component would, however, be in conflict with results from $\left.{ }^{7} \mathrm{Li}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{5} \mathrm{He}\right]$. Measurements of differential cross section and analyzing power using polarized deuterons with $E_{\mathrm{d}}=3.2$ to 12.3 MeV show resonance-like behavior in the vector analyzing power near $E_{\mathrm{d}}=5 \mathrm{MeV}$. The anomaly appears in the odd Legendre coefficients and is interpreted in terms of a $\left(\frac{1}{2}, \frac{3}{2}\right)^{-}$excited state of ${ }^{5} \mathrm{He}$ with $E_{\mathrm{x}} \approx 19.6 \mathrm{MeV}$. Broad structure in the differential cross section near 6 MeV , principally in the even Legendre coefficients, corresponds to an even parity state ${ }^{5} \mathrm{He}^{*}(20.0)$. For other polarization measurements (and for references) see (79AJ01). For d-t correlations see (87PO03). See also "Complex reactions" in the ${ }^{5} \mathrm{He}$ GENERAL section and (81PL1A, 83HA1K, 86BO01; theor.).


At $E_{\mathrm{t}}=0.5 \mathrm{MeV}$, the reaction appears to proceed via three channels: (i) direct breakup into ${ }^{4} \mathrm{He}+2 \mathrm{n}$, the three-body breakup shape being modified by the $\mathrm{n}-\mathrm{n}$ interaction; (ii) sequential decay via ${ }^{5} \mathrm{He}(0)$; (iii) sequential decay via a broad excited state of ${ }^{5} \mathrm{He}$. The width of ${ }^{5} \mathrm{He}(0)$ is estimated to be $0.74 \pm 0.18 \mathrm{MeV}$. Some evidence is also shown for ${ }^{5} \mathrm{He}^{*}$ at $E_{\mathrm{x}} \approx 2 \mathrm{MeV}, \Gamma \approx 2.4 \mathrm{MeV}$ : see (79AJ01). See also ${ }^{6} \mathrm{He}$ and (86BA73; theor.).
5. ${ }^{3} \mathrm{He}(\mathrm{t}, \mathrm{p})^{5} \mathrm{He} \quad Q_{\mathrm{m}}=11.20$

Some evidence is reported at $E_{\mathrm{t}}=22.25 \mathrm{MeV}$ for a broad state of ${ }^{5} \mathrm{He}$ at $E_{\mathrm{x}} \approx 20 \mathrm{MeV}$, in addition to a sharp peak corresponding to ${ }^{5} \mathrm{He}^{*}(16.7)$ : see (79AJ01). See also ${ }^{6} \mathrm{Li}$.
6. ${ }^{4} \mathrm{He}(\mathrm{n}, \mathrm{n})^{4} \mathrm{He} \quad E_{\mathrm{b}}=-0.89$

The coherent scattering length (thermal, bound) is $3.07 \pm 0.02 \mathrm{fm}, \bar{\sigma}_{\mathrm{s}}=0.76 \pm 0.01 \mathrm{~b}$. Total cross sections have been measured for $E_{\mathrm{n}}=4 \times 10^{-4} \mathrm{eV}$ to 150.9 MeV and at $10 \mathrm{GeV} / c$ [see (84AJ01)] and at $E_{\mathrm{n}}=1.5$ to 40 MeV (83HA20).

The total cross section has a peak of 7.6 b at $E_{\mathrm{n}}=1.15 \pm 0.05 \mathrm{MeV}, E_{\text {c.m. }}=0.92 \pm$ 0.04 MeV , with a width of about 1.2 MeV : see (66LA04). A second resonance is observed at $E_{\mathrm{n}}=22.133 \pm 0.010 \mathrm{MeV}\left[\sigma_{\text {peak }}=0.9 \mathrm{~b}\right]$ with a total width of $76 \pm 12 \mathrm{keV}$ and $\Gamma_{\mathrm{n}}=37 \pm 15 \mathrm{keV}$ (83HA20) Attempts to detect additional resonances in the total cross section have been unsuccessful: see (66LA04).

The $\mathrm{P}_{3 / 2}$ phase shift shows strong resonance behavior near 1 MeV , while the $\mathrm{P}_{1 / 2}$ phase shift changes more slowly, indicating a broad $\mathrm{P}_{1 / 2}$ level at several MeV excitation.
(66HO07) have constructed a set of phase shifts for $E_{\mathrm{n}}=0$ to $31 \mathrm{MeV}, l=0,1,2$, 3 , using largely $\mathrm{p}-\alpha$ phase shifts. At the $\frac{3}{2}^{+}$state the best fit to all data is given by $E_{\text {res }}=17.669 \mathrm{MeV} \pm 10 \mathrm{keV}, \gamma_{\mathrm{d}}^{2}=2.0 \mathrm{MeV} \pm 25 \%, \gamma_{\mathrm{n}}^{2}=50 \mathrm{keV} \pm 20 \%$ (see table 5.2 in 79AJ01).

An $R$-function analysis of the ${ }^{4} \mathrm{He}+\mathrm{n}$ data below 21 MeV (including absolute neutron analyzing power measurement and accurate cross section measurements) has led to a set of phase shifts and analyzing powers which are based on the ${ }^{4} \mathrm{He}+\mathrm{n}$ data alone (rather than also including the ${ }^{4} \mathrm{He}+\mathrm{p}$ data). At $r=3.3 \mathrm{fm}$ the values obtained for the $\mathrm{P}_{1 / 2}$ and $\mathrm{P}_{3 / 2}$ resonances are, respectively, $E_{\text {c.m. }}=1.97$ and $0.77 \mathrm{MeV}, \Gamma_{\text {c.m. }}=5.22$ and 0.64 MeV : see (84AJ01). Angular distributions of $A_{y}$ have been studied by (84KL05, 84KR23, 86KL1C) for $E_{\overrightarrow{\mathrm{n}}}=15$ to 50 MeV : see also for phase-shift analysis and comparison with ${ }^{4} \mathrm{He}(\mathrm{p}, \mathrm{p})$.

The excitation energies and the spectroscopic factors for ${ }^{5} \mathrm{He}$ states are obtained by (85BA68) from 2-level $R$-matrix fits to the phase shifts, as functions of the channel radius. For $a \approx 5.1 \mathrm{fm}$ a very broad state with $J^{\pi}=\frac{1}{2}^{+}$is found to lie at $E_{\mathrm{x}} \approx 7 \mathrm{MeV}$ in both ${ }^{5} \mathrm{He}$ and ${ }^{5} \mathrm{Li}$, in agreement with the shell-model calculation by (84VA06). Broad $\frac{3}{2}{ }^{+}$and $\frac{5}{2}^{+}$states then lie at $\approx 14 \mathrm{MeV}$ and the $\frac{1}{2}^{-}$state is at about 2.6 MeV . (85BA68) suggest that the phase-shift analysis should be redone with values of $a$ larger than those previously used $(a \approx 3 \mathrm{fm})$. See also (84AJ01, 84SI1A, 85AL1D, 85SI1B, 85WI1B, 86BA1Y), (86BU1D, 86DO1H; applications) and (81PL1A, 82AZ02, 83DM01, 83KU06, 84BL21, 84FI1G. $84 \mathrm{SC} 1 \mathrm{~A}, 84 \mathrm{SH} 1 \mathrm{~A} .85 \mathrm{HA} 04,85 \mathrm{HO} 1 \mathrm{~B}, 85 \mathrm{KI} 11,85 \mathrm{MI} 1 \mathrm{~F}, 85 \mathrm{NE} 1 \mathrm{~B} .85 \mathrm{SO} 06,85 \mathrm{SO} 08$, 85SP05, 85TI07, 85TI08, 86CA1K, 86KO1J, 86OK06, 86WI04. 87CA13, 87DU1B 87HA1W, 87KR16, 87MO1K, 87PO1G, 87QI01, 87SH09, 87SO04, 87US1A, 87VA36; theor.). For the breakup reaction see ( 87 MI 1 N , theor.).

$$
\text { 7. }{ }^{4} \mathrm{He}\left(\mathrm{p}, \pi^{+}\right)^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-141.24
$$

Differential cross sections have recently been reported at $E_{\mathrm{p}}=201 \mathrm{MeV}$ (85LE19) and at $E_{\overrightarrow{\mathrm{p}}}=800 \mathrm{MeV}$ (84HO01; also $A_{y}$ ). See also (87SO1C) and (85GE06; theor.).
8. (a) ${ }^{4} \mathrm{He}(\mathrm{d}, \mathrm{p})^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-3.12$
(b) ${ }^{4} \mathrm{He}(\mathrm{d}, \mathrm{pn})^{4} \mathrm{He} \quad Q_{\mathrm{m}}=-2.22459$

A typical proton spectrum (reaction (a)) consists of a peak corresponding to the formation of the ground state of ${ }^{5} \mathrm{He}$, plus a continuum of protons ascribed to reaction (b). A study of the latter reaction shows evidence for sequential decay via ${ }^{5} \mathrm{He}^{*}(0,16.7 \pm 0.1$ $[\Gamma=80 \pm 30 \mathrm{keV}]$ ) and suggests some fine structure near $E_{\mathrm{x}}=19 \mathrm{MeV}$ [see also reactions 12 and 20]: see (79AJ01). Differential cross sections and VAP have been measured for the ground state group at $E_{\overrightarrow{\mathrm{d}}}=5.4,6.0$, and 6.8 MeV ( 85 LU 08 ; also TAP) and at 6 to 11 MeV (85OS02). At $E_{\alpha}=28.3 \mathrm{MeV}$ tensor polarization measurements involving the ground state transitions to ${ }^{5} \mathrm{He}$ (and ${ }^{5} \mathrm{Li}$ ) deviate from theoretical predictions which assume charge symmetry ( 85 WI 15 ). See also ${ }^{6} \mathrm{Li}$ ( $88 \mathrm{PUZZ} ; E_{\overrightarrow{\mathrm{d}}}=2.1 \mathrm{GeV}$ ) and (85DO03, 85NE1B, 86KO1J, 87FU10, 87KA1M, 87KU1F; theor.).

Table 5.2
$R$-matrix values of the peak energy and FWHM of the $\frac{3}{2}^{-}$and $\frac{1}{2}^{-}$states of ${ }^{5} \mathrm{He}$ and ${ }^{5} \mathrm{Li}^{\text {a }}$ )

|  | $E_{\max }\left(\frac{3}{2}^{-}\right)$ |  | $\Gamma\left(\frac{3}{2}^{-}\right)$ |  | $E_{\mathrm{x}}\left(\frac{1}{2}^{-}\right)$ |  | $\Gamma\left(\frac{1}{2}^{-}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{5} \mathrm{He}$ | ${ }^{5} \mathrm{Li}$ |
| $\left.{ }^{\mathrm{b}}\right)$ | $0.838 \pm 0.018$ | $1.76 \pm 0.06$ | $0.645 \pm 0.046$ | $1.18 \pm 0.13$ | $1.94 \pm 0.46$ | $1.87 \pm 0.56$ | $3.6 \pm 1.2$ | $4.1 \pm 2.5$ |
| $\left.\mathrm{c}^{\mathrm{c}}\right)$ | $0.869 \pm 0.003$ | $1.86 \pm 0.01$ | $0.723 \pm 0.019$ | $1.44 \pm 0.08$ | $2.58 \pm 0.40$ | $2.68 \pm 0.50$ | $5.3 \pm 2.3$ | $6.1 \pm 2.8$ |

${ }^{\text {a }}$ (88WO10): $\mathrm{a}=5.5 \mathrm{fm}$. Energies are in MeV . See also footnote ${ }^{\mathrm{a}}$ ) to table 5.1.
b) Stripping reactions: ${ }^{4} \mathrm{He}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{Li}\right){ }^{5} \mathrm{He}$ and ${ }^{4} \mathrm{He}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{He}\right)^{5} \mathrm{Li}$.
c) Pickup reactions: ${ }^{6} \mathrm{Li}\left({ }^{12} \mathrm{C},{ }^{13} \mathrm{~N}\right){ }^{5} \mathrm{He}$ and ${ }^{6} \mathrm{Li}\left({ }^{13} \mathrm{C},{ }^{14} \mathrm{C}\right){ }^{5} \mathrm{Li}$.
9. ${ }^{4} \mathrm{He}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{Li}\right){ }^{5} \mathrm{He}$

$$
Q_{\mathrm{m}}=-8.14
$$

(88WO10) report a study of this reaction and of the ${ }^{4} \mathrm{He}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{He}\right)^{5} \mathrm{Li}$ reaction at $E\left({ }^{7} \mathrm{Li}\right)=50 \mathrm{MeV}$, and of the ${ }^{6} \mathrm{Li}\left({ }^{12} \mathrm{C},{ }^{13} \mathrm{~N}\right){ }^{5} \mathrm{He}$ and ${ }^{6} \mathrm{Li}\left({ }^{13} \mathrm{C},{ }^{14} \mathrm{C}\right){ }^{5} \mathrm{Li}$ reactions at $E(\mathrm{C})=$ 90 MeV . Properties of the two lowest states of $A=5$, from $R$-matrix parameters ( $a=$ 5.5 fm ), are displayed in table 5.2. Positive-parity states are then predicted to lie at $E_{\mathrm{x}} \approx 5 \mathrm{MeV}\left(\frac{1}{2}^{+}\right)$and $12 \mathrm{MeV}\left(\frac{3}{2}^{+}, \frac{5}{2}^{+}\right)$in ${ }^{5} \mathrm{He}{ }^{-5} \mathrm{Li}$ (88WO10).
10. (a) ${ }^{6} \mathrm{Li}(\gamma, \mathrm{p})^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-4.59$
(b) ${ }^{6} \mathrm{Li}(\mathrm{e}, \mathrm{ep})^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-4.59$
(c) ${ }^{6} \mathrm{Li}\left(\pi^{+}, \pi^{+} \mathrm{p}\right)^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-4.59$

At $E_{\gamma}=60 \mathrm{MeV}$, the proton spectrum shows two prominent peaks attributed to ${ }^{5} \mathrm{He}^{*}(0+4.0,20 \pm 2)$ : see (79AJ01) The ( $\gamma, \mathrm{p}_{0+1}$ ) cross section has been reported for $E_{\gamma}=34.5$ to 98.8 MeV . A broad secondary structure is also observed (88CA11). In reaction (b) the missing energy spectrum show strong peaks due to ${ }^{5} \mathrm{He}^{*}(0,16.7)$ and possibly some strength in the region $E_{\mathrm{x}}=5-15 \mathrm{MeV}$ (86LA1K; prelim.). See also ${ }^{6} \mathrm{Li}$. At $E_{\pi^{+}}=130$ and $150 \mathrm{MeV},{ }^{5} \mathrm{He}^{*}(0,16.7)$ are populated (87HU02).
11. ${ }^{6} \mathrm{Li}(\mathrm{n}, \mathrm{d}){ }^{5} \mathrm{He}$
$Q_{\mathrm{m}}=-2.37$

Angular distributions of $\mathrm{d}_{0}$ have been studied at $E_{\mathrm{n}}=6.6$ to 56.3 MeV . At $E_{\mathrm{n}}=$ 56.3 MeV angular distributions have also been obtained to ${ }^{5} \mathrm{He}^{*}(16.7)$ and, possibly, to two higher states: see (79AJ01, 84AJ01). See also (86BO1J).
12. ${ }^{6} \mathrm{Li}(\mathrm{p}, 2 \mathrm{p})^{5} \mathrm{He}$
$Q_{\mathrm{m}}=-4.59$

At $E_{\mathrm{p}}=100 \mathrm{MeV}$ the population of ${ }^{5} \mathrm{He}^{*}(0,16.7)$ and possibly of a broad structure at $E_{\mathrm{x}} \approx 19 \mathrm{MeV}$ is observed: momentum distributions for ${ }^{5} \mathrm{He}^{*}(0,16.7)$ and angular correlation measurements are also reported. Recent work is reported at $E_{\mathrm{p}}=47$ and 70 MeV (83VD03), 70 MeV (83GO06) and 1 GeV (85BE1J, 85DO1B). See also (84AJ01).
13. ${ }^{6} \mathrm{Li}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{5} \mathrm{He} \quad Q_{\mathrm{m}}=0.90$
${ }^{5} \mathrm{He}_{\text {g.s. }}$ has been observed at $E_{\mathrm{d}}=14.5 \mathrm{MeV}$ : see (79AJ01).
14. ${ }^{6} \mathrm{Li}(\alpha, \alpha \mathrm{p}){ }^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-4.59$

At $E_{\alpha}=140 \mathrm{MeV}^{5} \mathrm{He}^{*}(0,20.0)$ are populated: see 84 AJ 01$)$.
15. ${ }^{6} \mathrm{Li}\left({ }^{6} \mathrm{Li},{ }^{7} \mathrm{Be}\right){ }^{5} \mathrm{He} \quad Q_{\mathrm{m}}=1.01$

Angular distributions have been obtained at $E\left({ }^{6} \mathrm{Li}\right)^{\prime}=156 \mathrm{MeV}$ to ${ }^{5} \mathrm{He}_{\text {g.s. }}$. Unresolved states at $E_{\mathrm{x}}=16-20 \mathrm{MeV}$ are also populated (87MI34).
16. ${ }^{6} \mathrm{Li}\left({ }^{12} \mathrm{C},{ }^{13} \mathrm{~N}\right){ }^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-2.65$

See reaction 9 88WO10).
17. ${ }^{7} \mathrm{Li}(\gamma, \mathrm{d}){ }^{5} \mathrm{He}$
$Q_{\mathrm{m}}=-9.62$

See ${ }^{7} \mathrm{Li}$.
18. (a) ${ }^{7} \mathrm{Li}\left(\pi^{+}, 2 \mathrm{p}\right)^{5} \mathrm{He} \quad Q_{\mathrm{m}}=128.51$
(b) ${ }^{7} \mathrm{Li}\left(\pi^{-}, 2 \mathrm{n}\right)^{5} \mathrm{He} \quad Q_{\mathrm{m}}=126.94$

Reaction (a) at $E_{\pi^{+}}=59.4 \mathrm{MeV}$ involves ${ }^{5} \mathrm{He}^{*}(0,4$.) and a broad peak centered at $E_{\mathrm{x}} \approx 21 \mathrm{MeV}$ with $\Gamma \approx 4 \mathrm{MeV}$. It is not clear whether ${ }^{5} \mathrm{He}^{*}(16.7)$ is populated (86RI01). See also (79AJ01, 84AJ01).
19. ${ }^{7} \mathrm{Li}(\mathrm{n}, \mathrm{t}){ }^{5} \mathrm{He}$
$Q_{\mathrm{m}}=-3.36$

The angular distribution of $\mathrm{t}_{0}$ has been measured at $E_{\mathrm{n}}=14.4 \mathrm{MeV}$ : see (79AJ01) and ${ }^{8}$ Li. See also (86BO1J).
20. (a) ${ }^{7} \mathrm{Li}\left(\mathrm{p},{ }^{3} \mathrm{He}\right)^{5} \mathrm{He}$

$$
Q_{\mathrm{m}}=-4.13
$$

(b) ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{pd}){ }^{5} \mathrm{He}$
$Q_{\mathrm{m}}=-9.62$

At $E_{\mathrm{p}}=43.7 \mathrm{MeV}$, angular distributions of the ${ }^{3} \mathrm{He}$ groups to the ground state of ${ }^{5} \mathrm{He}$ ( $\Gamma=0.80 \pm 0.04 \mathrm{MeV} ; L=0+2$ ) and to levels at $16.7 \mathrm{MeV}(L=1)$ and $19.9 \pm 0.4 \mathrm{MeV}$ $(\Gamma=2.7 \mathrm{MeV})$ have been studied. Since no transitions are observed in the ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{t})^{5} \mathrm{Li}$ reaction to the analog 20 MeV state in ${ }^{5} \mathrm{Li}$ [see ${ }^{5} \mathrm{Li}$ ], the transition is presumably $S$ forbidden and the states in ${ }^{5} \mathrm{He}-{ }^{5} \mathrm{Li}$ near 20 MeV are ${ }^{4} \mathrm{D}_{3 / 2}$ or ${ }^{4} \mathrm{D}_{5 / 2}$ [compare $\left.{ }^{3} \mathrm{H}(\mathrm{d}, \mathrm{d})\right]$. Particle-particle coincidence data have been obtained at $E_{\mathrm{p}}=43.7 \mathrm{MeV}$. They suggest the existence of ${ }^{5} \mathrm{He}^{*}(20.0)$ with $\Gamma=3.0 \pm 0.6 \mathrm{MeV}$ and of a broad state at $\approx 25 \mathrm{MeV}$. No $T=\frac{3}{2}$ states decaying via $T=1$ states in ${ }^{4}$ He were observed: see (79AJ01). In reaction (b) ${ }^{5} \mathrm{He}^{*}(0+4,16.7,25)$ appear to be involved at $E_{\mathrm{p}}=670 \mathrm{MeV}$ (81ER10) while at 200 MeV some structure at $E_{\mathrm{x}} \approx 20 \mathrm{MeV}$ is reported in addition to the ground state (86WA11).
21. (a) ${ }^{7} \mathrm{Li}(\mathrm{d}, \alpha)^{5} \mathrm{He} \quad Q_{\mathrm{m}}=14.23$
(b) ${ }^{7} \mathrm{Li}(\mathrm{d}, \mathrm{n}) 2{ }^{4} \mathrm{He} \quad Q_{\mathrm{m}}=15.1216$

At $E_{\mathrm{d}}=24 \mathrm{MeV}$, the $\alpha$-particle spectrum from reaction (a) shows structures corresponding to the ground and 16.7 MeV states and to states at $E_{\mathrm{x}} \approx 20.2$ and 23.8 MeV with $\Gamma \approx 2 \mathrm{MeV}$ and $\approx 1 \mathrm{MeV}$, respectively. Reaction (b) proceeds mainly via excited states of ${ }^{8} \mathrm{Be}$ and ${ }^{5} \mathrm{He}_{\text {g.s. }}$. and possibly as well ${ }^{5} \mathrm{He}^{*}(4$.): see (79AJ01). See also (87WA21) and ${ }^{8} \mathrm{Be}$.
22. (a) ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{p} \alpha\right)^{5} \mathrm{He} \quad Q_{\mathrm{m}}=8.73$
(b) ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He} \mathrm{d}\right)^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-9.62$

A kinematically complete experiment is reported at $E\left({ }^{3} \mathrm{He}\right)=120 \mathrm{MeV}$. The cross section for reaction (b) is an order of magnitude greater than that for reaction (a). The missing mass spectrum for the composite of both reactions suggests the population of several states of ${ }^{5} \mathrm{He}$, in addition to ${ }^{5} \mathrm{He}^{*}(0,16.7,20.0)$, including a state at $35.7 \pm 0.4 \mathrm{MeV}$ with a width of $\approx 2 \mathrm{MeV}$ (85FR01).
23. (a) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{p} \alpha)^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-2.47$
(b) ${ }^{9} \mathrm{Be}\left(\mathrm{p}, \mathrm{d}^{3} \mathrm{He}\right)^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-20.82$

Both reactions have been studied at $E_{\mathrm{p}}=26.0$ to 101.5 MeV [see (84AJ01)] and at $E_{\mathrm{p}}=150.5 \mathrm{MeV}$ (85WA13) [reaction (a)]. See also (85VD03; theor.).
24. ${ }^{9} \mathrm{Be}\left(\mathrm{d},{ }^{6} \mathrm{Li}\right){ }^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-9.92$

The angular distribution to ${ }^{5} \mathrm{He}_{\text {g.s. }}$ has been measured at $E_{\mathrm{d}}=13.6 \mathrm{MeV}$ ( 84 SH 1 F ; prelim.).
25. (a) ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He},{ }^{7} \mathrm{Be}\right){ }^{5} \mathrm{He}$
$Q_{\mathrm{m}}=-0.88$
(b) ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \alpha\right) 2{ }^{4} \mathrm{He}$
$Q_{\mathrm{m}}=19.0043$

See (84AJ01), For reaction (b) see ${ }^{8} \mathrm{Be}$ and (87WA25).
26. ${ }^{9} \mathrm{Be}(\alpha, 2 \alpha){ }^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-2.47$

See (84AJ01).
27. ${ }^{10} \mathrm{~B}\left(\mathrm{n},{ }^{5} \mathrm{He}\right){ }^{6} \mathrm{Li}$
$Q_{\mathrm{m}}=-5.35$

See ${ }^{6}$ Li.
28. ${ }^{10} \mathrm{~B}\left(\mathrm{~d},{ }^{7} \mathrm{Be}\right){ }^{5} \mathrm{He} \quad Q_{\mathrm{m}}=-1.97$

An angular distribution has been measured at $E_{\mathrm{d}}=13.6 \mathrm{MeV}$ involving ${ }^{5} \mathrm{He}_{\text {g.s. }}$ and ${ }^{7} \mathrm{Be}^{*}(0.43)$ (83DO10).
29. ${ }^{11} \mathrm{~B}\left({ }^{7} \mathrm{Li},{ }^{13} \mathrm{C}\right)^{5} \mathrm{He} \quad Q_{\mathrm{m}}=9.06$

At $E\left({ }^{11} \mathrm{~B}\right)=88 \mathrm{MeV}$ a broad structure is observed at $E_{\mathrm{x}}=5.2 \pm 0.3 \mathrm{MeV}, \Gamma=$ $2.0 \pm 0.5 \mathrm{MeV}$ (87BEYI) See also (88BEYJ).

Table 5.3
Energy levels of ${ }^{5} \mathrm{Li}$

| $\left.E_{\mathrm{x}}(\mathrm{MeV})^{\mathrm{a}}\right)$ | $J^{\pi} ; T$ | $\Gamma_{\text {c.m. }}(\mathrm{MeV})$ | Decay | Reactions |
| :---: | :---: | :---: | :---: | :---: |
| g.s. | $\frac{3}{2}^{-} ; \frac{1}{2}$ | $\approx 1.5$ | p, $\alpha$ | $\begin{array}{\|l\|l\|l\|l\|l\|} \hline 1, & 4, & 5 & 6,7,8,9, & 10, \\ \hline 11, & 12 . & 13 & 14 . & 15, \\ \hline 16, & 18, & 19, & 20, & 21, \\ \hline 17 & 22, \\ \hline 23 & & & \\ \hline \end{array}$ |
| 5-10 | $\frac{1}{2}^{-} ; \frac{1}{2}$ | $5 \pm 2$ | p, $\alpha$ | $\begin{aligned} & 1,6,10,11,13,14, \\ & 15,17,18 \end{aligned}$ |
| $16.66 \pm 0.07$ | $\frac{3}{2}^{+} ; \frac{1}{2}$ | $\approx 0.3$ | $\gamma, \mathrm{p}, \mathrm{d},{ }^{3} \mathrm{He}, \alpha$ | 1, 2, 3, 6, 13, 15, 18 |
| $\left.(18 \pm 1)^{\mathrm{a}}\right)$ | $\left(\frac{1}{2}^{+}\right) ; \frac{1}{2}$ | broad | $\gamma, \mathrm{p}, \mathrm{d},{ }^{3} \mathrm{He}, \alpha$ | 1. 2, 13 |
| $(20.0 \pm 0.5)$ | $\left(\frac{3}{2}, \frac{5}{2}\right)^{+} ; \frac{1}{2}$ | $\approx 5$ | $\gamma, \mathrm{p}, \mathrm{d},{ }^{3} \mathrm{He}, \alpha$ | 1 2, 3, 4, 6, 13, 15 |
| b) |  |  |  |  |
| (34) |  | $\approx 4$ |  | 18, 19 |

${ }^{\text {a }}$ See also table 5.2. Positive-parity states are predicted to lie at $E_{\mathrm{x}} \approx 5 \mathrm{MeV}\left(\frac{1}{2}^{+}\right)$and $12 \mathrm{MeV}\left(\frac{3}{2}^{+}, \frac{5}{2}^{+}\right)$: see (88WO10).
${ }^{\text {b }}$ ) For possible additional states see reactions 2 and 18 .

## ${ }^{5} \mathrm{Li}$

GENERAL: See also (84AJ01).
Model discussions: (84ZW1A, 85BA68, 85FI1E, 85KW02).
Special states: (82PO12, 83FE07, 84BE1B, 84FI1G. 84GL1C, 84VA1C, 84ZW1A, 85BA68, 85FI1E, 85PO18, 85PO19, 85WI1A, 87SV1A, 88BA1H, 88KW1A).

Electromagnetic transitions: (85FI1E, 87KR16).
Astrophysical questions: (84BA1K, 84SU1A, 85BO1E, 86HU1D).
Complex reactions involving ${ }^{5} \mathrm{Li}$ : (85PO18, 85PO19, 85WI1A, 86BA2D $86 \mathrm{CH} 10,86 \mathrm{C}-$ S1A. 86MA1V. 86XU1B, 87BL1K, 87CH33, 87CH32, 87DE1O, 87DU07. 87FO08, 87GA20, 87GE1B. 87HA1M, 87KI16. 87LY04, 87PE1B, 88CEZZ, 88SA09).

Reactions involving pions: (81MC09, 83SP06, 85BA1H, 85BE1C).
Hypernuclei: (82KA1D).
Other topics: (83BE55, 84BE1B, 85AN28, 87DU09, 87SV1A, 88KW1A).
Ground state of ${ }^{5}$ Li: (83ANZQ. 85AN28, 85FI1E, 85TA1F 85WA1D, 85WI1A 87KR16, 87SV1A, 88WA08)

1. ${ }^{3} \mathrm{He}(\mathrm{d}, \gamma){ }^{5} \mathrm{Li} \quad Q_{\mathrm{m}}=16.39$

The ratio $\Gamma_{\gamma} / \Gamma_{\mathrm{D} \alpha}$ has been determined for $E\left({ }^{3} \mathrm{He}\right)=63$ to $150 \mathrm{keV}\left[E_{\mathrm{c} . \mathrm{m} .}=25\right.$ to $60 \mathrm{keV}]$ by ( 85 CE 13 ) by measuring simultaneously the $\gamma$-rays and the charged particles. Because of the large widths of the final states, $\gamma_{0}$ and $\gamma_{1}$ could not be resolved but the results are consistent with $E_{\mathrm{x}}=3.0 \pm 1.0 \mathrm{MeV}$ for the excited state. $\Gamma_{\gamma_{0}} / \Gamma_{\mathrm{p} \alpha}$ is roughly constant for $E_{\text {c.m. }}=25$ to 60 keV at $(4.5 \pm 1.2) \times 10^{-5}$ and $\Gamma_{\gamma_{1}} / \Gamma_{\mathrm{p} \alpha}=(8 \pm 3) \times 10^{-5}$ at $E\left({ }^{3} \mathrm{He}\right)=150 \mathrm{keV}$ (85CE13). For applications see (85CE13, 85CE16).

Excitation curves and angular distributions have been measured for $E_{\mathrm{d}}=0.2$ to 5 MeV and $E\left({ }^{3} \mathrm{He}\right)=2$ to 26 MeV . A broad maximum in the cross section is observed at $E_{\mathrm{d}}=$ $0.45 \pm 0.04 \mathrm{MeV}\left[{ }^{5} \mathrm{Li}^{*}(16.66)\right] . \sigma_{\gamma_{0}}=21 \pm 4 \mu \mathrm{~b}, \Gamma_{\gamma_{0}}=5 \pm 1 \mathrm{eV}$. The radiation at resonance is isotropic, consistent with s-wave capture. Study of $\gamma_{0}$ and $\gamma_{1}$ yields $\Gamma=2.6 \pm 0.4 \mathrm{MeV}$ for the ground-state width, and $E_{\mathrm{x}}=7.5 \pm 1.0 \mathrm{MeV}, \Gamma=6.6 \pm 1.2 \mathrm{MeV}$ for the $\frac{1}{2}^{-}$ state: see (74AJ01). An excess in the cross section at higher bombarding energies is interpreted as being due to a state at $E_{\mathrm{x}} \approx 18 \mathrm{MeV}$ : even parity is deduced from the relative intensity of $\gamma_{0}$ and $\gamma_{1}$. A broad peak is also observed at $E_{\mathrm{x}} \approx 20.7 \mathrm{MeV}$ in the $\gamma_{0}$ cross section. The cross section for $\gamma_{1}$ is $\approx 0$. The observations are consistent with $J^{\pi}=\frac{5}{2}^{+}$: angular distributions appear to require at least one other state with significant strength near 19 MeV : see (74AJ01). For cross section and analyzing power measurements for $E_{\overrightarrow{\mathrm{d}}}=4$ to 9 MeV see (85RI1A prelim.).
2. (a) ${ }^{3} \mathrm{He}(\mathrm{d}, \mathrm{p})^{4} \mathrm{He}$

$$
Q_{\mathrm{m}}=18.35319
$$

$$
E_{\mathrm{b}}=16.39
$$

(b) ${ }^{3} \mathrm{He}(\mathrm{d}, \mathrm{np})^{3} \mathrm{He}$
$Q_{\mathrm{m}}=-2.22458$
(c) ${ }^{3} \mathrm{He}(\mathrm{d}, 2 \mathrm{p})^{3} \mathrm{H}$
$Q_{\mathrm{m}}=-1.46083$
(d) ${ }^{3} \mathrm{He}(\mathrm{d}, 2 \mathrm{~d})^{1} \mathrm{H}$
$Q_{\mathrm{m}}=-5.49353$

Excitation functions and angular distributions have recently been measured for $E_{\mathrm{c} . \mathrm{m} .}=$ 6.95 to 171.3 keV , and $S(E)$ have been deduced: $S(0)=6.3 \pm 0.6 \mathrm{MeV} \cdot \mathrm{b}$ ( 87 KR 18 ). See also (84AJ01). Recently, $S$-factors have been obtained down to $E_{\text {rm }}=5.88 \mathrm{keV}$. The effect on $S$ of electron screening at low energies has been studied by (88EN03).

A pronounced resonance occurs at $E_{\mathrm{d}}=430 \mathrm{keV}, \Gamma \approx 450 \mathrm{keV}$. The peak cross section is $695 \pm 14 \mathrm{mb}$ : see table 5.2 in (79AJ01). Excitation functions for ground-state protons have also been reported for $E\left({ }^{3} \mathrm{He}\right)=0.39$ to 2.15 MeV and 18.7 to 44.1 MeV and for $E_{\mathrm{d}}=2.8$ to 17.8 MeV [see (74AJ01)]. Angular distributions have been measured for $E_{\mathrm{d}}=0.25$ to 27 MeV and $E\left({ }^{3} \mathrm{He}\right)=18.7$ to 44.1 MeV [see table 5.6 in (74AJ01) and (79AJ01)]. Resonance-like behavior has been suggested at $E_{\mathrm{x}}=16.6,17.5,20.0,20.9$ and 22.4 MeV : see (79AJ01).

Tensor analyzing power measurements are reported for $E_{\vec{d}}=0.48$ to 6.64 MeV ( 80 DR 01 ). [See, however, (80GR14) for a discussion of the (80DR01) results and for a summary of $T_{20}\left(0^{\circ}\right)$ for $E_{\overrightarrow{\mathrm{d}}}=0$ to 40 MeV .] Measurements of angular distributions and analyzing powers at $E\left({ }^{3} \mathrm{He}\right)=27$ and 33 MeV have suggested the presence of a broad resonance(s) at $E_{\mathrm{x}} \approx 28 \mathrm{MeV}$. Vector and tensor analyzing powers have been studied at $E_{\overrightarrow{\mathrm{d}}}=1.0$ to 13.0 MeV (86BI1C, 86BI1F; prelim.) and 18, 20 and 22 MeV (86SA1L; prelim.). See also (86RO1J) and tables 5.6 in (74AJ01) and 5.4 in (79AJ01)

It is suggested that at low energies $\left[E_{\mathrm{d}}=2.2\right.$ to 6 MeV$]$ reaction (c) goes primarily via a $J^{\pi}=\frac{3}{2}^{-}, T=\frac{1}{2}$ state of ${ }^{5} \mathrm{Li}$ located $0.8 \pm 0.2 \mathrm{MeV}$ above threshold [i.e., $E_{\mathrm{x}}=$ $18.9 \pm 0.2 \mathrm{MeV}]$ : see (79AJ01). Recent studies of the breakup have been reported at $E_{\mathrm{d}}=23.08 \mathrm{MeV}$ (86BR1J; reaction (c)) and 60 MeV (850K03; reaction (d)). For the earlier work see (84AJ01).

See also (83MA1E, 84ALZU, 84GA1C, 84HA1J, 84MU1C, 84VL1A. 84WI1C, 85GU1F, 85KU1B, 86BI1E, 86JA1E, 86KA1L, 86LO1B, 86PO1F. 86WI1B, 86WI1E, 87JO1A, 87KA1O, 87TE1D. 88GU1G. 88KU1E: applications), (84YA1A 85CA41. 86DE1K. 87DO1H, 87RO1D; astrophysics), (86VA1D, 87GR08) and (84DU1A, 84KR1B, 86AB1C, 86BL15, 86IL1A, 87AS05; theor.).
3. ${ }^{3} \mathrm{He}(\mathrm{d}, \mathrm{d})^{3} \mathrm{He}$

$$
E_{\mathrm{b}}=16.39
$$

In the range $E_{\mathrm{d}}=380$ to 570 keV , the scattering cross section is consistent with s-wave formation of the $J^{\pi}=\frac{3}{2}^{+}$state at 16.66 MeV . The excitation curves for $E_{\mathrm{d}}=1.96$ to 10.99 MeV show a broad resonance $(\Gamma>1 \mathrm{MeV})$ corresponding to $E_{\mathrm{x}}=20.0 \pm 0.5 \mathrm{MeV}$. From the behavior of the angular distributions an assignment of ${ }^{2} \mathrm{D}_{3 / 2}$ or $\left({ }^{2} \mathrm{D},{ }^{4} \mathrm{D}_{5 / 2}\right.$ is favored, if only one state is involved: see (79AJ01). A phase-shift analysis of the angular distribution and VAP data below 5 MeV suggests several MeV broad states $\left[{ }^{2} \mathrm{P}_{3 / 2},{ }^{4} \mathrm{D}_{7 / 2}\right.$, ${ }^{4} \mathrm{D}_{5 / 2},{ }^{4} \mathrm{D}_{3 / 2}$ and, possibly, ${ }^{4} \mathrm{D}_{1 / 2}$ ]: see (84AJ01). See also (87KR18).

Angular distributions and analyzing powers have been measured at many energies to $E=44 \mathrm{MeV}$ : see (79AJ01, 84AJ01) for the earlier work, (82CO1B, 83CO1C; $E_{\overrightarrow{\mathrm{d}}}=10 \mathrm{MeV}$; TAP; prelim.) and ( $87 \mathrm{YA} 1 \mathrm{H} ; E_{\mathrm{d}}=29.5 \mathrm{MeV}$ on polarized ${ }^{3} \mathrm{He}$; prelim.). For d- ${ }^{3} \mathrm{He}$ correlations see (87PO03). See alsc "Complex reactions" in the ${ }^{5}$ Li GENERAL section. See also (87GR08) and (81PL1A, 83ZE06, 83ZE1B, 85SH08, 86BO01, 86KA28, 86YA1E, 87ZE1D; theor.).
4. ${ }^{3} \mathrm{He}(\mathrm{t}, \mathrm{n})^{5} \mathrm{Li} \quad Q_{\mathrm{m}}=10.13$

At $E\left({ }^{3} \mathrm{He}\right)=14$ to $26 \mathrm{MeV}^{5} \mathrm{Li}^{*}(0,20.5 \pm 0.8)$ are populated: see (79AJ01). See also ${ }^{6} \mathrm{Li}$.
5. ${ }^{3} \mathrm{He}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{5} \mathrm{Li} \quad Q_{\mathrm{m}}=10.89$

The spectrum of protons at $E\left({ }^{3} \mathrm{He}\right)=3$ to 18 MeV shows a pronounced peak corresponding to ${ }^{5} \mathrm{Li}_{\text {g.s. }}$ superposed on a continuum: see (74AJ01). The angular distribution of $\mathrm{p}_{0}$ has been measured at $E\left({ }^{3} \mathrm{He}\right)=26 \mathrm{MeV}$ (83KI10; polarized target). See also ${ }^{6} \mathrm{Be}$ and (86OS1D; theor.).
6. ${ }^{4} \mathrm{He}(\mathrm{p}, \mathrm{p}){ }^{4} \mathrm{He}$

$$
E_{\mathrm{b}}=-1.97
$$

Differential cross sections and polarization measurements have been carried out at many energies: see (66LA04, 74AJ01, 79AJ01, 84AJ01) for the earlier work. Recent measurements are reported at $E_{\overrightarrow{\mathrm{p}}}=65 \mathrm{MeV}$ (86FU05; $A_{y}$ ), 100 MeV (83NA1B, 85GU1H; $\sigma(\theta), A_{y}$; prelim.) and 495 MeV ( $88 \mathrm{STZZ} ;$ prelim.) and at $E_{\mathrm{p}}=695,793,890,991 \mathrm{MeV}$ (85VE13; $\sigma(\theta)$ ) and 1 GeV (85AL1E; $\sigma(\theta)$ ). Cross sections and $A_{y}$ at $E_{\overrightarrow{\mathrm{p}}}=98.7$ and 149.3 MeV for the continuum are reported by (85WE12).

Phase shifts below $E_{\mathrm{p}}=18 \mathrm{MeV}$ have been determined by (77DO01) based on all the available cross-section and polarization measurements, using an $R$-matrix analysis program. The $P_{3 / 2}$ phase shift shows a pronounced resonance corresponding to ${ }^{5} \mathrm{Li}_{\text {g.s. }}$ while the $\mathrm{P}_{1 / 2}$ shift changes slowly over a range of several MeV , suggesting that the first excited state is very broad and located $5-10 \mathrm{MeV}$ above the ground state. The reduced widths of the P -wave resonance states are nearly the same. The $\mathrm{D}_{5 / 2}, \mathrm{D}_{3 / 2}, \mathrm{~F}_{7 / 2}$ and $\mathrm{F}_{5 / 2}$ phase shifts become greater than $1^{\circ}$ at $E_{\mathrm{p}} \approx 11,13,14$ and 16 MeV , respectively (77DO01). (86TH1C; prelim.) have measured $A_{y}$ for $1.1 \leq E_{\overrightarrow{\mathrm{p}}} \leq 2.15 \mathrm{MeV}: A_{y}=1$ for $E_{\mathrm{p}}=1.89 \mathrm{MeV}, \theta_{\text {c.m. }}=87.0^{\circ}$.

A phase-shift analysis for $E_{\mathrm{p}}=21.8$ to 55 MeV is presented by (78HO17) [see also analyzing-power contour diagram for $E_{\mathrm{p}}=20$ to 65 MeV$]$. A striking anomaly is seen in the analyzing power at $E_{\mathrm{p}}=23 \mathrm{MeV}$ and the ${ }^{2} \mathrm{D}_{3 / 2}$ phase shift clearly shows the $\frac{3}{2}^{+}$state at $E_{\mathrm{x}}=16.7 \mathrm{MeV}$ [see also (79AJ01)]. The other phase shifts ${ }^{2} \mathrm{~S}_{1 / 2},{ }^{2} \mathrm{P}_{3 / 2}$, ${ }^{2} \mathrm{P}_{1 / 2},{ }^{2} \mathrm{D}_{5 / 2},{ }^{2} \mathrm{~F}_{7 / 2},{ }^{2} \mathrm{~F}_{5 / 2},{ }^{2} \mathrm{G}_{9 / 2}$ and ${ }^{2} \mathrm{G}_{7 / 2}$ are smooth functions of energy. Both the ${ }^{2} \mathrm{P}_{3 / 2}$ and ${ }^{2} \mathrm{P}_{1 / 2}$ inelastic parameters show a somewhat anomalous behavior at $E_{\mathrm{p}} \approx 30 \mathrm{MeV}$; the absorption first increases then decreases to stay rather constant at $E_{\mathrm{p}}>40 \mathrm{MeV}$. These results are consistent with broad and overlapping states with $J^{\pi}=\frac{1}{2}^{-}$and $\frac{3}{2}^{-}$at $E_{\mathrm{x}} \approx 22 \mathrm{MeV}$. There is very little splitting of the real parts of the F -wave phase shifts up to 40 MeV . There is some indication (from the ${ }^{2} \mathrm{G}_{7 / 2}$ phase shifts) of a $\frac{7}{2}^{+}$level around $E_{\mathrm{p}}=29 \mathrm{MeV}\left[E_{\mathrm{x}} \approx 21 \mathrm{MeV}\right]$. The G-waves are necessary to fit the detailed shape of the angular distributions for $E_{\mathrm{p}}=20$ to 55 MeV (78HO17). For a contour diagram of the analyzing power for $E_{\mathrm{p}}=130$ to 1800 MeV see (80MO09). For a measurement of the spin rotation parameter, $R$, at $E_{\overrightarrow{\mathrm{p}}}=500 \mathrm{MeV}$ see ( 83 MO 01 ). See also (86SA1J prelim.; $\left.E_{\overrightarrow{\mathrm{p}}}=65 \mathrm{Mev}\right)$.

PNC effects have been studied via the elastic scattering of 46 MeV longitudinally polarized protons on ${ }^{4} \mathrm{He}$ : the longitudinal power $A_{z}=-(3.3 \pm 0.9) \times 10^{-7}$. This was obtained by measuring $\sigma^{+}$and $\sigma^{-}$for the positive and negative helicity of the incident protons (85LA01. 86LA29): the conclusion reached by the authors from this, and all other experiments, is that there does not exist any evidence for a non-zero value of $f_{\pi}$, the weak isovector coupling constant. See also (84AJ01), (86AD1A) and (86HA1Q, 88NA1C; theor.).

Work at very high energies ( $>1 \mathrm{GeV}$ ) is reported by ( $82 \mathrm{AB} 1 \mathrm{~B}, 84 \mathrm{GL} 04,84 \mathrm{SA} 1 \mathrm{C}$, 85AB1A, 85BA1H, 85GL1B, 86BE1S, 87OT1D): see also reaction 7 and (84AJ01). See also ( 87 MU 1 B ) For $\alpha+\mathrm{p}$ correlations see ( 87 PO 03 ) and p. 16.

See also (86GO1D), 82NA1B, 83FA1A, 84FA1B, 84FR1C, 84HA1L, 84HO1H, 84SI1A, 85AD1A, $85 \mathrm{AL} 1 \mathrm{D}, 85 \mathrm{FA} 1 \mathrm{~A}$ 85MI10, $86 \mathrm{BA} 1 \mathrm{~N}, 86 \mathrm{ST1D}$ ), ( 84 SP 1 A ; applications), (84KR1B; muon fusion) and (81PL1A. 83AL1C, 83BI1C. 83GR20. 83PA1B. 83SA38, 83ZA1A, 83ZE06, 83ZE1B. 84AH03. 84BL21, 84CA1C, 84DE1G, 84FI1G, 84KW01, 84LA1B, 84PR1A, 84SC1A.

85BA68, 85BL1C. 85DA1A 85FL1A. 85HA04, 85HE1D. 85HO1B. 85JA1F. 85KI11, 85KO05, 85KO1A, 85MI1F 85NE1B. 85RO16, 85SO06, 85SO08, 85TE02, 86AU05. 86BA2L, 86BL02, 86BO01, 86FR12, 86GU1E. 86KA1G, 86KA1H, 86KA35. 86KO1.J. 86OK06, 86OR03, 86SA05. 86SA30, 86WA21, 87DU1B. 87FO1C, 87FR1D, 87FU10, 87KR16, 87LI1K, 87LI1L, 87PO1G, 87PR08, 87QI01, 87WA11, 88FR06, 88HE1C; theor.).
7. (a) ${ }^{4} \mathrm{He}(\mathrm{p}, \mathrm{d})^{3} \mathrm{He}$
$Q_{\mathrm{m}}=-18.35320$
$E_{\mathrm{b}}=-1.97$
(b) ${ }^{4} \mathrm{He}(\mathrm{p}, \mathrm{pn})^{3} \mathrm{He}$
$Q_{\mathrm{m}}=-20.57778$
(c) ${ }^{4} \mathrm{He}(\mathrm{p}, 2 \mathrm{p})^{3} \mathrm{H}$
$Q_{\mathrm{m}}=-19.81403$
(d) ${ }^{4} \mathrm{He}(\mathrm{p}, \mathrm{pd}){ }^{2} \mathrm{H}$
$Q_{\mathrm{m}}=-23.84674$

Angular distributions of deuterons and of ${ }^{3} \mathrm{He}$ ions (reaction (a)) have been measured for $E_{\mathrm{p}}=27.9$ to 770 MeV and at $E_{\alpha}=3.98 \mathrm{GeV} / c$ [see (79AJ01, 84AJ01)] as well as at $E_{\overrightarrow{\mathrm{p}}}=100 \mathrm{MeV}$ (83NA1B; prelim.; also $A_{y}$ ), 200 and 400 MeV (86AL01; also $A_{y}$ ). Excitation functions are reported at several energies in the range $E_{\mathrm{p}}=38.5$ to 44.6 MeV and 200 to 500 MeV . Continuum yields and $A_{y}$ have been studied at $E_{\overrightarrow{\mathrm{p}}}=98.7$ and 149.3 MeV by (85WE12). For polarization measurements to 500 MeV see above and (79AJ01, 84AJ01). See also (88BAZH).

For reactions (b), (c) and (d) see (74AJ01, 79AJ01, 84AJ01). The breakup of ${ }^{4} \mathrm{He}$ via reaction (c) has recently been studied by (86FU05): large values of $A_{y}$ in the FSI region are reported. For breakup processes at high energies, including pion production, see (83AN13, 83MO14, 84WA1K, 85BA1H. 85GL1B, 86BA2E, 86BA2M) See also (83AN18, 87MU1F, 87TE1C, 88PA1E), (83CH1B. 87MU1B), (83ZH04, 84KO1E, 84LI1B, 86GO1J, 87LY1C, 87MI1N; theor.).
8. ${ }^{4} \mathrm{He}(\overline{\mathrm{p}}, \overline{\mathrm{p}})^{4} \mathrm{He}$

Antiproton interactions with ${ }^{4} \mathrm{He}$ have been studied by (84BA60, 85BA76. 87BA12, 87BA47, 87BA69). See also (84BA1K, 84FA1A; astrophysics) and (83FA16, 86DO1G, 87NA23 theor.).
9. (a) ${ }^{4} \mathrm{He}(\mathrm{d}, \mathrm{n})^{5} \mathrm{Li}$
$Q_{\mathrm{m}}=-4.19$
(b) ${ }^{4} \mathrm{He}(\mathrm{d}, \mathrm{np})^{4} \mathrm{He}$
$Q_{\mathrm{m}}=-2.22459$

For reaction (a) see reaction 8 in ${ }^{5} \mathrm{He}$ (85WI15) and (87KAZL $E_{\mathrm{d}}=15 \mathrm{MeV} ; \mathrm{n}_{0}$; prelim.). Reaction (b) has been studied at $E_{\mathrm{d}}=12$ to 17 MeV and at $E_{\alpha}=18.0$ to 140 MeV : see (79AJ01, 84AJ01), ${ }^{6} \mathrm{Li}$ and (85DO03, 87KU1F; theor.).
10. (a) ${ }^{4} \mathrm{He}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)^{5} \mathrm{Li}$

$$
Q_{\mathrm{m}}=-7.46
$$

(b) ${ }^{4} \mathrm{He}\left({ }^{3} \mathrm{He}, \mathrm{pd}\right){ }^{4} \mathrm{He}$

$$
Q_{\mathrm{m}}=-5.49354
$$

At $E_{\alpha}=26.3 \mathrm{MeV},{ }^{5} \mathrm{Li}_{\text {g.s. }}$ is reported to have a width of $1.9 \pm 0.25 \mathrm{MeV}$ while the first excited state is suggested to lie at $E_{\mathrm{x}}=2.82 \pm 0.35 \mathrm{MeV}, \Gamma=1.64 \pm 0.25 \mathrm{MeV}$ [reaction (b)]: see (82NE09 86YA01). See also (85NE1B).
11. ${ }^{4} \mathrm{He}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{He}\right){ }^{5} \mathrm{Li} \quad Q_{\mathrm{m}}=-11.94$

See reaction 9 in ${ }^{5} \mathrm{He}$ (88WO10).
12. ${ }^{6} \mathrm{Li}\left(\pi^{+}, \mathrm{p}\right)^{5} \mathrm{Li} \quad Q_{\mathrm{m}}=134.69$

Differential cross sections have been measured at $E_{\pi}=75$ and 150 MeV for $\mathrm{p}_{0}$ : see (84AJ01).
13. (a) ${ }^{6} \mathrm{Li}(\mathrm{p}, \mathrm{d})^{5} \mathrm{Li}$
$Q_{\mathrm{m}}=-3.44$
(b) ${ }^{6} \mathrm{Li}(\mathrm{p}, \mathrm{pd}){ }^{4} \mathrm{He}$
$Q_{\mathrm{m}}=-1.4750$
(c) ${ }^{6} \mathrm{Li}(\mathrm{p}, \mathrm{pn}){ }^{5} \mathrm{Li}$
$Q_{\mathrm{m}}=-5.66$

Angular distributions have been measured at $E_{\mathrm{p}}=18.6$ to 185 MeV . At the highest energy, the spectra are characterized by a broad asymmetric peak corresponding to ${ }^{5} \mathrm{Li}_{\text {g.s. }}$, a narrow peak $\left[{ }^{5} \mathrm{Li}^{*}(16.7)\right]$ and a broad peak at $E_{\mathrm{x}} \approx 20 \mathrm{MeV}$. DWBA analysis leads to $C^{2} S=0.64$ and 0.57 for ${ }^{5} \mathrm{Li}^{*}(0,16.7)$. The first excited state of ${ }^{5} \mathrm{Li}$ is also reported to be populated: see (84AJ01).

Reaction (b) has been studied at $E_{\mathrm{p}}=9$ to 50 MeV : the p- $\alpha$ FSI corresponding to ${ }^{5} \mathrm{Li}_{\text {g.s. }}$ is observed [see (79AJ01)]. See also (83CA13. 86NI1B). At 1 GeV (reaction (c)) the separation energy between $4-5 \mathrm{MeV}$ broad $1 \mathrm{p}_{3 / 2}$ and $1 \mathrm{~s}_{1 / 2}$ peaks is reported to be $17.7 \pm 0.5 \mathrm{MeV}$ (85BE1J, 85DO1B). See also (85PA03; $E_{\mathrm{p}}=70 \mathrm{MeV}$ ).
14. (a) ${ }^{6} \mathrm{Li}(\mathrm{d}, \mathrm{t})^{5} \mathrm{Li}$
$Q_{\mathrm{m}}=0.59$
(b) ${ }^{6} \mathrm{Li}(\mathrm{d}, \mathrm{pt}){ }^{4} \mathrm{He}$
$Q_{\mathrm{m}}=2.5577$

Angular distributions of the $\mathrm{t}_{0}$ group have been measured at $E_{\mathrm{d}}=15$ and 20 MeV : see (74AJ01). Reaction (b) has been studied at $E_{\mathrm{d}}=0.12$ to 10.5 MeV : see (84AJ01). See also ${ }^{8} \mathrm{Be}$.
15. (a) ${ }^{6} \mathrm{Li}\left({ }^{3} \mathrm{He}, \alpha\right)^{5} \mathrm{Li}$

$$
Q_{\mathrm{m}}=14.91
$$

(b) ${ }^{6} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{p} \alpha\right){ }^{4} \mathrm{He}$
$Q_{\mathrm{m}}=16.8782$

At $E\left({ }^{3} \mathrm{He}\right)=25.5 \mathrm{MeV},{ }^{5} \mathrm{Li}^{*}(0,16.7)$ and two broad peaks at $E_{\mathrm{x}} \approx 19.8$ and 22.7 MeV $\left[\Gamma_{\text {c.m. }}=2\right.$ and 1 MeV$]$ are populated: see (79AJ01). At $E\left({ }^{3} \mathrm{He}\right)=33.3 \mathrm{MeV}$ angular distributions and analyzing powers have been studied for ${ }^{5} \mathrm{Li}^{*}(0,16.7)[\Gamma \approx 1.6$ and $\approx$ $0.4 \mathrm{MeV}]$ : see (84AJ01). In reaction (b) the parameters of the first excited state are deduced to be $E_{\mathrm{x}}=5.0 \pm 0.7 \mathrm{MeV}, \Gamma_{\text {c.m. }}=5.7 \pm 0.7 \mathrm{MeV}\left(84 A R 17 ; E\left({ }^{3} \mathrm{He}\right)=1.7\right.$ and 2.3 MeV$)$, $E_{\mathrm{x}}=5.8 \pm 0.5 \mathrm{MeV}, \Gamma_{\text {c.m. }}=5.2 \pm 0.5 \mathrm{MeV}\left(87 \mathrm{FA1I} ; E\left({ }^{3} \mathrm{He}\right)=1.65 \mathrm{MeV}\right)$. Angular distributions of protons from the decay of ${ }^{5} \mathrm{Li}_{\text {g.s. }}$ are reported by ( $88 \mathrm{BU} 04 ; E\left({ }^{3} \mathrm{He}\right)=1.5$ to 3.5 MeV ). See also (85BA1U 87 ZA 07 ), (84AJ01) and ${ }^{8} \mathrm{Be}$.
16. ${ }^{6} \mathrm{Li}\left({ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li}\right)^{5} \mathrm{Li} \quad Q_{\mathrm{m}}=1.58$

Angular distributions have been measured at $E\left({ }^{6} \mathrm{Li}\right)=156 \mathrm{MeV}$ to ${ }^{5} \mathrm{Li}_{\text {g.s. }}$. Unresolved states at $E_{\mathrm{x}}=16-20 \mathrm{MeV}$ are also populated ( 87 MI 34 ).
17. ${ }^{6} \mathrm{Li}\left({ }^{13} \mathrm{C},{ }^{14} \mathrm{C}\right){ }^{5} \mathrm{Li} \quad Q_{\mathrm{m}}=2.51$

See reaction 9 in ${ }^{5} \mathrm{He}$ (88WO10).
18. (a) ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{t})^{5} \mathrm{Li}$

$$
Q_{\mathrm{m}}=-4.43
$$

(b) ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{nd})^{5} \mathrm{Li}$
$Q_{\mathrm{m}}=-10.69$

At $E_{\mathrm{p}}=43.7 \mathrm{MeV}$, a triton group is observed to ${ }^{5} \mathrm{Li}(0)(\Gamma=1.55 \pm 0.15 \mathrm{MeV})$ : the angular distribution is consistent with a substantial mixing of $L=0$ and 2 transfer. There is some evidence also for a very broad excited state between $E_{\mathrm{x}}=2$ and $5 \mathrm{MeV} .{ }^{5} \mathrm{Li}^{*}(16.7$, 20.0) were not observed. The formation of ${ }^{5} \mathrm{Li}^{*}(16.7)\left({ }^{4} \mathrm{~S}_{3 / 2}\right)$ would be $S$-forbidden: the absence of ${ }^{5} \mathrm{Li}^{*}(20.0)$ would indicate that this state(s) is also of quartet character [see reaction 20 in ${ }^{5} \mathrm{He}$. Weak, broad states at $E_{\mathrm{x}}=22.0 \pm 0.5 \mathrm{MeV}$ and $25.0 \pm 0.5 \mathrm{MeV}$ and possibly 34 MeV are reported in a coincidence experiment in which three- and fourparticle breakup was analyzed: see (79AJ01). See also (88BAZH). For reaction (b) at $E_{\mathrm{p}}=670 \mathrm{MeV}$ see (84AJ01). See also (85NE1B; theor.).
19. ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{dt}\right){ }^{5} \mathrm{Li}$

$$
Q_{\mathrm{m}}=-9.93
$$

A kinematically complete experiment is reported at $E\left({ }^{3} \mathrm{He}\right)=120 \mathrm{MeV}$. The missing mass spectrum shows the ground-state peak and a 4 MeV wide bump at $E_{\mathrm{x}} \approx 34 \mathrm{MeV}$, and some slight indication of a small bump at $22.0 \pm 0.5 \mathrm{MeV}$ (85FR01).
20. ${ }^{7} \mathrm{Li}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{Li}\right){ }^{5} \mathrm{Li}$

$$
Q_{\mathrm{m}}=-3.63
$$

See (84KO25).
21. ${ }^{9} \mathrm{Be}\left(\alpha,{ }^{8} \mathrm{Li}\right){ }^{5} \mathrm{Li}$

$$
Q_{\mathrm{m}}=-18.85
$$

At $E_{\alpha}=90 \mathrm{MeV}$ differential cross sections have been measured for the transitions to ${ }^{5} \mathrm{Li}_{\text {g.s. }}+{ }^{8} \mathrm{Li}_{\text {g.s. }}$ : see (84AJ01).
22. ${ }^{10} \mathrm{~B}\left(\mathrm{~d},{ }^{7} \mathrm{Li}\right){ }^{5} \mathrm{Li} \quad Q_{\mathrm{m}}=-1.40$

An angular distribution is reported at $E_{\mathrm{d}}=13.6 \mathrm{MeV}$ (83DO10). See also (84SH1E; theor.).
23. ${ }^{10} \mathrm{~B}\left({ }^{3} \mathrm{He}, 2 \alpha\right)^{5} \mathrm{Li}$
$Q_{\mathrm{m}}=10.45$

At $E\left({ }^{3} \mathrm{He}\right)=2.3$ and 5.0 MeV the reaction is reported to proceed via ${ }^{9} \mathrm{~B}^{*}(4.9)$ to ${ }^{5} \mathrm{Li}_{\mathrm{g} . \mathrm{s}}$. (86AR14). See also (88AR05) and ${ }^{9}$ B.

## ${ }^{5} \mathrm{Be}$

The absence of any group structure in the neutron spectrum in the reaction ${ }^{3} \mathrm{He}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{5} \mathrm{Be}$ at $E\left({ }^{3} \mathrm{He}\right)=18.0$ to 26.0 MeV indicates that ${ }^{5} \mathrm{Be}(0)$ is at least 4.2 MeV unstable with respect to ${ }^{3} \mathrm{He}+2 \mathrm{p}[(M-A)>33.7 \mathrm{MeV}]$. With Coulomb corrections adjusted to match the 16.7 MeV states of ${ }^{5} \mathrm{He}-{ }^{5} \mathrm{Li}$, this observation places the first $T=\frac{3}{2}$ level in these nuclei above $E_{\mathrm{x}}=21.4 \mathrm{MeV}$ : see (79AJ01).

## References

(Closed 1 June 1988)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author's name and then by two additional characters. Most of the references appear in National Nuclear Data Center files (Nuclear Science References database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form $1 \mathrm{~A}, 1 \mathrm{~B}$, etc.

| 66 HO 07 | Hoop and Barschall, Nucl. Phys. 83 (1966) 65 |
| :---: | :---: |
| 66LA04 | Lauritsen and Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1 |
| 74AJ01 | Ajzenberg-Selove and Lauritsen, Nucl. Phys. A227 (1974) 1 |
| 77DO01 | Dodder et al, Phys. Rev. C15 (1977) 518 |
| 78 HO 17 | Houdayer et al, Phys. Rev. C18 (1978) 1985 |
| 79AJ01 | Ajzenberg-Selove, Nucl. Phys. A320 (1979) 1 |
| 80DR01 | Dries et al, Phys. Rev. C21 (1980) 475 |
| 80GR14 | Gruebler, Schmelzbach and Konig, Phys. Rev. C22 (1980) 2243 |
| 80MO09 | Moss et al, Phys. Rev. C21 (1980) 1932; Ibid C26 (1982) 745 |
| 81ER10 | Ero et al, Nucl. Phys. A372 (1981) 317 |
| 81MC09 | Mc Keown et al, Phys. Rev. C24 (1981) 211 |
| 81PL1A | Plattner, Nukleonika 26 (1981) 1005 |
| 82AB1B | Ableev et al, Sov. J. Nucl. Phys. 36 (1982) 834 |
| 82AZ02 | Azzam and Fawzy, Indian J. Phys. 56a (1982) 288 |
| 82CO1B | Colby and Haeberli, Bull. Am. Phys. Soc. 27 (1982) 700 |
| 82KA1D | Kar and Parikh, Pramana 19 (1982) 555 |
| 82NA1B | Narayan, Proc. Vi High Energy Phys. Symp., Mysore, India (1982) 57 |
| 82NE09 | Nemets et al, JETP Lett. 35 (1982) 666 |
| 82 PO 12 | Popov, Kudryavtsev, Lisin and Mur, JETP Lett. 36 (1982) 257 |
| 82SM1B | Smith et al, Nucl. Phys. B206 (1982) 333 |
| 83AL1C | Alberi, Malecki and Roberto, Lett. Nuovo Cim. 36 (1983) 409 |
| 83AN13 | Anderson et al, Phys. Rev. C28 (1983) 1224 |
| 83AN18 | Andronenko et al, JETP Lett. 37 (1983) 530 |
| 83ANZQ | Ando, Uno, and Yamada, Jaeri-M-83-025 (1983) |
| 83BA1C | Barker, Holslin, Quin and Haeberli, Bull. Am. Phys. Soc. 28 (1983) 987 |
| 83BA1D | Bando, Prog. Theor. Phys. 69 (1983) 1731 |
| 83BE1G | Belyaev, Musakhanov and Rakhimov, Sov. J. Nucl. Phys. 38 (1983)196 |
| 83BE55 | Bevelacqua, Indian J. Phys. 57a (1983) 26 |
| 83BI1C | Bizzeti, Riv. Nuovo Cim. 6 (1983) 1 |
| $83 \mathrm{CA13}$ | Calvi et al, Lett. Nuovo Cim. 37 (1983) 279 |
| 83 CH 1 B | Chant, AIP Conf. Proc. 97 (1983) 205 |
| $83 \mathrm{CO1C}$ | Colby and Haeberli, Bull. Am. Phys. Soc. 28 (1983) 987 |
| 83DM01 | Dmitriev, Flambaum, Sushkov and Telitsin, Phys. Lett. 125b (1983) 1 |

83DO10 Dobrikov, Nemets, Gass and Shvedov, Izv. Akad. Nauk Sssr Ser. Fiz. 47 (1983) 943
83FA16 Falomkin, Nichitiu and Piragino, Lett. Nuovo Cim. 38 (1983) 211
83FA1A Faessler, Nucl. Phys. A400 (1983) 525c
83FE07 Fetisov, Majling, Zofka and Eramzhyan, Z. Phys. A314 (1983) 239
83GO06 Gorpinich et al, Izv. Akad. Nauk. Sssr, Ser. Fiz. 47 (1983) 185
83GO1C Golubev et al, JETP Lett. 37 (1983) 20
83GR20 Greben and Gourishankar, Nucl. Phys. A405 (1983) 445
83HA1K Hale, Dodder and De Veaux, Proc. Inter. Conf., Antwerp, Belgium 1982 (Dordrecht, Netherlands: Reidel 1983) 326
83HA20 Haesner et al, Phys. Rev. C28 (1983) 995
83HU1A Huang, in Florence (1983) 762
$83 J A 09$ Jarczyk et al, Phys. Rev. C28 (1983) 700
83JO1B Jones et al, Phys. Rev. Lett. 51 (1983) 1757
83 KI10 Kirchner, Beckmann, Holm and Korber, Nucl. Phys. A405 (1983) 159
83KU06 Kukulin, Pomerantsev, Emel'yanov and Klimov, Sov. J. Nucl. Phys. 37 (1983) 514
83MA1E Marcuso, Rothman, Nowicki and Baldo, Nucl. Instrum. Methods 211 (1983) 227
83MO01 Moss et al, Nucl. Phys. A392 (1983) 361
83 MO 14 Moeller et al, Phys. Rev. C28 (1983) 1246
83MO1C Motoba, Bando and Ikeda, Prog. Theor. Phys. 70 (1983) 189
83NA1B Nadasen et al, Bull. Am. Phys. Soc. 28 (1983) 987
83PA1B Parmentola and Feshbach, in Florence (1983) 395
83PO1E Ponomarev, Atomkernenerg. Kerntech. 43 (1983) 175
83SA38 Safronov, JETP Lett. 37 (1983) 727
83SG1A Sguigna and Harms, Atomkernenerg. Kerntech. 43 (1983) 191
83SH1E Shi and Zhuang, Phys. Energ. Fortis \& Phys. Nucl. 7 (1983) 605
83SH38 Shi, Phys. Rev. C28 (1983) 2452
83SP06 Spassov, Chernev, Batusov and Eramzhyan, Bulg. J. Phys. 10 (1983) 581
83TA1C Takahashi and Moats, Atomkernenerg. Kerntech. 43 (1983) 188
83VD03 Vdovin et al, Izv. Akad. Nauk Sssr. Ser. Fiz. 47 (1983) 2219
$83 V O 02$ Voronchev et al, Sov. J. Nucl. Phys. 37 (1983) 161
83ZA1A Zankel, Proc. Inter. Conf., Antwerp, Belgium 1982 (Dordrecht, Netherlands: Reidel 1983) 698

83ZE06 Zeng, Zhang and Zhao, Chin. J. Nucl. Phys. 5 (1983) 51
83ZE1B Zeng, Zhang and Zhao, Chin. Phys. 3 (1983) 975
83ZH04 Zhurina et al, Izv. Akad. Nauk Sssr Ser. Fiz. 47 (1983) 993
84AH03 Ahmad and Singh, J. Phys. G10 (1984) L55
84AJ01 Ajzenberg-Selove, Nucl. Phys. A413 (1984) 1
84ALZU Alexander, Bull. Am. Phys. Soc. 29 (1984) 1076
84AN1A Anderson et al, Bull. Am. Phys. Soc. 29 (1984) 671
84AN1C Anderson, in Muon-Catalyzed Fusion Workshop, Wyoming (Idaho Falls, Id: EG\&G Idaho 1984) 68
84AR17 Arena et al, Lett. Nuovo Cim. 41 (1984) 59
84AS1D Asai, Bando and Sano, Phys. Lett. 145b (1984) 19
84BA1D Barit, Kuzmin and Makarov, in Alma Ata (1984) 559

84BA1K Batusov et al, Lett. Nuovo Cim. 41 (1984) 223
84BA1V Balin et al, in Panic (1984) L25
84BA60 Balestra et al, Phys. Lett. 149b (1984) 69
84BE1B Bernstein, Friedman and Lynch, Phys. Rev. C29 (1984) 132
84BL21 Blokhintsev, Mukjamaedzhanov and Safronov, Sov. J. Part. \& Nucl. 15 (1984) 580
84BO1A Bodmer, Usmani and Carlson, Phys. Rev. C29 (1984) 684
84BO1H Bogdanova and Markushin, Sov. J. Part. \& Nucl. 15 (1984) 361
84BR1G Breunlich et al, Phys. Rev. Lett. 53 (1984) 1137
84BU1E Bubak et al, in Muon-Catalyzed Fusion Workshop, Wyoming (Idaho Falls, Id: EG\&G Idaho 1984) 19
84BY1B Bystritsky et al, Acta Phys. Pol. B15 (1984) 689
84CA1B Caffrey et al, Bull. Am. Phys. Soc. 29 (1984) 671
84CA1C Calle and Koshel, Bull. Am. Phys. Soc. 29 (1984) 682
84CE08 Cecil and Wilkinson, Phys. Rev. Lett. 53 (1984) 767
84CH1F Chatterjee, in Muon-Catalyzed Fusion Workshop, Wyoming (Idaho Falls, Id: EG\&G Idaho 1984) 98
84CH1G Chen, Zhuang, Shi and Jin, Chin. J. Nucl. Phys. 6 (1984) 303
84DE1D De Boer et al, Phys. Rev. Lett. 53 (1984) 423
84DE1G Devensky, Bulg. J. Phys. 11 (1984) 397
84DU1A Dubovoi and Kertkoev, Sov. J. Nucl. Phys. 39 (1984) 720
84FA1A Falomkin et al, Nuovo Cim. A79 (1984) 193
84FA1B Faessler, Phys. Rep. 115 (1984) 1
84FI1F Filchenkov, Somov and Zinov, Nucl. Instrum. Methods Phys. Res. A228 (1984) 174
84FI1G Filippov, Vasilevskii and Nesterov, Sov. J. Nucl. Phys. 40 (1984) 901
84FR13 Friedrich, Phys. Lett. 146b (1984) 135
84FR1C Frati, Nucl. Phys. A418 (1984) 177c
84GA1C Galambos et al, Nucl. Fusion 24 (1984) 739
84GL04 Glagolev et al, Z. Phys. A317 (1984) 335
84GL1C Glaudemans, in Drexel U. Symp. (1984)
84HA1J Harms, in Muon-Catalyzed Fusion Workshop, Wyoming (Idaho Falls, Id: EG\&G Idaho 1984) 142

84HA1L Haeberli, in AIP Conf. Proc. 123 (1984) 337
84 HO 01 Hoistad et al, Phys. Rev. C29 (1984) 553
84HO1H Holstein, in AIP Conf. Proc. 123 (1984) 1110
84HU04 Hussain, Int. J. Appl. Radiat. \& Isot. 35 (1984) 201
84HU1B Hungerford and Biedenharn, Phys. Lett. 142b (1984) 232
84JA08 Jarmie, Brown and Hardekopf, Phys. Rev. C29 (1984) 2031; Ibid C33 (1986) 385
84 KL 05 Klages et al, Nucl. Instrum. Methods Phys. Res. 219 (1984) 269
84KO1E Komarov, Muller and Tesch, in Panic (1984) I20
84KO1F Kobayashi and Ikeda, in Panic (1984) M1
84 KO 25 Koenig et al, Z. Phys. A318 (1984) 135
84KR1B Kravtsov, Popov and Solyakin, JETP Lett. 40 (1984) 875
84KR23 Krupp et al, Phys. Rev. C30 (1984) 1810
84KW01 Kwong and Hufner, Phys. Lett. 146b (1984) 370

```
84LA1B Landau, Sagen and Paez, in Paic (1984) I32
84LI1B Lievshin and Fursa, in Alma Ata (1984) }48
84MA71 Ma et al, Chin. J. Nucl. Phys. 6 (1984) }21
84ME1B Men'shikov and Ponomarev, JETP Lett. }39\mathrm{ (1984)}66
84MI1E Millener, in AIP Conf. Proc. 123 (1984) }85
84MO1G Morgan, in Muon-Catalyzed Fusion Workshop, Wyoming (Idaho Falls, Id: EG&G
Idaho 1984) }10
84MU1C Murphy and Strachan, Bull. Am. Phys. Soc. 29 (1984) }133
84NE1B Newman, Fisher and Thomas, Bull. Am. Phys. Soc. 29 (1984) }130
84OT1A Ottewitte, in Muon-Catalyzed Fusion Workshop, Wyoming (Idaho Falls, Id: EG&G
    Idaho 1984) 158
84PO11 Poenaru and Ivascu, J. Physique 45 (1984)}109
84PR1A Proriol, Nuovo Cim. A83 (1984) }5
84SA1C Satta et al, Phys. Lett. 139b (1984) }26
84SC1A Schmid, Nucl. Phys. A416 (1984) 347c
84SH07 Shinmura, Akaishi and Tanaka, Prog. Theor. Phys. 71 (1984) 546
84SH1A Shen, Tang, Fujiwara and Kanada, Bull. Am. Phys. Soc. 29 (1984)}70
84SH1E Shvedov, Dobrikov and Nemets, in Alma Ata (1984)}33
84SH1F Shvedov, Dobrikov and Nemets, in Alma Ata (1984)}33
84SH1J Shoeb and Khan, J. Phys. G10 (1984) 1047
84SI1A Simmons, Nucl. Phys. A416 (1984) }55
84SL1A Slaus et al, Bull. Am. Phys. Soc. 29 (1984)}70
84SP1A Spencer and Ludwig, Bull. Am. Phys. Soc. 29 (1984) }150
84SU1A Sur and Boyd, Private Communication (1984)
84VA06 Van Hees and Glaudemans, Z. Phys. A315 (1984) 223
84VA1C Vasilevsky, Krutschinin, Filippov and Chopovski, in Alma Ata (1984)}46
84VL1A Vlad, Nuovo Cim. B84 (1984) }14
84WA1K Warsaw et al Collaboration, Sov. J. Nucl. Phys. }40\mathrm{ (1984) }30
84WI1C Wilson et al, Bull. Am. Phys. Soc. 29 (1984) }113
84YA1A Yang et al, Astrophys. J. 281 (1984) 493
84ZH1B Zhuang, Chen and Jin, Phys. Energ. Fortis & Phys. Nucl. 8 (1984) }21
84ZW1A Zwarts, Unpublished Ph.D. Thesis, Utrecht (1984)
85AB1A Ableev et al, Acta Phys. Pol. B16 (1985) }91
85AD1A Adelberger and Haxton, Ann. Rev. Nucl. Part. Sci. }35\mathrm{ (1985) }50
85AH1A Ahmad, Mian and Rahman Khan, Phys. Rev. C31 (1985) }159
85AL1D Ali, Almad and Ferdous, Rev. Mod. Phys. }57\mathrm{ (1985) }92
85AL1E Alkhazov et al, Sov. J. Nucl. Phys. }41\mathrm{ (1985) }35
85AN28 Antony, Britz, Bueb and Pape, At. Data Nucl. Data Tables 33 (1985) 447
85BA1F Bando, Suppl. Prog. Theor. Phys. }81\mathrm{ (1985) }18
85BA1G Bakalov, Melezhik, Menshikov and Vinitsky, Phys. Lett. 161b (1985) 5
85BA1H Banaigs et al, Nucl. Phys. A445 (1985) 737
85BA1U Barna et al, Report Infn/Be-85/3 (1985)
85BA68 Barker and Woods, Aust. J. Phys. }38\mathrm{ (1985) }56
```

85BA76 Balestra et al, Phys. Lett. 165b (1985) 265
85BE1C Berdnikov et al, in Leningrad (1985) 302
85BE1J Belostotskii et al, Sov. J. Nucl. Phys. 41 (1985) 903
85BL1C Bleszynski, Bleszynski and Jaroszewicz, Bull. Am. Phys. Soc. 30 (1985) 1281
85BO1E Boyd et al, in AIP Conf. Proc. 126 (1985) 145
85BO1J Botvina, Il'inov and Mishustin, Sov. J. Nucl. Phys. 42 (1985) 712
85CA41 Caughlan, Fowler, Harris and Zimmerman, At. Data Nucl. Data Tables 32 (1985) 197
85CE13 Cecil et al, Phys. Rev. C32 (1985) 690
85CE16 Cecil et al, Nucl. Instrum. Methods Phys. Res. B10-11 (1985) 411
85CO1C Cohen and Leon, Phys. Rev. Lett. 55 (1985) 52
85DA1A Dakhno and Nikolaev, Nucl. Phys. A436 (1985) 653
85DE17 Descroix et al, Nucl. Phys. A438 (1985) 112
85DO03 Doleschall et al, Phys. Lett. 152b (1985) 1
85DO1B Dotsenko and Starodubskii, Sov. J. Nucl. Phys. 42 (1985) 66
85FA1A Faessler, Nucl. Phys. A434 (1985) 563c
85FI1C Finlay, in AIP Conf. Proc. 124 (1985) 274
85FI1E Filippov, Vasilevskii and Chopovskii, Sov. J. Part. \& Nucl. 16 (1985) 153
85FI1G First Research Group, First Research Div., Phys. Energ. Fortis \& Phys. Nucl. 9 (1985) 723

85FL1A Flambaum, Telitsin and Sushkov, Nucl. Phys. A444 (1985) 611
85FR01 Franke et al, Nucl. Phys. A433 (1985) 351
85FR1D Frolov and Efros, J. Phys. B18 (1985) L265
85GE06 Germond and Wilkin, J. Phys. G11 (1985) 1131
85GI1E Gibson, AIP Conf. Proc. 133 (1985) 390
85GL1B Glagolev et al, Nucl. Phys. A445 (1985) 572
85GO1E Gocheva et al, Phys. Lett. 153b (1985) 349
85GU1F Gusinskii et al, in Leningrad (1985) 493
85GU1G Gula, Acta Phys. Pol. B16 (1985) 589
85GU1H Gunderson et al, Bull. Am. Phys. Soc. 30 (1985) 1268
85HA04 Hahn, Schmid and Doleschall, Phys. Rev. C31 (1985) 325
85HE1D He and Cai, Chin. Phys. 5 (1985) 699
85HI1A Hinrichsen, Kauffmann and Rafelski, Bull. Am. Phys. Soc. 30 (1985) 793
85HO1B Horiuchi, Prog. Theor. Phys. 74 (1985) 66
85HO1C Holslin, Sromicki and Haeberli, Bull. Am. Phys. Soc. 30 (1985) 1267
85IK1A Ikeda, Bando and Motoba, Suppl. Prog. Theor. Phys. 81 (1985) 147
85JA1F Jargeaix and Proriol, Nuovo Cim. 88a (1985) 87
85KA1C Kauffmann, Muller and Rafelski, Bull. Am. Phys. Soc. 30 (1985) 793
85KA1N Kammel, Lett. Nuovo Cim. 43 (1985) 349
85KI11 Kircher, Kamada, Oryu and Schmid, Prog. Theor. Phys. 73 (1985) 1442
85 KO 05 Kobos, Cooper, Rook and Haider, Nucl. Phys. A435 (1985) 677
85KO1A Kobos et al, Nucl. Phys. A445 (1985) 605
85KO1G Kolesnikov, Zakharov, Kopilov and Tarasov, in Leningrad (1985) 199
85KU1A Kurihara, Akaishi and Tanaka, Phys. Rev. C31 (1985) 971

| $85 \mathrm{KU1B}$ | Kudo, Michikawa and Kinoshita, Nucl. Instrum. Methods Phys. Res. B12 (1985) 135 |
| :---: | :---: |
| 85KW02 | Kwasniewicz and Jarczyk, Nucl. Phys. A441 (1985) 77 |
| 85LA01 | Lang et al, Phys. Rev. Lett. 54 (1985) 170, 2729 |
| 85LE19 | Le Bornec et al, J. Phys. G11 (1985) 1125 |
| 85LU08 | Luhn et al, Phys. Rev. C32 (1985) 11 |
| 85ME1C | Men'shikov and Ponomarev, JETP Lett. 41 (1985) 623 |
| 85ME1D | Men'shikov, Sov. J. Nucl. Phys. 42 (1985) 918 |
| 85MI10 | Mischke, Nucl. Phys. A434 (1985) 505c |
| 85MI1F | Miyagawa et al, Prog. Theor. Phys. 74 (1985) 1264 |
| 85 MO 1 F | Motoba, Bando, Ikeda and Yamada, Suppl. Prog. Theor. Phys. 81 (1985) 42 |
| 85NE1B | Nemets et al, in Leningrad (1985) 320 |
| 850K03 | Okihana, Nucl. Phys. A443 (1985) 435 |
| 85OS02 | Oswald et al, Nucl. Phys. A435 (1985) 77 |
| 85OS1C | Oset and Salcedo, Nucl. Phys. A443 (1985) 704 |
| 85PA03 | Pasechnik et al, Izv. Akad. Nauk Sssr Ser. Fiz. 49 (1985) 53 |
| 85PO10 | Poppelier, Wood, and Glaudemans, Phys. Lett. 157b (1985) 120 |
| 85 PO 11 | Poenaru, Ivascu, Sandulescu and Greiner, Phys. Rev. C32 (1985) 572 |
| 85 PO 18 | Pochodzalla et al, Phys. Lett. 161b (1985) 256 |
| 85PO19 | Pochodzalla et al, Phys. Lett. 161b (1985) 275 |
| 85RA1B | Rafelski and Muller, Phys. Lett. 164b (1985) 223 |
| 85RI1A | Riley, Whitton, Weller and Tilley, Bull. Am. Phys. Soc. 30 (1985) 700 |
| 85RO16 | Roser and Simonius, Nucl. Phys. A442 (1985) 701 |
| 85SH08 | Shen, Tang, Fujiwara and Kanada, Phys. Rev. C31 (1985) 2001 |
| 85SI1B | Sick, Helv. Phys. Acta 58 (1985) 746 |
| 85SO06 | Sofianos, Fiedeldey, Allen and Lipperheide, Phys. Rev. C31 (1985) 2300 |
| 85SO08 | Sofianos and Fiedeldey, Nucl. Phys. A441 (1985) 573 |
| 85SP05 | Spitz, Klar and Schmid, Z. Phys. A322 (1985) 49 |
| 85TA1E | Takeuchi, Takaki and Bando, Prog. Theor. Phys. 73 (1985) 841 |
| 85TA1F | Tanihata et al, Bull. Am. Phys. Soc. 30 (1985) 1263 |
| 85TE02 | Terrien and Wellers, J. Physique 46 (1985) 1873 |
| 85 TI 07 | Tian et al, Chin. J. Nucl. Phys. 7 (1985) 154 |
| 85TI08 | Tian et al, Chin. J. Nucl. Phys. 7 (1985) 344 |
| $85 \mathrm{VA1B}$ | Van Siclen, J. Phys. G11 (1985) 267 |
| 85VD03 | Vdovin, Golovin and Loshchakov, Sov. J. Nucl. Phys. 42 (1985) 84 |
| 85VE13 | Velichko et al, Sov. J. Nucl. Phys. 42 (1985) 837 |
| 85WA13 | Wang et al, Phys. Rev. C31 (1985) 1662 |
| 85WA1D | Wang and Wong, Nucl. Phys. A432 (1985) 619 |
| 85WE12 | Wesick et al, Phys. Rev. C32 (1985) 1474 |
| 85WI15 | Wick et al, Nucl. Phys. A444 (1985) 49 |
| 85WI1A | Wieman et al, Bull. Am. Phys. Soc. 30 (1985) 767 |
| 85WI1B | Wilkinson, Nucl. Phys. A434 (1985) 573c |
| 85YA05 | Yamada, Ikeda, Bando and Motoba, Prog. Theor. Phys. 73 (1985) 397 |
| 85YA1B | Yamamoto and Bando, Prog. Theor. Phys. 73 (1985) 905 |

86AB1C Abu-Kamar et al, in Harrogate (1986) C85
86AD1A Adelberger, in AIP Conf. Proc. 150 (1986) 1177
86AL01 Alons et al, Phys. Rev. C33 (1986) 406
86AL1H Al-Kusayer, Sahin and Raoof, in Santa Fe (1985) 159
86AN1R Ansari, Shoeb and Rahman Khan, J. Phys. G12 (1986) 1369
86AR14 Arena et al, Phys. Rev. Lett. 57 (1986) 1839
86AU05 Auger, Tellez-Arenas, Lazard and Lombard, J. Phys. G12 (1986) 317
86BA1H Bando, Czech. J. Phys. 36 (1986) 915
86BA1N Bauhoff, At. Data Nucl. Data Tables 35 (1986) 429
86BA1W Bando, Nucl. Phys. A450 (1986) 217c
86BA1Y Barschall and Brown, Found. Phys. 16 (1986) 115
86BA2D Babinet, Ann. Physique 11 (1986) 113
86BA2E Bano et al, Phys. Lett. 166b (1986) 453
86BA2L Bano et al, Acta Phys. Slovaca 36 (1986) 305
86BA2M Bano et al, Acta Phys. Slovaca 36 (1986) 227
86BA73 Baryshnikov, Blokhintsev, Kapote and Savin, Izv. Akad. Nauk Sssr Ser. Fiz. 50 (1986) 1962

86BE1L Bekbaev, Kim, Mazitov and Eramzhian, in Kharkov (1986) 436
86BE1S Bell et al, Z. Phys. C30 (1986) 513
86BE35 Belozyorov et al, Nucl. Phys. A460 (1986) 352
86BE44 Belozerov et al, Izv. Akad. Nauk Sssr Ser. Fiz. 50 (1986) 1936
86BI1C Bittcher et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 906
86BI1E Bittcher et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 1108
86BI1F Bittcher et al, in Harrogate (1986) C146
86BL02 Bleszynski, Bleszynski and Jaroszewicz, Phys. Rev. C33 (1986) 1228
86BL15 Blokhintsev, Rasulev and Yarmukhamedov, Sov. J. Nucl. Phys. 44 (1986) 758
86BL1D Blokhintsev, Razikov, Ubaidullaeva and Yarmukhamedov, in Kharkov (1986) 449
86BO01 Boal and Shillcock, Phys. Rev. C33 (1986) 549
86BO1E Bodmer and Usmani, Nucl. Phys. A450 (1986) 257c
86BO1F Bogdanova et al, Nucl. Phys. A454 (1986) 653
86BO1J Bondarenko and Petrov, Indc (Ccp)-265/L (1986)
86BR1H Bradbury, Bull. Am. Phys. Soc. 31 (1986) 849
86BR1J Bruno et al, Few-Body Syst. 1 (1986) 63
86BR1K Brown and Jarmie, in Santa Fe (1985) 45
86BU1D Burzynski and Henneck, J. Phys. Soc. Jpn. Suppl. 55 (1986) 888
86CA1E Caterini, Thompson, Wan and Sawicki, Nucl. Instrum. Methods Phys. Res. B15 (1986) 535

86CA1K Carlson, Schmidt and Kalos, Proc. 9th Inter. Wksp., San Francisco 1985 (New York: Plenum 1986) 79
86CE04 Cernigoi et al, Nucl. Phys. A456 (1986) 599
86CH10 Chitwood et al, Phys. Lett. 172b (1986) 27
86CH1I Chrien, AIP Conf. Proc. 150 (1986) 325
86CO1J Conzett and Rioux, J. Phys. Soc. Jpn. Suppl. 55 (1986) 908
86CO1K Cohen and Leon, Phys. Rev. A33 (1986) 1437

86CS1A Csernai and Kapusta, Phys. Rep. 131 (1986) 223
86DA1B Davis and Pniewski, Contemp. Phys. 27 (1986) 91
86DA1D Danos, Muller and Rafelski, Phys. Rev. A34 (1986) 3642
86DE1K Dearborn, Schramm and Steigman, Astrophys. J. 302 (1986) 35
86DO1B Dover, in Proc. Inter. Nucl. Phys. Conf., Harrogate, U.K. (Institute Of Physics, Bristol, U.K., 1986) No. 68, Vol. 2, 99
86DO1G Dover, Czech. J. Phys. 36 (1986) 329
86DO1H Doll et al, in Harrogate (1986) H6
86EN1A Engelmann and Bardy, Report Cea-R-5340 (1986)
86FR12 Franco and Yin, Phys. Rev. C34 (1986) 608
86FU05 Fukunaga et al, Nucl. Phys. A456 (1986) 48
86GO1D Gordon et al, Bull. Am. Phys. Soc. 31 (1986) 784
86GO1J Gould, Nucl. Phys. B266 (1986) 737
86GR1H Grosshog et al, Nucl. Instrum. Methods Phys. Res. A249 (1986) 468
86GU1E Gunderson et al, Bull. Am. Phys. Soc. 31 (1986) 821
86HA1N Haeberli and Wise, J. Phys. Soc. Jpn. Suppl. 55 (1986) 483
86HA1Q Haxton, in Proc. Inter. Nucl. Phys. Conf., Harrogate, U.K. (Institute Of Physics, Bristol, U.K., 1986) No. 68, Vol. 2, 415
86HA1V Haldy, Kumar, Leo and Green, in Santa Fe (1985) 235
86HO1E Holslin, Sromicki and Haeberli, J. Phys. Soc. Jpn. Suppl. 55 (1986) 904
86HU1C Hu, Phys. Rev. A34 (1986) 2536
86HU1D Hughes, Bloom and Mathews, Astrophys. J. 311 (1986) 485
86IL1A Ilin, Levskovskii and Sherman, in Kharkov (1986) 450
86JA1E Jarmie, Preprint La-Ur-86-3705 (1986)
86JO1B Jones et al, Phys. Rev. Lett. 56 (1986) 588
86JO1C Jones, Sci. Pap. Inst. Phys. \& Chem. Res. 80 (1986) 17
86KA1G Karban, J. Phys. Soc. Jpn. Suppl. 55 (1986) 774
86KA1H Kamran and Qureshi, AIP Conf. Proc. 150 (1986) 729
86KA1K Karnakov and Mur, Sov. J. Nucl. Phys. 44 (1986) 916
86KA1L Kallne et al, Report Jet-P (86) 34 (1986)
86KA28 Kanada, Kaneko, Shen and Tang, Nucl. Phys. A457 (1986) 93
86KA35 Kamran, J. Phys. G12 (1986) L113
86KE1H Kehayias, Ellis, Cohn and Weinlein, Bull. Am. Phys. Soc. 31 (1986) 1290
86KH1B Khersonsky, Zh. Eksp. Teor. Fiz. Sssr 91 (1986) 1172
86KL1C Klages et al, in Santa Fe (1985) 869
86KN1A Knize, J. Phys. Soc. Jpn. Suppl. 55 (1986) 412
86KO1J Koike, J. Phys. Soc. Jpn. Suppl. 55 (1986) 272
86 KO 21 Kozma, Czech. J. Phys. B36 (1986) 786
86KR12 Kruppa, Lovas, Beck and Dickmann, Phys. Lett. 179b (1986) 317
86KU1G Kudo, Michikawa and Kinoshita, Nucl. Instrum. Methods Phys. Res. A249 (1986) 339
86LA1F Ladish et al, Ieee Trans. Nucl. Sci. 33 (1986) 385
86LA1K Lanen et al, in Harrogate (1986) C174
86LA29 Lang et al, Phys. Rev. C34 (1986) 1545

86LE1F Lees et al, in Santa Fe (1985) 1259
86LI1L Liu, Kong and Liu, Chin. J. Nucl. Phys. 8 (1986) 88
86LO1B Lovberg, Strachan and Heidbrink, in Santa Fe (1985) 245
86MA1C Majling et al, Nucl. Phys. A450 (1986) 189c
86MA1V Magda, Pop and Sandulescu, in Harrogate (1986) C208
86ME1D Menshikov and Ponomarev, Phys. Lett. 167b (1986) 141
86MO05 Morgan et al, Phys. Rev. C33 (1986) 1224
86NI1B Niessen et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 794
86OK06 Okhrimenko, Sov. J. Nucl. Phys. 44 (1986) 204
860K1B Okuda, Taniguchi and Fujishiro, Nucl. Instrum. Methods Phys. Res. B14 (1986) 304
86OR03 Orlandini, Traini, and Ericson, Phys. Lett. 179b (1986) 201
86OS1D Osman, J. Phys. Soc. Jpn. Suppl. 55 (1986) 744
86PA1G Pavlik and Winkler, Indc (Aus)-011/Li, Int (86)-6 (1986)
86PE1H Pedretti, Fubini and Di Nicola, J. Phys. Soc. Jpn. Suppl. 55 (1986) 1048
86PO06 Poenaru et al, At. Data Nucl. Data Tables 34 (1986) 423
86PO1F Powell, Maglich and Nering, Bull. Am. Phys. Soc. 31 (1986) 891
86RA1F Rapaport, in Santa Fe (1985) 1229
86RI01 Rieder et al, Phys. Rev. C33 (1986) 614
86RO1J Roy et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 1142
86SA05 Safronov, Ukr. Fiz. Zh. 31 (1986) 22
86SA1J Sakaguchi et al, J. Phys Soc. Jpn. Suppl. 55 (1986) 61
86SA1L Sakai et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 652
86SA1M Sawicki, J. Nucl. Mater. A143 (1986) 327
86SA30 Sato and Okuhara, Phys. Rev. C34 (1986) 2171
86SH1I Shinmura, Akaishi and Tanaka, Prog. Theor. Phys. 76 (1986) 157
86SH1K Shinmura, Nucl. Phys. A450 (1986) 147c
86SH1V Shi and Jin, Commun. Theor. Phys. 5 (1986) 105
86ST1D Stenlund, Nucl. Phys. A447 (1986) 181c
86SZ1A Szymanski, AIP Conf. Proc. 150 (1986) 934
86TA1J Takahashi, Fusion Technol. 9 (1986) 328
86TA1K Tahir and Long, Z. Phys. A325 (1986) 99
86TA1L Takahashi, J. Phys. G12 (1986) L271
86TH1C Tharraketta et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 880
86VA1D Van Oers, J. Phys. Soc. Jpn. Suppl. 55 (1986) 502
86VA1E Vasilevskii, Gutich and Okhrimenko, in Kharkov (1986) 412
86WA11 Warner et al, Nucl. Phys. A453 (1986) 605
86WA1J Wang, Takaki and Bando, Prog. Theor. Phys. 76 (1986) 865
86WA21 Wang, Chen and Huang, Nucl. Instrum. Methods Phys. Res. B17 (1986) 11
86WI04 Wilkinson, Nucl. Phys. A452 (1986) 296
86WI1B Winn, Ieee Trans. Nucl. Sci. 33 (1986) 213
86WI1E Wittenberg, Santarius and Kulcinski, Private Communication (1986)
86XU1B Xu and Lynch, Inter. Conf. On Nucl. \& Radiochem. (Beijing, China: Chinese Nucl. Soc. 1986) 54

```
86YA01 Yasnogorodskii, Sov. J. Nucl. Phys. 43 (1986) }17
86YA1E Yasnogorodsky, J. Phys. Soc. Jpn. Suppl. }55\mathrm{ (1986) }88
86YA1F Yamamoto, Prog. Theor. Phys. }75\mathrm{ (1986) }63
87AC1A Ackerbauer et al, Sin Newsl. (Switzerland) 19 (1987) 54
87AK1B Akaishi, Kamimura and Narumi, Z. Phys. A328 (1987) }11
87AS05 Assenbaum, Langanke and Rolfs, Z. Phys. A327 (1987) 461
87BA12 Balestra et al, Nucl. Phys. A465 (1987)}71
87BA2I Barnes and Cecil, Bull. Am. Phys. Soc. }32\mathrm{ (1987) 1571
87BA2L Balin et al, Muon Catalysed Fusion (Switzerland) 1 (1987) }12
87BA2P Balin et al, Zh. Eksp. Teor. Fiz. 92 (1987) 1543, JETP }65\mathrm{ (1987) }86
87BA47 Balestra et al, Phys. Lett. B194 (1987) 343
87BA69 Balestra et al, Nucl. Phys. A474 (1987) }65
87BE1W Bertin et al, Europhys. Lett. 4 (1987) }87
87BE1Y Bertin et al, Muon Catalysed Fusion (Switzerland) 1 (1987) }15
87BEYI Belozyorov et al, E15-87-733 (Submitted To Nucl. Phys. A 1987)
87BL1K Blokhintsev, Razikov, Ubaidullaeva and Yarmukhamedov, Izv. Akad. Nauk. Sssr Ser.
Fiz. }51\mathrm{ (1987) }18
87BO1L Bodmer and Usmani, Nucl. Phys. A463 (1987) C221
87BO1O Bodmer and Usmani, Nucl. Phys. A468 (1987) }65
87BO1Q Bosch et al, Bull. Am. Phys. Soc. }32\mathrm{ (1987) }192
87BO40 Borcea et al, Rev. Roum. Phys. }32\mathrm{ (1987) 497
87BR10 Brown, Jarmie and Hale, Phys. Rev. C35 (1987) 1999; Ibid C36 (1987) 1220
87BR1G Breunlich et al, Phys. Rev. Lett. 58 (1987) }32
87BR1T Breunlich et al, Muon Catalysed Fusion (Switzerland) 1 (1987) }6
87BR1W Breunlich, Muon Catalysed Fusion (Switzerland) 1 (1987) }2
87CA13 Carlson, Schmidt and Kalos, Phys. Rev. C36 (1987) }2
87CA1O Caffrey et al, Muon Catalysed Fusion (Switzerland) 1 (1987) 53
87CH32 Chen et al, Phys. Lett. B199 (1987) }17
87CH33 Chen et al, Phys. Rev. C36 (1987) }229
87CO1N Cohen, Phys. Rev. Lett. }58\mathrm{ (1987) }140
87CO1P Cohen, Phys. Rev. A35 (1987) }141
87CO1W Cohen, Muon Catalysed Fusion (Switzerland) 1 (1987) }17
87CO1Y Cohen, Phys. Rev. Lett. }58\mathrm{ (1987) }215
87DE1O Detraz, Dubna (1987) 42
87DO1H Dominguez-Tenreiro and Yepes, Astron. Astrophys. }177\mathrm{ (1987) 5
87DU07 Duflo, Phys. Rev. C36 (1987) }142
87DU09 Dubovoi and Chitanava, Sov. J. Nucl. Phys. }45\mathrm{ (1987) }42
87DU1B Dubovichenko and Zhusupov, in Yurmala (1987) 502
87FA1I Fazio et al, Hadronic J. }10\mathrm{ (1987) 21
87FO08 Fox et al, Phys. Rev. C36 (1987) }64
87FO1C Forte, Nucl. Phys. A467 (1987) }66
87FR1D Franco, Phys. Rev. C35 (1987) 1328
87FU10 Fukunaga et al, J. Phys. Soc. Jpn. 56 (1987) 2357
```

| 87GA20 | Ganguly, Chaudhuri and Baliga, Nuovo Cim. A97 (1987) 639 |
| :---: | :---: |
| 87GE1B | Gelbke and Boal, Prog. Part. Nucl. Phys. 19 (1987) 33 |
| $87 \mathrm{GO1O}$ | Gorpinich et al, in Yurmala (1987) 341 |
| $87 \mathrm{GO1Z}$ | Gornov et al, in Yurmala (1987) 271 |
| 87GO25 | Gornov et al, JETP Lett. 45 (1987) 252 |
| 87GR08 | Gruebler, Nucl. Phys. A463 (1987) C193 |
| 87GUZY | Gutich and Okhrimenko, in Yurmala (1987) 505 |
| 87HA1M | Hahn and Stocker, Phys. Rev. C35 (1987) 1311 |
| 87HA1W | Hale, Brown and Jarmie, Phys. Rev. Lett. 59 (1987) 2819 |
| 87HA20 | Hale, Brown and Jarmie, Phys. Rev. Lett. 59 (1987) 763 |
| 87HU02 | Hurd et al, Nucl. Phys. A462 (1987) 605 |
| 87JO1A | Jones, Muon Catalysed Fusion (Switzerland) 1 (1987) 21 |
| 87KA1M | Karmanov et al, in Yurmala (1987) 509 |
| $87 \mathrm{KA1O}$ | Kallne et al, Phys. Scr. T16 (1987) 160 |
| 87KA1Q | Karl and Noble, Phys. Rev. C36 (1987) 869 |
| 87KA1Z | Kamimura, Muon Catalysed Fusion (Switzerland) 1 (1987) 333 |
| 87KAZL | Kadirov et al, in Yurmala (1987) 343 |
| 87KI16 | Kiss et al, J. Phys. G13 (1987) 1067 |
| 87 KO 1 R | Korobov, Puzynin and Vinitsky, Phys. Lett. B196 (1987) 272 |
| 87 KO 47 | Korsheninnikov, Nikol'skii and Ogloblin, JETP Lett. 46 (1987) 384 |
| 87KR16 | Krolle, Langanke and Rolfs, Z. Phys. A328 (1987) 291 |
| 87KR18 | Krauss et al, Nucl. Phys. A465 (1987) 150 |
| $87 \mathrm{KU1F}$ | Kukulin, Yurmala (1987) 151 |
| 87LE1G | Lewis and Ryves, Nucl. Instrum. Methods Phys. Res. A257 (1987) 462 |
| 87LI07 | Li et al, Nucl. Instrum. Methods Phys. Res. A255 (1987) 115 |
| 87LI1K | Liu and Li, Phys. Energ. Fortis Phys. Nucl. (China) 11 (1987) 68 |
| 87LI1L | Li, Phys. Energ. Fortis \& Phys. Nucl. (China) 11 (1987) 208 |
| 87LY04 | Lynch, Nucl. Phys. A471 (1987) 309c |
| 87LY1C | Lyovshin and Fursa, Yurmala (1987) 499 |
| 87ME1E | Men'shikov and Ponomarev, JETP Lett. 46 (1987) 312 |
| 87MI1A | Mian, Phys. Rev. C35 (1987) 1463 |
| 87 MI 1 N | Miyagawa et al, in Panic (1987) 286 |
| 87MI34 | Micek et al, Z. Phys. A328 (1987) 467 |
| 87MO1K | Morgan and Pennington, Phys. Rev. Lett. 59 (1987) 2818 |
| 87MU1B | Murphy, Dermer, and Ramaty, Astrophys. J. Suppl. 63 (1987) 721 |
| 87MU1F | Murphy et al, Bull. Am. Phys. Soc. 32 (1987) 1058 |
| 87NA1K | Nagamine et al, in Panic (1987) 816 |
| 87NA23 | Nazaruk, Sov. J. Nucl. Phys. 46 (1987) 51 |
| 87OT1D | Otterlund, Nucl. Phys. A461 (1987) C113 |
| 87PE1B | Peter, Dubna (1987) 562 |
| 87PE1C | Penionshkevich, Dubna (1987) 364 |
| 87PE1D | Petitjean et al, Muon Catalysed Fusion (Switzerland) 1 (1987) 89 |
| 87PO03 | Pochodzalla et al, Phys. Rev. C35 (1987) 1695 |

87PO1G Pomerantsev and Kukulin, in Yurmala (1987) 501
87PO1H Povh, Prog. Part. Nucl. Phys. (Gb) 18 (1987) 183
87PO1M Ponomarev and Fiorentini, Muon Catalysed Fusion (Switzerland) 1 (1987) 3
87PR08 Pratt and Tsang, Phys. Rev. C36 (1987) 2390
87QI01 Qiu, Wang and Chen, Chin. J. Nucl. Phys. 9 (1987) 10
87RA1L Rafelski et al, Muon Catalysed Fusion (Switzerland) 1 (1987) 315
87RI1D Riley, Weller and Tilley, Bull. Am. Phys. Soc. 32 (1987) 1547
87RO1D Rolfs, Trautvetter and Rodney, Rep. Prog. Phys. 50 (1987) 233
87SH09 Shen and Tang, Phys. Rev. C35 (1987) 1985 (Errata: C36 (1987) 1220)
87SH1H Shinmura, Nucl. Phys. A463 (1987) C215
87SO04 Sofianos, Phys. Rev. C35 (1987) 894
87SO1A Souers et al, Bull. Am. Phys. Soc. 32 (1987) 32
87SO1C Soundranayagam, Seth and Parker, in Panic (1987) 292
87SV1A Sviciulis and Kalinauskas, Sov. Phys.-Collect. 27 (1987) 10
87TA1I Takigawa and Muller, Muon Catalysed Fusion (Switzerland) 1 (1987) 341
87TE1C Templon et al, Bull. Am. Phys. Soc. 32 (1987) 1058
87TE1D Ter Nersesyants, in Yurmala (1987) 540
87US1A Ustinin and Efros, in Yurmala (1987) 503
87VA36 Vasilevskii, Gutich and Okhrimenko, Sov. J. Nucl. Phys. 46 (1987) 427
87WA11 Wang, Chen and Huang, Chin. J. Nucl. Phys. 9 (1987) 89
87WA21 Warner et al, Nucl. Phys. A470 (1987) 339
87WA25 Warner et al, Nucl. Phys. A472 (1987) 522
87WU1C Wuethrich et al, Bull. Am. Phys. Soc. 32 (1987) 1925
87WY1A Wyman, Stone and Harms, Nucl. Sci. \& Eng. 96 (1987) 46
87YA1C Yamamoto, in Panic (1987) 582
87YA1H Yasnogorodskii et al, in Yurmala (1987) 321
87YA1M Yamamoto, Phys. Rev. C36 (1987) 2166
87ZA07 Zadro et al, Nucl. Phys. A474 (1987) 373
87ZE1D Zeng and Zhao, Phys. Energ. Fortis \& Phys. Nucl. (China) 11 (1987) 120
87ZW1A Zweben, Bull. Am. Phys. Soc. 32 (1987) 1571
88AR05 Arena et al, Europhys. Lett. 5 (1988) 517
88BA1G Barnes, Nucl. Phys. A479 (1988) 89c
88BA1H Bahcall and Ulrich, Rev. Mod. Phys. 60 (1988) 297
88BA75 Barker, Austr. J. Phys. 41 (1988) 743
88BAZH Barit, Zuev, Simonov and Yasnogorodsky, Baku (1988) 277
88BEYJ Belozerov et al, Baku (1988) 380
88BO1E Bodmer and Usmani, Nucl. Phys. A477 (1988) 621
88BU04 Burzynski et al, Nucl. Phys. A480 (1988) 51
88CA11 Carlos et al, Phys. Lett. B203 (1988) 33
88CEZZ Cebra et al, Bull. Am. Phys. Soc. 33 (1988) 963
88EN03 Engstler et al, Phys. Lett. B202 (1988) 179
88FR06 Franco and Tekou, Phys. Rev. C37 (1988) 1097

```
88GU1G Gusinsky et al, Baku (1988) 517
88HE1C Henley, in Interactions and Structures in Nuclei, Proc. in Honor Of D.H. Wilkinson,
        Sussex, September 7-9 (1987); Adam Hilger Publ. (1988) }15
88JA1C Jandel, Danos and Rafelski, Phys. Rev. C37 (1988) }40
88KI1C Kiptily, Baku (1988) 534
88KU1E Kukulin, Baku (1988) }39
88KW1A Kwasniewicz and Kisiel, Acta Phys. Pol. B19 (1988) }14
88LA1B Langanke and Warmann, Phys. Rev. C37 (1988) }165
88LI1C Lipkin, Nucl. Phys. A478 (1988) 307c
88NA1C Nazarenko, J. Phys. G14 (1988) S381
88NO1A Noda and Steshenko, Baku (1988) }16
88PA1E Pasechnik, Baku (1988) 296
88PO1H Povh, Prog. Part. Nucl. Phys. 20 (1988) }35
88PUZZ Punjabi et al, Bull. Am. Phys. Soc. 33 (1988) 962
88RO1G Robson, J. Chem. Phys. }88\mathrm{ (1988) }19
88SA09 Saint-Laurent et al, Phys. Lett. 202b (1988) }19
88SE1C Seth, AIP Conf. Proc. }164\mathrm{ (1988) }32
88STZZ Sterbenz et al, Bull. Am. Phys. Soc. 33 (1988) }96
88TA1B Tamura et al, Nucl. Phys. A479 (1988) 161c
88US1B Ustinin and Efros, Baku (1988) }40
88WA08 Wang, Wong and Lu, Nucl. Phys. A480 (1988) 490
88WO04 Wolters, Van Hees and Glaudemans, Europhys. Lett. 5 (1988)}
88WO10 Woods et al, Austr. J. Phys. }41\mathrm{ (1988) 525
```

