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8n
(Not illustrated)

8n has not been observed in the interaction of 700 MeV or of 400 GeV protons with
uranium: see (79AJ01). See also (87FL1A) and (87SI1E; theor.).

8He
(Figs. 11 and 14)

GENERAL: See also (84AJ01).

Model calculations: (84VA06, 85PO10, 87BL18).

Complex reactions involving 8He: (82AL1C, 83AN13, 85MA13, 85TA1D, 86SA30,
87AR1G, 87BO40, 87KO1Z, 87PE1C, 87TA1F, 88GA10, 88ST06, 88TA1A).

Hypernuclei: (82KA1D, 83DO1B, 84BO1H, 85AH1A, 85IK1A, 86BA1W, 86DA1B,
87MI1A, 87PO1H).

Other topics: (83GL1B, 85AN28, 87AJ1A, 88AJ1B).

Ground-state properties of 8He: (83AN1C, 84FR13, 85SA32, 86HE26, 87BL18, 87HA30,
87SA15, 88JO1C).

Mass of 8He: The atomic mass excess of 8He adopted by us and by (88WA18) is
31598± 7 keV. 8He is then stable with respect to decay into 6He + 2n by 2.137 MeV. See
(79AJ01, 84AJ01).

The interaction nuclear radius of 8He is 2.48± 0.03 fm (85TA18, 85TA13) [see also for
derived nuclear matter, charge and neutron matter r.m.s. radii].

1. 8He(β−)8Li Qm = 10.652

The half-life of 8He is 119.0± 1.5 msec. The decay takes place (84± 1)% to 8Li*(0.98)
[log ft = 4.20] and (16 ± 1)% via the neutron unstable states 8Li*(3.21, 5.4). (32 ± 3)%
of the emitted neutrons then populate 7Li*(0.48). The decay to 8Li*(3.21, 5.4) suggest
π = + for 8Li*(3.21) and 0+ or 1+ for 8Li*(5.4) (81BJ03). [(BO86Q) suggest log ft = 5.0
for the transition to 8Li*(3.21)]. (86BO41) report β-delayed tritons with a branching ratio
of (0.9± 0.1)%. This decay appears to require a 1+ state in 8Li at 8.8 MeV with a width,
Γc.m. ' 1 MeV; log ft is then 4.3 (86BO41). See also (88JO1C).
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Table 8.1
Energy levels of 8He

Ex (MeV) Jπ; T τ1/2 (msec) Decay Reactions

g.s. 0+; 2 119± 1.5 β− 1, 2, 3

2.8± 0.4 a) (2+); 2 2, 3

a) Excited states are calculated at Ex = 5.83, 7.92 and
8.18 MeV, with Jπ = 2+, 1− and 2− [(0 + 1) h̄ω model
space]. In the (0 + 2) h̄ω model space the excited states
are at 5.69, 9.51 and 11.59 MeV, with Jπ = 2+, 1+ and
0+ (85PO10). See reaction 3 for possible evidence of other
states in 8He (BE87DD; prelim.).

2. 9Be(7Li, 8B)8He Qm = −28.264

At E(7Li) = 83 MeV, θ = 10◦, the population of 8Heg.s., an excited state at 2.8±0.4 MeV
(presumably Jπ = 2+) and a structure near Ex ∼ 7 MeV are reported by (85AL1G). See
also (85AL1B, 85AL1H).

3. (a) 9Be(9Be, 10C)8He Qm = −24.602

(b) 11B(7Li, 10C)8He Qm = −23.722

At E(9Be) = 106.7 MeV and at E(11B) = 87 MeV the ground state of 8He is populated.
In reaction (a) there is some evidence of a group corresponding to Ex = 2.6 ± 0.3 MeV,
Γ = 1.0 ± 0.5 MeV, while in reaction (b) excited states are reported at Ex = 1.3, 2.6
and 4.0 MeV (± 0.3 MeV). The width of the latter is 0.5± 0.3 MeV (BE87DD). See also
(88BEYJ).
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8Li
(Figs. 11 and 14)

GENERAL: See also (84AJ01).

Nuclear models: (83KU17, 83SH38, 84MO1H, 84RE1B, 84VA06, 88WO04).

Special states: (82PO12, 83KU17, 84RE1B, 84VA06, 86XU02).

Electromagnetic transitions: (83KU17).

Astrophysics: (87MA2C).

Complex reactions involving 8Li: (83FR1A, 83GU1A, 83OL1A, 83WI1A, 84GR08,
84HI1A, 84LA27, 85JA1B, 85MA02, 85MA13, 85MO17, 86AV1B, CS86C, 86GO1G, 86HA1B,
86MA19, 86MO1C, 86NA1D, 86SA30, 86SI1B, 86WE1C, 86XU02, 87BA39, 87BE1F,
87BL13, 87CH26, 87DE37, 87GR11, 87JA06, 87LY04, 87TA1F, 87WA09, 88AU1A, 88BL09,
88CA06, 88KI05, 88LI1A, 88RU01, 88ST06, 88TA1A).

Polarization of 8Li: (84KO25, 86HA1P, 86NO1C, 86NO1D, 87NO04).

Applications: (85HA40, 86NO1C, 87NO04).

Reactions involving pions and other mesons: (83HA45, 86CE04, 86GO1G).

Hypernuclei: (82KA1D, 82MO1B, 83MO1C, 83SH1E, 84AS1D, 84CH1G, 84MI1C,
84MI1E, 84SH1J, 84ZH1B, 85MO1F, 86AN1R, 86DA1B, 86YA1F, 87MI1A, 87PO1H,
87YA1M, 88TA1B).

Other topics: (85AN28).

Ground state of 8Li: (83ANZQ, 85AN28, 85SA32, 86GL1A, AR87H, 87HA30, 87VA26,
88JO1C, 88PO1E, 88VA03, 88WO04).

J = 2: see (74AJ01)
µ = +1.65335 ± 0.00035 n.m.: see (78LEZA)

Q = 24± 2 mb: see (79AJ01).

The interaction nuclear radius of 8Li is 2.36 ± 0.02 fm (85TA18) [see also for derived
nuclear matter, charge and neutron matter r.m.s. radii].

1. 8Li(β−)8Be Qm = 16.0039

The β− decay is to the broad 2+ first-excited state of 8Be, which then breaks up into
2α [see reaction 24 in 8Be]. The half-life is 838 ± 6 msec [see (84AJ01)]; log ft = 5.4
(86WA01).
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Table 8.2
Energy levels of 8Li a)

Ex (MeV ± keV) Jπ; T τ or Γc.m. (keV) Decay Reactions

g.s. 2+; 1 τ1/2 = 838 ± 6 ms β− 1, 2, 3, 7, 8, 9, 11, 12,
13, 14, 15, 17, 18

0.9808± 0.1 1+; 1 τm = 12± 4 fs γ 2, 7, 8, 10, 11, 12, 13,
17, 18

2.255± 3 3+; 1 Γ = 33± 6 keV γ, n 2, 3, 4, 7, 11, 12, 13

3.21 1+; 1 ∼ 1000 n 5, 10

5.4 (0, 1)+; 1 ∼ 650 n 5, 10

6.1± 100 (3); 1 ∼ 1000 n 4

6.53± 20 4+; 1 35± 15 n 2, 4, 7, 12, 13

7.1± 100 ∼ 400 n 4

(8) (1+) ∼ 1000 t 10

(9) ∼ 6000 11

10.8222± 5.5 0+; 2 < 12 16

a) For additional states see reaction 4.

2. 6Li(t, p)8Li Qm = 0.801

Angular distributions have been obtained at Et = 23 MeV for the proton groups to
8Li*(0, 0.98, 2.26, 6.54 ± 0.03); Γc.m. for 8Li*(2.26, 6.54) are 35 ± 10 and 35 ± 15 keV,
respectively. J for the latter is ≥ 4: see (79AJ01).

3. 7Li(n, γ)8Li Qm = 2.033

The cross section for capture radiation has been measured for En = 40 to 1000 keV;
it decreases from 50 µb to 5 µb over that interval. The cross section shows the resonance
corresponding to 8Li*(2.26): Eres = 254 ± 3 keV, Γn = 31 ± 7 keV, Γγ = 0.07 ± 0.03 eV:
see table 8.3 and (74AJ01). See also (85SM1B), (81MUZQ, 84SH1N, 86AB1E). The decay
of 8Li*(2.26)→7Lig.s. + n in the interaction of 35 MeV/A 14N ions on Ag is reported by
(87BL13).

4. 7Li(n, n)7Li Eb = 2.033

The thermal cross section is 0.97 ± 0.04 b [see (81MUZQ)], σfree = 1.07 ± 0.03 b
(83KO17). The real coherent scattering length is −2.22 ± 0.01 fm. The complex scat-
tering lengths are b+ = −4.15 ± 0.06 fm and b− = 1.00 ± 0.08 fm (83KO17); see also
(79GL12). See (84AJ01) for earlier references.
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Table 8.3
Resonance parameters for 8Li*(2.26) a)

Eres (keV) 254 ± 3

Ex (MeV) b) 2.261

Γ (keV) 35± 5

Γn (Er) (keV) 31± 7

Γγ (eV) b) 0.07± 0.03

γ2
n (keV) 594

θ2 0.091

radius (fm) 3.30

σmax 12.0

Jπ 3+

ln 1

a) Energies in lab system ex-
cept for those labeled (b).
For references see (74AJ01,
79AJ01).
b) Energies in c.m. system.

Total and elastic cross sections have been reported for En = 5 eV to 49.6 MeV: see
(74AJ01, 79AJ01, 84AJ01). Cross sections have also been reported for n0, n0+1 and n2 at
En = 6.82, 8.90 and 9.80 MeV. (87SC08; n2 at the two higher energies).

A pronounced resonance is observed at En = 254 keV with Jπ = 3+, formed by p-waves:
see table 8.3. A good account of the polarization is given by the assumption of levels at
En = 0.25 and 3.4 MeV, with Jπ = 3+ and 2−, together with a broad Jπ = 3− level at
higher energy. Broad peaks are reported at En = 4.6 and 5.8 MeV (± 0.1 MeV) [8Li*(6.1,
7.1)] with Γ ∼ 1.0 and 0.4 MeV, respectively, and there is indication of a narrow peak at
En = 5.1 MeV [8Li*(6.5)] with Γ ¿ 80 keV and of a weak, broad peak at En = 3.7 MeV:
see (74AJ01, 84AJ01). A multi-level, multi-channel R-matrix calculation is reported by
(87KN04). This analysis leads to predictions for the cross section for elastic scattering, for
(n, n′) to 7Li*(0.48, 4.68, 6.68) and for triton production. A number of additional (broad)
states of 8Li, unobserved directly in this and in other reactions, derive from this analysis
(87KN04). See also (84FE1A, 84MO1J), (83DA22, 83GO1H, 84SH1N, 84SH1B, 86BO1J,
87LE1D, 88MA1H) and (83FA17, 86BA2F, 86FI1E, 87VE02; theor.).

5. (a) 7Li(n, n′)7Li Eb = 2.033

(b) 7Li(n, n′)3H + 4He Qm = −2.4678

The excitation function for 0.48 MeV γ-rays shows an abrupt rise from threshold
(indicating s-wave formation and emission) and a broad maximum (Γ ' 1 MeV) at
En = 1.35 MeV. A good fit is obtained with either Jπ = 1− or 1+ (2+ not excluded),
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Γlab = 1.14 MeV. A prominent peak is observed at En = 3.8 MeV (Γlab = 0.75 MeV) and
there is some indication of a broad resonance (Γlab = 1.30 MeV) at En = 5.0 MeV. At
higher energies there is some evidence for structuree at En = 6.8 and 8 MeV followed by a
decrease in the cross section to 20 MeV: see (79AJ01, 84AJ01). The total cross section for
(n0 + n1) and n2 have been reported at En = 8.9 MeV (84FE1A; prelim.). For R-matrix
analyses see (87KN04) in reaction 4 and (84AJ01).

The cross section for reaction (b) rises from threshold to ∼360 mb at En ∼ 6 MeV
and then decreases slowly to ∼250 mb at En ∼ 16 MeV: see (85SW01, 87QA01). Cross
sections for tritium production have been reported recently from threshold to En = 16 MeV
(83LI1C; prelim.), 4.57 to 14.1 MeV (85SW01), 7.9 to 10.5 MeV (87QA01), 14.74 MeV
(84SM1B; prelim.) and at 14.94 MeV (GO85U: 302±18 mb). At En = 14.95 MeV the total
α production cross section [which includes to (n, 2n d) process] is 336± 16 mb (86KN06).
Spectra at 14.6 MeV may indicate the involvement of states of 4H (86MI11). The half-life
of 3H has recently been measured to be 12.38 ± 0.03 mean solar years (87OL04). See also
(87TI07).

See also (86DE1L, 86DR1D), (84SH1N, 85BO1D, 86BO1J, 86LI1H) and (86CH1S,
86FA1B, 86GO1K, 86IG1A, 86KO32, 86MA1R, 86SE1D, 86SH1T, 86SH1U, 86TA1H,
86VE1A, 86YA1K, 86YO1D; applications).

6. 7Li(n, 2n)6Li Qm = −7.2501 Eb = 2.033

See (85CH37, 86CH1R). See also (84SH1B, 86BO1J, 88MA1H).

7. 7Li(p, π+)8Li Qm = −138.318

Angular distributions and analyzing powers for the transitions to 8Li*(0, 0.98, 2.26)
have been studied at E~p = 200.4 MeV. [The (p, π−) reaction to the analog states in 8B
is discussed there.] The (p, π+) cross sections are an order of magnitude greater than the
(p, π−) cross sections and show a much stronger angular dependence (87CA06). Angular
distributions and Ay have also been measured at E~p = 250, 354 and 489 MeV to the first
three states of 8Li. Those to 8Li*(0, 2.26) have differential cross sections which exhibit a
maximum near the invariant mass of the ∆1232 and Ay which are similar to each other and
to those of the p̄p → dπ+ reaction. 8Li*(6.53) is clearly populated (87HU12).

8. 7Li(d, p)8Li Qm = −0.192

Angular distributions of the p0 and p1 groups [ln = 1] at Ed = 12 MeV have been ana-
lyzed by DWBA: Sexp = 0.87 and 0.48 respectively for 8Li*(0, 0.98). Angular distributions
have also been measured at several energies in the range of Ed = 0.49 → 3.44 MeV (p0)
and 0.95 to 2.94 MeV (p1). The lifetime of 8Li*(0.98) is 10.1± 4.5 fsec: see (79AJ01). See
also (85FI1D; astrophysics).

7



9. (a) 7Li(6Li, 5Li)8Li Qm = −3.63

(b) 7Li(7Li, 6Li)8Li Qm = −5.217

See (84KO25).

10. 8He(β−)8Li Qm = 10.652

See 8He.

11. (a) 9Be(e, ep)8Li Qm = −16.887

(b) 9Be(p, 2p)8Li Qm = −16.887

For reaction (a) see (84AJ01) and (85KI1A). The summed proton spectrum (reac-
tion (b)) at Ep = 156 MeV shows peaks corresponding to 8Li(0) and 8Li*(0.98 + 2.26)
[unresolved]. In addition s-states [Jπ = 1−, 2−] are suggested at Ex = 9 and 16 MeV, with
Γc.m. ' 6 and 8 MeV; the latter may actually be due to continuum protons: see (74AJ01).
At Ep = 1 GeV the separation energy between 5 and 8 MeV broad 1p3/2 and 1s1/2 groups
is reported to be 10.7± 0.5 MeV (85BE1J, 85DO1B). See also (87GAZM).

12. 9Be(d, 3He)8Li Qm = −11.393

Angular distributions have been reported for the 3He ions to 8Li*(0, 0.98, 2.26, 6.53)
at Ed = 28 MeV [C2S (abs.) = 1.63, 0.61, 0.48, 0.092] and 52 MeV. The distributions to
8Li*(6.53)[Γ < 100 keV] are featureless: see (79AJ01).

13. 9Be(t, α)8Li Qm = 2.927

At Et = 12.98 MeV, angular distributions of the α-particles to 8Li*(0, 0.98, 2.26,
6.53± 0.02 [Γc.m. < 40 keV]) have been measured: see (74AJ01). At Et = 17 MeV angular
distributions to these four states have been analyzed by ZRDWBA and C2S have been
derived (88LI1B). At Et = 17 MeV, σ(θ) and Ay measurements, analyzed by CCBA,
lead to Jπ = 4+ for 8Li*(6.53): see (84AJ01). For 8Li*(0.98), τm = 14 ± 5 fsec, Ex =
980.80± 0.10 keV: see (74AJ01).
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14. 9Be(7Li, 8Be)8Li Qm = 0.367

See (84KO25).

15. 9Be(11B, 12C)8Li Qm = −0.930

See (86BE1Q).

16. 10Be(p, 3He)8Li Qm = −15.981

At Ep = 45 MeV, 3He ions are observed to a state at Ex = 10.8222 ± 0.0055 MeV
(Γc.m. < 12 keV): the angular distributions for the transition to this state, and to its
analog (8Be*(27.49)), measured in the analog reaction [10Be(p, t)8Be] are very similar.
They are both consistent with L = 0 using a DWBA (LZR) analysis: see (79AJ01).

17. 11B(n, α)8Li Qm = −6.631

Angular distributions of the α0 and α1 groups have been measured at En = 14.1 and
14.4 MeV: see (74AJ01, 84AJ01).

18. 11B(7Li, 10B)8Li Qm = −9.421

At E(7Li) = 34 MeV angular distributions have been studied involving 8Li(g.s., 0.98)
and 10Bg.s. (87CO16).

19. 13C(d, 7Be)8Li Qm = −20.454

See (84NE1A).
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8Be
(Figs. 12 and 14)

GENERAL: See also (84AJ01).

Shell model: (84PA04, 84VA06, 84ZW1A, 85FI1E, 87BL18, 87KI1C, 88WO04).

Collective, rotational and deformed models: (84PA04, 85RO1G).

Cluster and α-particle models: (81PL1A, 83CA12, 83DR09, 83FU1D, 83HA41, 83JA09,
83SH38, 84DE24, 84DU17, 84LU1A, 84LU1B, 85FI1E, 86GU1F, 86KR12, 86SU06, 88KR01).

Special states: (81PL1A, 83AD1B, 83BI1C, 83FE07, 83FI1D, 83HA41, 84DE24, 84DU17,
84LU1A, 84LU1B, 84VA06, 84VA1C, 84ZW1A, 85FI1E, 85GO1A, 85PO19, 85PU03, 85RO1G,
86AN10, 87KA18, 87KI1C, 87SV1A, 87WA1J, 88BA75, 88KR01 88KW1A, 88KH03).

Electromagnetic transitions, giant resonances: (83FI1D, 84VA1B, 85FI1E, 85GO1A,
85GR1A, 86AN10, 86QU1B, 87KI1C).

Astrophysical questions: (85BO1E, 87FU04).

Complex reactions involving 8Be: (82GU1B, 83DEZW, 83EL1A, 83SI1A, 83WA1F,
83XU1A, 84AB1C, 84PA13, 85BU16, 85HA1N, 85KA1E, 85KA1F, 85KA1G, 85KW03,
85PO11, 85PO19, 85WA22, 86BA2D, 86BL12, 86BR26, 86GA24, 86GU1F, 86IR01, 86MA1O,
86PO06, 86PO12, 86TA1M, 87AR19, 87BL16, 87CH26, 87CH33, 87CH32, 87DE1O, 87DU07,
87GE1B, 87GL1G, 87HA1M, 87PE1B, 87PO1I, 87RUZK, 88AR05, 88PO1A, 88RU01,
88SA09, 88VA1E).

Reactions involving pions and other mesons: (81MC09, 83SP06, 85BE1C, 87HU12).

Hypernuclei: (82KA1D, 83SH38, 83SH1E, 84ZH1B, 85AH1A, 85IK1A, 85MO1F, 86BA1W,
86DA1B, 87BA2K, 87MI1A, 87PO1H, 87YA1M, 88TA1B).

Other topics: (83AD1B, 83BI1C, 83FU1D, 83GR26, 83MI1E, 85AN28, 86BL1D, 86GL1E,
86MA1W, 87AB21, 87SV1A, 88AJ1B, 88BO04, 88KW1A, 88RU1B, 88RU1D, 88WA1E).

Ground-state properties of 8Be: (83ANZQ, 83DR09, 84DU17, 84LU1A, 84LU1B, 85AN28,
85FI1E, 85GO1A, 85SH1A, 87BL18, 87BO42, 87KI1C, 87KO1U, 87SA15, 87SV1A, 88AR05,
88WO04).

1. 8Be→2 4He Qm = 0.09189

Γc.m. for 8Beg.s. = 6.8±1.7 eV: see (74AJ01). See also (87WE1C, 88BA1H; astrophysics)
and (83DR09; theor.).
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2. 4He(α, γ)8Be Qm = −0.09189

The yield of γ1 has been measured for Eα = 32 to 36 MeV. The yield of γ0 for Eα = 33 to
38 MeV is twenty times lower than for γ1, consistent with E2 decay. An angular correlation
measurement at the resonances corresponding to 8Be*(16.6 + 16.9)[2+; T = 0 + 1] gives
δ = 0.19±0.03, Γγ(M1) = 6.4±0.5 eV [weighted mean of the two published measurements
listed in (79AJ01)]. The Ex of 8Be*(3.0) is determined in this reaction to be 3.18±0.05 MeV
[see also table 8.4 in (74AJ01)].

The E2 bremsstrahlung cross section to 8Beg.s. has been calculated as a function of Ex

over the 3-MeV state: the total Γγ for this transition is 8.3 meV, corresponding to 75 W.u.
(86LA05). A calculation of the Γγ from the decay of the 4+ 11.4-MeV state to the 2+ state
yields 0.46 eV (19 W.u.). The maximum cross section for the intrastate γ-ray transition
within the 2+ resonance is calculated to be ≤2.5 nb at Ex ∼ 3.3 MeV (86LA19). See also
(85BA45; theor.).

3. (a) 4He(α, n)7Be Qm = −18.990 Eb = −0.09189

(b) 4He(α, p)7Li Qm = −17.3462

(c) 4He(α, d)6Li Qm = −22.3716

The cross sections for formation of 7Li*(0, 0.48) [Eα = 39 to 49.5 MeV] and 7Be*(0,
0.43) [39.4 to 47.4 MeV] both show structures at Eα ∼ 40.0 and ∼ 44.5 MeV: they are due
predominantly to the 2+ states 8Be*(20.1, 22.2): see (79AJ01). The excitation functions
for p0, p2, d0, d1 for Eα = 54.96 to 55.54 MeV have been measured in order to study the
decay of the first T = 2 state in 8Be: see table 8.5 in (84AJ01). Cross sections for p0+1

are also reported at Eα = 37.5 to 140.0 MeV: see (79AJ01, 84AJ01). The cross sections
for reaction (c) has been measured at three energies in the range Eα = 46.7 to 49.5 MeV:
see (79AJ01) and below.

The production of 6Li, 7Li and 7Be [and 6He] has been studied for Eα = 61.5 to
158.2 MeV by (82GL01) and at 198.4 MeV by (85WO11). The production of 7Li (via
reactions (a) and (b)) and of 6Li is discussed. At energies beyond Eα ∼ 250 MeV the α+α
reaction does not contribute to the natural abundance of lithium, reinforcing theories
which produce 6Li in cosmic-ray processes and the “missing” 7Li in the Big Bang: thus
the universe is open (85WO11, 82GL01).

The inclusive cross section for production of 3He has been measured at Eα = 218 MeV
(84AL03). For a fragmentation study at 125 GeV see (85BE1E). See also (84AJ01,
84PA1E, 84RE1A).

4. 4He(α, α)4He Eb = −0.09189

The α-α scattering reveals the ground state as a resonance with Q0 = 92.12±0.05 keV,
Γc.m. = 6.8 ± 1.7 eV [τ = (0.97 ± 0.24) × 10−16 sec]. For Eα = 30 to 70 MeV the l = 0
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Table 8.4
Energy levels of 8Be a)

Ex (MeV ± keV) Jπ; T Γc.m. (keV) Decay Reactions

g.s. 0+; 0 6.8± 1.7 eV α 1, 2, 4, 10, 11, 12, 13, 14,
19, 20, 21, 22, 23, 26, 27,
28, 29, 30, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49,
50, 51, 52

3.04± 30 2+; 0 1500 ± 20 α 2, 4, 10, 11, 12, 13, 14,
19, 20, 21, 22, 24, 25, 26,
27, 28, 29, 30, 32, 34, 35,
36, 37, 38, 41, 42, 44, 45

11.4± 300 4+; 0 ∼ 3500 b) α 4, 12, 13, 19, 21, 27, 28,
29, 42, 44, 45

16.626± 3 2+; 0 + 1 108.1± 0.5 γ, α 2, 4, 10, 11, 13, 14, 19,
20, 21, 25, 28, 29, 34, 35,
38, 42, 44

16.922± 3 2+; 0 + 1 74.0± 0.4 γ, α 2, 4, 10, 11, 13, 14, 19,
20, 21, 27, 28, 29, 34, 35,
38, 42, 44

17.640± 1.0 1+; 1 10.7± 0.5 γ, p 5, 11, 14, 16, 19, 20, 27,
28, 35, 44

18.150± 4 1+; 0 138 ± 6 γ, p 11, 14, 16, 19, 20, 27, 28,
35, 38

18.91 2− 122 e) γ, n, p 11, 14, 15, 16, 19, 23

19.07± 30 3+; (1) 270 ± 20 γ, p 11, 14, 16, 19, 27, 28

19.24± 25 3+; (0) 230 ± 30 n, p 15, 16, 19, 27, 28, 29, 35

19.4 1− ∼ 650 n, p 11, 15, 16

19.86± 50 4+; 0 700 ± 100 p, α 4, 11, 18, 21, 22, 28, 29,
35

20.1 2+; 0 ∼ 1100 n, p, α 4, 15, 16, 18, 22, 35

20.2 0+; 0 < 1000 α 4, 35

20.9 4− 1600 ± 200 p 16

21.5 3(+) 1000 γ, n, p 14, 15

22.0 c) 1−; 1 ∼ 4000 γ, p 14

22.05± 100 270 ± 70 29
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Table 8.4 (continued)
Energy levels of 8Be a)

Ex (MeV± keV) Jπ; T Γc.m. (keV) Decay Reactions

22.2 2+; 0 ∼ 800 n, p, d, α 4, 9, 13, 15, 16, 18

22.63± 100 100 ± 50 29

22.98± 100 230 ± 50 29

24.0 c) (1, 2)−; 1 ∼ 7000 γ, p, α 14, 18

25.2 2+; 0 p, d, α 4, 9, 18

25.5 4+; 0 broad d, α 9

27.4941 ± 1.8 d) 0+; 2 5.5± 2.0 γ, n, p, d, t, 3He, α 5, 7, 9, 31

(28.6) broad γ, p 14

a) See also table 8.5 and reaction 4.
b) See, however, reaction 27.
c) Giant resonance: see reaction 14.
d) For the parameters of this state please see table 8.5 in (84AJ01).
e) See reaction 23.

Table 8.5
Electromagnetic transitions in 8Be a)

Transition Γγ (eV) |M|2 (W.u.)

17.6 → 0 16.7 0.15

17.6 → 3.0 8.15± 0.07 (M1) b) 0.12

0.15± 0.07 (E2)

17.6 → 16.6 0.032 ± 0.003 c) 1.48± 0.15 (M1)

17.6 → 16.9 0.0013 ± 0.0003 0.15± 0.04 (M1)

18.15→ 0 3.0

18.15→ 3.0 3.8

18.15→ 16.6 0.077 ± 0.019 1.04± 0.26 (M1)

18.15→ 16.9 0.062 ± 0.007 1.51± 0.17 (M1)

18.9 → 16.6 0.168 0.053 (E1)

18.9 → 16.9 0.099 0.045 (E1)

19.07→ 3.0 10.5

a) See table 8.7 in (79AJ01) for the references. See also reaction 2
here.
b) δ(E2/M1) = 0.21 ± 0.04, averaged over the energy of the final
state.
c) Nearly pure M1: δ(E2/M1) = −0.014 ± 0.013.
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phase shift shows resonant behavior at Eα = 40.7 MeV, corresponding to a 0+ state at
Ex = 20.2 MeV, Γ < 1 MeV, Γα/Γ < 0.5. No evidence for other 0+ states is seen above
Eα = 43 MeV.

The d-wave phase shift becomes appreciable for Eα > 2.5 MeV and passes through
resonance at Eα = 6 MeV (Ex = 3.18 MeV, Γ = 1.5 MeV, Jπ = 2+): see table 8.4 in
(74AJ01). Five 2+ levels are observed from l = 2 phase shifts measured from Eα = 30 to
70 MeV: 8Be*(16.6, 16.9) with Γα = Γ [see table 8.6], and states with Ex = 20.1, 22.2 and
25.2 MeV. The latter has a small Γα. The l=2 α-α phase shifts have been analyzed by
(86WA01) up to Eα = 34 MeV: intruder states below Ex = 26 MeV need not be introduced.

The l = 4 phase shift rises from Eα ∼ 11 MeV and indicates a broad 4+ level at
Ex = 11.5± 0.3 MeV [Γ = 4.0± 0.4 MeV]. A rapid rise of δ4 at Eα = 40 MeV corresponds
to a 4+ state at 19.9 MeV with Γα/Γ ∼ 0.96; Γ < 1 MeV and therefore Γα < 1 MeV,
which is <5% of the Wigner limit. A broad 4+ state is also observed near Eα = 51.3 MeV
(Ex = 25.5 MeV).

Over the range Eα = 30 to 70 MeV a gradual increase in δ6 is observed. Some indica-
tions of a 6+ state at Ex ∼ 28 MeV and of an 8+ state at ∼57 MeV have been reported;
Γc.m. ∼ 20 and ∼73 MeV, respectively. A resonance is not observed at the first T = 2
state, 8Be*(27.49). See (79AJ01) for references.

The elastic scattering has also been studied at Eα = 56.3 to 95.5 MeV (87NE1C;
prelim.), 158.2 MeV, 650 and 850 MeV and at 4.32 and 5.07 GeV/c [see (79AJ01, 84A-
J01)] as well as at 198.4 MeV (85WO11). For α-α correlations involving 8Be*(0, 3.0) see
(87CH33, 87PO03). See also (86FO04, 86GO1D, 86KR1B, 86UC1A, 87FO08) and p. 84.
For inclusive cross sections see (84AJ01) and (84AL03; 218 MeV).

For studies at very high energies see reaction 3 and (82AB1B, 84SA1C, 84TA1D,
84TA1G, 85AB1A, 85AK1A, 85CA1C, BE86DD, 86BE1S, 86BE1T, 86TA1N, 86TA1P,
87BA13). See also (86CH1M), (82NA1B, 83FA1A, 84FA1B, 84FR1C, 85CA41, 85FA1A,
85FR1E, 85WI1B, 86AN1F, 86CH1J, 86ST1D, 87HE1B, 87OT1D), (85NO1B, 86LA16,
87FU04, 87MU1B; astrophysics) and (82WE15, 83AL1C, 83BU15, 83FI1D, 83GO25, 83KO41,
83MA73, 83OK06, 83PR1A, 83SA16, 84DE24, 84FI11, 84FI13, 84FR10, 84HE1D, 84KR10,
84LI1D, 84MA16, 84MA1H, 84MA68, 84NA11, 84OK03, 84TA1E, 84VA1C, 84ZA1B,
85BA45, 85FI1E, 85FR1F, 85HO1B, 85KI11, 85PR1A, 85PR1B, 85SP05, 85TH08, 85YA05,
85YI1B, 85YI1C, 86CR1B, 86FR12, 86HO33, 86LA12, 86MA03, 86OC1A, 86SA30, 86SU06,
86WI04, 86YU01, 87BA35, 87FR1D, 87KA1W, 87KR03, 87OC1B, 87PR01, 87SA37, 87SH1M,
87WA07, 88BA75, 88KR01, 88MO05; theor.).

5. 6Li(d, γ)8Be Qm = 22.2798

The yield of γ-rays to 8Be*(17.64) [1+; T = 1] has been measured for Ed = 6.85 to
7.10 MeV. A resonance is observed at Ed = 6965 keV [Ex = 27495.8 ± 2.4 keV, Γc.m. =
5.5± 2.0 keV]; Γγ = 23± 4 eV [1.14± 0.20 W.u.] for this M1 transition from the first 0+;
T = 2 state in 8Be, in good agreement with the intermediate coupling model: see table 8.5
in (84AJ01). See also (79AJ01).
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Table 8.6
Some 8Be states with 16.6 < Ex < 23.0 MeV a)

Ex (MeV± keV) Γc.m. (keV) Reaction

16.627 ± 5 113 ± 3 7Li(3He, d)

90± 5 10B(d, α)

16.623 ± 3 107.7± 0.5 4He(α, α) b)

16.630 ± 3 108.5± 0.5 4He(α, α) c)

16.626 ± 3 108.1± 0.5 “best” value

16.901 ± 5 77± 3 7Li(3He, d)

70± 5 10B(d, α)

16.925 ± 3 74.4± 0.4 4He(α, α) b)

16.918 ± 3 73.6± 0.4 4He(α, α) c)

16.922 ± 3 74.0± 0.4 “best” value

17.640 ± 1.0 10.7± 0.5 7Li(p, γ)

18.155 ± 5 147 7Li(p, γ)

18.150 ± 5 138 ± 6 10B(d, α)

18.144 ± 5 9Be(d, t)

18.150 ± 4 138 ± 6 “best” value

19.06± 20 270 ± 20 7Li(p, γ)

19.071 ± 10 270 ± 30 9Be(d, t)

19.07± 30 270 ± 20 “best” value

19.21 208 ± 30 9Be(p, d)

19.22± 30 265 ± 30 9Be(3He, α)

19.26± 30 220 ± 30 9Be(d, t)

19.24± 25 230 ± 30 “best” value

19.86± 50 700 ± 100 9Be(d, t)

22.05± 100 270 ± 70 9Be(3He, α)

22.63± 100 100 ± 50 9Be(3He, α)

22.98± 100 230 ± 50 9Be(3He, α)

a) See table 8.5 in (79AJ01) for references. See
also tables 8.7 and 8.8 here.
b) R-matrix theory.
c) Complex eigenvalue theory.
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6. 6Li(d, n)7Be Qm = 3.381 Eb = 22.2798

Yield curves and cross sections have been measured for Ed = 48 keV to 17 MeV:
see (79AJ01, 84AJ01). See also (83SZ1A). Polarization measurements are reported at
Ed = 0.27 to 3.7 MeV. Comparisons of the populations of 7Be*(0, 0.43) and of 7Li*(0,
0.48) have been made at many energies, to Ed = 7.2 MeV. The n/p ratios are closely equal
for analog states, as expected for charge symmetry: see (79AJ01). However, the n1/p1

yield ratio decreases from 1.05 at Ed = 160 keV to 0.94 at 60 keV: it is suggested that this
is due to polarization of the deuteron (85CE12). See also 7Be, (85WA1C) and (84KU15;
theor.).

7. 6Li(d, p)7Li Qm = 5.0255 Eb = 22.2798

Excitation functions have been measured for Ed = 30 keV to 5.4 MeV: see (79AJ01,
84AJ01). The thick target yield of 0.48-MeV γ-rays is reported from ∼50 to ∼170 keV
(85CE12). See also (83SZ1A). An anomaly is observed in the p1/p0 intensity ratio at
Ed = 6.945 MeV, corresponding to the first 0+; T = 2 state, Γ = 10 ± 3 keV, Γp0 ¿ Γp1 ,
Γp0 < Γd. Polarization measurements have been reported at Ed = 0.6 to 10.9 MeV: see
(79AJ01). See also 7Li and (84KU15; theor.).

8. (a) 6Li(d, d)6Li Eb = 22.2798

(b) 6Li(d, t)5Li Qm = 0.59

The yield of elastically scattered deuterons has been measured for Ed = 2 to 7.14 MeV.
No resonances are observed: see (74AJ01). See also (83HA1D, 85LI1C; theor.). The cross
section for tritium production rises rapidly to 190 mb at 1 MeV, then more slowly to
290 mb near 4 MeV: see (74AJ01). For VAP and TAP measurements at E~d = 191 and
395 MeV see (86GA18).

9. (a) 6Li(d, α)4He Qm = 22.3716 Eb = 22.2798

(b) 6Li(d, αp)3H Qm = 2.5576

Cross sections and angular distributions (reaction (a)) have been measured at Ed =
30 keV to 31 MeV: see (79AJ01, 84AJ01). See also (83SZ1A). A critical analysis of the
low-energy data has led to a calculation of the reaction rate parameters for thermonu-
clear reactions for plasma temperatures of 2 keV to 1 MeV: see (84AJ01). Polarization
measurements are reported in the range 0.4 to 11 MeV: see (79AJ01, 84AJ01) and see
below.

Pronounced variations are observed in the cross sections and in the analyzing powers.
Maxima are seen at Ed = 0.8 MeV, Γlab ∼ 0.8 MeV and Ed = 3.75 MeV, Γlab ∼ 1.4 MeV.
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The 4 MeV peak is also observed in the tensor component coefficients with L = 0, 4 and
8 and in the vector component coefficients: two overlapping resonances are suggested. At
higher energies all coefficients show a fairly smooth behavior which suggests that only
broad resonances can exist. The results are in agreement with those from reaction 4, that
is with two 2+ states at Ex = 22.2 and 25.2 MeV and a 4+ state at 25.5 MeV. A strong
resonance is seen in the α* channel [to 4He(20.1), Jπ = 0+] presumably due to 8Be*(25.2,
25.5). In addition the ratio of the α*/α differential cross sections at 30◦ shows a broad
peak centered at Ex ∼ 26.5 MeV (which may be due to interference effects) and suggests a
resonance-like anomaly at Ex ∼ 28 MeV. Ayy = 1 points are reported at Ed = 5.55± 0.12
(θc.m. = 29.7± 1.0◦) and 8.80± 0.25 MeV (θc.m. = 90.0± 1.0◦) [corresponds to Ex = 26.44
and 28.87 MeV]. For references see (74AJ01, 79AJ01).

At Ed = 6.945 MeV, the α0 yield shows an anomaly corresponding to 8Be*(27.49),
the 0+; T = 2 analog of 8Heg.s.. This T = 2 state has recently been studied using both
polarized deuterons and 6Li ions. The ratio of the partial widths for decay into 6Li + d
states with channel spin 2 and 0, Γ2/Γ1 = 0.322± 0.091 (86SO07).

A kinematically complete study of reaction (b) has been reported at Ed = 1.2 to
8.0 MeV: the transition matrix element squared plotted as a function of Eαα∗ (the relative
energy in the channel 4Heg.s. +

4He*(20.1) [0+]) shows a broad maximum at Ex ∼ 25 MeV.
Analysis of these results, and of a study of 7Li(p, α)α∗ [see reaction 18] which shows a
peak of different shape at Ex ∼ 24 MeV, indicate the formation and decay of overlapping
states of high spatial symmetry, if the observed structures are interpreted in terms of 8Be
resonances: see (84AJ01). For other work see (84AJ01). See also 6Li, (86ST1E), (84VO1A,
88KU1E; applications) and (83HA1D, 84KR1B, 84KU15; theor.).

10. 6Li(t, n)8Be Qm = 16.0225

At Et = 2 to 4.5 MeV 8Be*(0, 3.0, 16.6, 16.9) are populated (84LIZY; prelim.). See
also (66LA04, 74AJ01).

11. (a) 6Li(3He, p)8Be Qm = 16.7863

(b) 6Li(3He, p)2 4He Qm = 16.8782

Angular distributions have been studied in the range E(3He) = 0.46 to 17 MeV and at

E(6 ~Li) = 21 MeV. 8Be*(0, 3.0, 16.63, 16.92, 17.64, 18.15, 19.0, 19.4, 19.9) are populated in
this reaction: see (74AJ01, 79AJ01, 84AJ01). For reaction (b) see (74AJ01) and (87ZA07).
See also 9B.
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12. (a) 6Li(α, d)8Be Qm = −1.5669

(b) 6Li(α, 2α)2H Qm = −1.4750

Deuteron groups have been observed to 8Be*(0, 3.0, 11.3± 0.4). Angular distributions
have been measured at Eα = 15.8 to 48 MeV: see (74AJ01, 79AJ01). A study of reaction (b)
shows that the peak due to 8Be*(3.0) is best fitted by using Γ = 1.2 ± 0.3 MeV. At
Eα = 42 MeV the α-α FSI is dominated by 8Be*(0, 3.0). See also table 8.4 in (74AJ01)
and (83BE1H; theor.).

13. (a) 6Li(6Li, α)8Be Qm = 20.805

(b) 6Li(6Li, α)2 4He Qm = 20.897

(c) 6Li(6Li, 2d)2 4He Qm = −2.950

At Emax(
6Li) = 13 MeV reaction (a) proceeds via 8Be* (0, 3.0, 16.6, 16.9, 22.5). The

involvement of a state at Ex = 19.9 MeV (Γ = 1.3 MeV) is suggested. Good agreement
with the shapes of the peaks corresponding to 8Be*(16.6, 16.9) is obtained by using a
simple two-level formula with interference, corrected for the effect of final-state Coulomb
interaction, assuming Γ(16.6) = 90 keV and Γ(16.9) = 70 keV: see also table 8.6. The
ratio of the intensities of the groups corresponding to 8Be*(16.6, 16.9) remains constant
for E(6Li) = 4.3 to 5.5 MeV: I(16.6)/I(16.9) = 1.22 ± 0.08. Partial angular distributions
for the α0 group have been measured at fourteen energies for E(6Li) = 4 to 24 MeV. See
(79AJ01) for the references.

At E(6Li) = 36 to 46 MeV sequential decay (reaction (b)) via 8Be states at Ex =
3.0, 11.4, 16.9 and 19.65 MeV is reported: see (84AJ01). (87LA25) report the possible
involvement of the 2+ state 8Be*(22.2).

For reaction (c) see (83WA09) and 12C in (85AJ01). See also (83MI10) and (82LA19,
85NO1A; theor.).

14. 7Li(p, γ)8Be Qm = 17.2543

Cross sections and angular distributions have been reported from Ep = 30 keV to
18 MeV. Gamma rays are observed to the ground (γ0) and to the broad, 2+, excited
state at 3.0 MeV (γ1) and to 8Be*(16.6, 16.9) (γ3, γ4). Resonances for both γ0 and γ1

occur at Ep = 0.44 and 1.03 MeV, and for γ1 alone at 2, 4.9, 6.0, 7.3, and possibly
at 3.1 and 11.1 MeV. In addition broad resonances are reported at Ep ∼ 5 MeV (γ0),
Γ ∼ 4–5 MeV, and at Ep ∼ 7.3 MeV (γ1), Γ ∼ 8 MeV: see table 8.7. The Ep ∼ 5 MeV
resonance (Ex ∼ 22 MeV) represents the giant dipole resonance based on 8Be(0) while the
γ1 resonance, ∼ 2.2 MeV higher, is based on 8Be*(3.0). The γ0 and γ1 giant resonance
peaks each contain about 10% of the dipole sum strength. The main trend between Ep = 8
and 17.5 MeV is a decreasing cross section.
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Table 8.7
8Be levels from 7Li(p, γ)8Be a)

Eres (keV) Γlab (keV) 8Be* (MeV) lp Jπ Res. d)

441.4± 0.5 b) 12.2± 0.5 17.640 1 1+ γ0, γ1, γ3, γ4

1030 ± 5 168 18.155 1 1+ γ0, γ1, γ3, γ4

1890 150± 50 18.91 (2−) γ3, γ4

2060 ± 20 310± 20 19.06 J = 1, 2, 3, γ1

π = (−) c)

(3100) (20.0) γ1

4900 21.5 γ1

5000 ∼ 4500 21.6 0 1−; T = 1 γ0

6000 22.5 γ1

7500 ∼ 8000 23.8 (0) (1−, 2−); T = 1 γ1

(11100) (27.0) γ1

13000 broad 28.6

a) See tables 8.6 in (74AJ01, 79AJ01) for the references.
b) See (59AJ76). See also (83FI13, 84JE1B).
c) See, however, reaction 16.
d) γ0, γ1, γ3, γ4 represent transitions to 8Be*(0, 3.0, 16.6, 16.9), respectively.

At the Ep = 0.44 MeV resonance (Ex = 17.64 MeV) the radiation is nearly isotropic
consistent with p-wave formation, Jπ = 1+, with channel spin ration σ(Jc = 2)/σ(Jc =
1) = 3.2±0.5. Radiative widths for the γ0 and γ1 decay are displayed in table 8.5. A careful
study of the α-breakup of 8Be*(16.63, 16.92) [both Jπ = 2+] for Ep = 0.44 to 2.45 MeV
shows that the non-resonant part of the cross section for production of 8Be*(16.63) is
accounted for by an extranuclear direct-capture process. Resonances for production of
8Be*(16.63, 16.92) are observed at Ep = 0.44, 1.03 and 1.89 MeV [8Be*(17.64, 18.15,
18.9)]. The results are consistent with the hypothesis of nearly maximal isospin mixing
for 8Be*(16.63, 16.92): decay to these states is not observed from the 3+ states at Ex =
19 MeV, but rather from the 2− state at Ex = 18.9 MeV. Squared T = 1 components
calculated for 8Be*(16.6, 16.9) are 40 and 60%, and 95 and 5% for 8Be*(17.6, 18.2). The
cross section for (γ3 + γ4) has also been measured for Ep = 11.5 to 30 MeV (θ = 90◦) by
detecting the γ-rays and for Ep = 4 to 13 MeV (at five energies) by detecting the two α-
particles from the decay of 8Be*(16.6, 16.9): a broad bump is observed at Ep = 8± 2 MeV
(81MA33). The angle and energy integrated yield only exhausts 8.6% of the classical
dipole sum for Ep = 4 to 30 MeV, suggesting that this structure does not represent
the GDR built on 8Be*(16.6, 16.9). A weak, very broad [Γ ≥ 20 MeV] peak may also
be present at Ex = 20–30 MeV. A direct capture calculation adequately describes the
observed cross section (81MA33). A study of the γ-decay of 8Be*(17.64, 18.15) shows no
evidence for a pseudoscalar particle postulated to account for narrow peaks in e+ spectra in
heavy-ion reactions (88SA2A). For the earlier references see (79AJ01). See also (83CH1C),
(86WE1D), (84DA1H; astrophysics), (88KI1C; applied) and (83GO1B, 84SE16, 85GO1B,
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87KI1C; theor.).

15. 7Li(p, n)7Be Qm = −1.644 Eb = 17.2543

Measurements of cross sections have been reported for Ep = 1.9 to 199.1 MeV [see
(74AJ01, 79AJ01, 84AJ01)] and in the range 60.1 to 480.0 MeV (84DA22; activation σ).
Polarization measurements have been reported at Ep = 2.05 to 5.5 MeV, 30 and 50 MeV
[see (74AJ01)] and at E~p = 52.8 MeV (88HE08) [Kz′

z = 0.07± 0.02]. See also below.
The yield of ground state neutrons (n0) rises steeply from threshold and shows pro-

nounced resonances at Ep = 2.25 and 4.9 MeV. The yield of n1 also rises steeply from
threshold and exhibits a broad maximum near Ep = 3.2 MeV and a broad dip at Ep ∼
5.5 MeV, also observed in the p1 yield. Multi-channel scattering length approximation
analysis of the 2− partial wave near the n0 threshold indicates that the 2− state at
Ex = 18.9 MeV is virtual relative to the threshold and that its width Γ = 50 ± 20 keV.
The ratio of the cross section for 7Li(p, γ)8Be*(18.9)→8Be*(16.6+16.9)+γ to the thermal
neutron capture cross section 7Be(n, γ)8Be*(18.9)→8Be*(16.6+16.9)+γ, provides a rough
estimate of the isospin impurity of 8Be*(18.9): σp,γ/σn,γ ∼ 1.5× 10−5. The T = 1 isospin
impurity is ≤ 10% in intensity. See also reaction 23. See (79AJ01, 84AJ01).

The structure at Ep = 2.25 MeV is ascribed to a 3+, T = (1), l = 1 resonance with
Γn ∼ Γp and γ2

n/γ
2
p = 3 to 10: see (66LA04). At higher energies the broad peak in the

n0 yield at Ep = 4.9 MeV can be fitted by Jπ = 3(+) with Γ = 1.1 MeV, γ2
n ∼ γ2

p. The
behavior of the n1 cross section can be fitted by assuming a 1− state at Ex = 19.5 MeV
and a J = 0, 1, 2, positive-parity state at 19.9 MeV [presumably the 20.1–20.2 MeV
states reported in reaction 4]. In addition the broad dip at Ep ∼ 5.5 MeV may be ac-
counted for by the interference of two 2+ states. See table 8.8 in (79AJ01). The 0◦

differential cross section increases rapidly to ∼35 mb/sr at 30 MeV and then remains
constant to 100 MeV: see (85BO1C). The total reaction cross section [7Be*(0, 0.43)] de-
creases inversely with Ep in the range 60.1 to 480.0 MeV (84DA22) [note: the values of
σt supersede those reported earlier]. The transverse polarization transfer, DNN(0◦), for
the g.s. transition has been measured at E~p = 160 MeV (84TA07). See also (86MC09;
E~p = 800 MeV), (87WA1K), (84BA1U), (85CA41; astrophysics), (83LO12; applications),
(86RA1F, 87TA22) and (88GU1F; theor.).

16. (a) 7Li(p, p)7Li Eb = 17.2543

(b) 7Li(p, p′)7Li*

Absolute differential cross sections for elastic scattering have been reported for Ep = 0.4
to 12 MeV and at 14.5, 20.0 and 31.5 MeV. The yields of inelastically scattered protons
(to 7Li*(0.48)) and of 0.48 MeV γ-rays have been measured for Ep = 0.8 to 12 MeV: see
(74AJ01). Polarization measurements have been reported at a number of energies in the
range Ep = 0.67 MeV to 2.1 GeV/c [see (74AJ01, 79AJ01, 84AJ01)], at E~p = 1.89 to
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Table 8.8
8Be levels from 7Li(p, p0)

7Li and 7Li(p, p1)
7Li* a)

Ep (MeV) Γlab (keV) 8Be* (MeV) Jπ Γp′ (keV)

0.441 12.2 c) 17.640 h) 1+

1.030 ± 0.005 168 18.155 1+ ∼ 6

1.88 b) 55± 20 18.90 2−

2.05 ' 400 19.05 3+ small

2.25 19.22 3+ small

2.5 d) ' 750 19.4 1− res
e)

4.2± 0.2 f) 1800 ± 200 20.9 4− (res)

5.6 broad 22.2 g) res

a) See references in table 8.9 (79AJ01).
b) (p, n) threshold: see reaction 15.
c) θ2

p = 0.064.
d) See also table 8.8, γ2

n1 and γ2
p1 ' 1% of Wigner limit.

e) A 2+ state at Ex ∼ 20 MeV appears to be necessary to
account for the cross sections: see table 8.3 and reaction 4.
f) Reduced width is 70% of the Wigner limit.
g) May be due to two 2+ states. See also reaction 15.
h) See also (81BA36; theor.).

2.59 MeV (86SA1P; p0; prelim.) and at 65 MeV (87TO06; continuum; prelim.). See also
(83GL1A).

Anomalies in the elastic scattering appear at Ep = 0.44, 1.03, 1.88, 2.1, 2.5, 4.2 and
5.6 MeV. Resonances at Ep = 1.03, 3 and 5.5 MeV and an anomaly at Ep = 1.88 MeV
appear in the inelastic channel. A phase-shift analysis and a review of the cross-section data
show that the 0.44 and 1.03 MeV resonances are due to 1+ states which are a mixture of 5P1

and 3P1 with a mixing parameter of +25◦; that the 2− state at the neutron threshold (Ep =
1.88 MeV) has a width of about 50 keV [see also reaction 14]; and that the Ep = 2.05 MeV
resonance corresponds to a 3+ state. The anomalous behavior of the 5P3 phase around
Ep = 2.2 MeV appears to result from the coupling of the two 3+ states [resonances at
Ep = 2.05 and 2.25 MeV]. The 3S1 phase begins to turn positive after 2.2 MeV suggesting
a 1− state at Ep = 2.5 MeV: see table 8.8. The polarization data show structures at
Ep = 1.9 and 2.3 MeV. A phase-shift analysis of the (p, p) data finds no indication of a
possible 1− state with 17.4 < Ex < 18.5 MeV [see, however, reaction 15 in (79AJ01)].

An attempt has been made to observe the T = 2 state [8Be*(27.47)] in the p0, p1 and
p2 yields. None of these shows the effect of the T = 2 state. Table 8.5 in (84AJ01) displays
the upper limit for Γp0/Γ.

The proton total reaction has been reported for Ep = 25.1 to 48.1 MeV by (85CA36).
(87CH33, 87PO03) have studied p-7Li correlations involving 8Be*(17.64, 18.15, 18.9 +
19.1 + 19.2). See also 7Li (84BA1U), (86BA1N), (86RA1D; applications) and (86HA1K,
88GU1F; theor.) and p. 84.
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17. 7Li(p, d)6Li Qm = −5.025 Eb = 17.2543

The excitation function for d0 measured for Ep = 11.64 to 11.76 MeV does not show
any effect from the T = 2 state [8Be*(27.47)]: see (79AJ01). See also (84BA1T).

18. 7Li(p, α)4He Qm = 17.3462 Eb = 17.2543

The cross section increases from (4.3 ± 0.9) × 10−5 mb at Ep = 28.1 keV to 6.33 mb
at 998 keV. Astrophysical S-factors have been calculated over that range: S(0) = 52 ±
8 keV · b (86RO13). For the earlier work see (84AJ01).

Excitation functions and angular distributions have been measured at many energies
in the range Ep = 23 keV to 62.5 MeV: see (79AJ01, 84AJ01). Polarization measurements
have been carried out for Ep = 0.8 to 10.6 MeV [see (AJ74)]: in the range Ep = 3 to
10 MeV the asymmetry has one broad peak in the angular distribution at all energies
except near 5 MeV; the peak value is 0.98 ± 0.04 at 6 MeV and is essentially 1.0 for
Ep = 8.5 to 10 MeV.

Broad resonances are reported to occur at Ep = 3.0 MeV [Γ ' 1 MeV] and at∼ 5.7 MeV
[Γ ∼ 1 MeV]. Structures are also reported at Ep = 6.8 MeV and at Ep = 9.0 MeV: see
(79AJ01). The 9.0 MeV resonance is also reflected in the behavior of the A2 coefficient.
The experimental data on yields and on polarization appear to require including two 0+

states [at Ex ∼ 19.7 and 21.8 MeV] with very small α-particle widths, and four 2+ states
[at Ex ∼ 15.9, 20.1, 22.2 and 25 MeV]. See, however, reaction 4. A 4+ state near 20 MeV
was also introduced in the calculation but its contribution was negligible. The observed
discrepancies are said to be probably due to the assumption of pure T = 0 for these states.
At Ep = 11.64 to 11.76 MeV the excitation function does not show any effect due to the
T = 2 state at Ex = 27.47 MeV. See (79AJ01) for references.

A study of the 7Li(p, α)4He* reaction to 4He*(20.1) [0+] at Ep = 4.5 to 12.0 MeV shows
a broad maximum at Ex ∼ 24 MeV: see reaction 9 and (84AJ01). See also (86ZA09),
(84HA1M, 84YA1A, 85BO1K, 85CA41, 85DE1K, 86BO1H, 87AS05, 87KA1R, 87RO1D,
88BA1H, 88FO1A; astrophysics), (86RA1D, 86ST1E, 86TU1B; applications) and (84BL21,
84KR1B; theor.).

19. (a) 7Li(d, n)8Be Qm = 15.0297

(b) 7Li(d, n)2 4He Qm = 15.1216

The population of 8Be*(0, 3.0, 16.6, 16.9, 17.6, 18.2, 18.9, 19.1, 19.2) has been reported
in reaction (a). For the parameters of 8Be*(3.0) see table 8.4 in (74AJ01). Angular
distributions of n0 and n1 have been reported at Ed = 0.7 to 3.0 MeV and at Ed =
15.25 MeV [see (74AJ01, 79AJ01)] and at 0.19 MeV (83DA32, 87DA25) and 0.40 and
0.46 MeV (84GA07; n0 only). The angular distributions of the neutrons to 8Be*(16.6,
17.6, 18.2) are fit by lp = 1: see (74AJ01).
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Reaction (b) at Ed = 2.85 to 14.97 MeV proceeds almost entirely through the excitation
and sequential decay of 8Be*(16.6, 16.9) (87WA21). 8Be*(11.4) may also be involved [Ex =
11.4± 0.05 MeV, Γc.m. = 2.8± 0.2 MeV] as may state(s) at Ex ∼ 20 MeV: see (79AJ01).
See also 9Be, (83BL17, 86BA40), (86LE1E; applications) and (83MU13, 84BL21; theor.).

20. (a) 7Li(3He, d)8Be Qm = 11.7608

(b) 7Li(3He, αd)4He Qm = 11.8527

Deuteron groups are observed to 8Be*(0, 3.0, 16.6, 16.9, 17.6, 18.2). For the parameters
of 8Be*(3.0) see table 8.4 in (74AJ01). For the Jπ = 2+ mixed isospin states see table 8.6.

Angular distributions have been measured for E(3He) = 0.9 to 24.3 MeV and at E(3 ~He) =
33.3 MeV: see (74AJ01, 79AJ01, 84AJ01). Reaction (b) has been studied at E(3He) =
5.0 MeV (85DA29) and at 9, 11 and 12 MeV (86ZA09). 8Be*(0, 3.0) are reported to be
involved (85DA29). See also 10B and (83KU17; theor.).

21. (a) 7Li(α, t)8Be Qm = −2.5597

(b) 7Li(α, αt)4He Qm = −2.4678

Angular distributions have been measured to Eα = 50 MeV: see (66LA04, 74AJ01,
79AJ01). The ground state of 8Be decays isotropically in the c.m. system: Jπ = 0+.
Sequential decay (reaction (b)) is reported at Eα = 50 MeV via 8Be*(0, 3.0, 11.4, 16.6,
16.9, 19.9): see (74AJ01). See also (83BE1H, 85PU03; theor.).

22. 7Li(7Li, 6He)8Be Qm = 7.280

8Be*(0, 3.0) have been populated in this reaction (87BO1M; E(7Li) = 22 MeV). See
also (88AL1G).

23. (a) 7Be(n, p)7Li Qm = 1.644 Eb = 18.8985

(b) 7Be(n, α)4He Qm = 18.9905

(c) 7Be(n, γα)4He Qm = 18.9905

The total (n, p) cross section has been measured from 25 × 10−3 eV to 13.5 keV. For
thermal neutrons the cross sections to 7Li*(0, 0.48) are 38400 ± 800 and 420 ± 120 b,
respectively. A departure from a 1/v shape in σt is observed for En > 100 eV. The
astrophysical reaction rate is ∼1

3 lower than that previously used: this could lead to an
increase in the calculated rate of production of 7Li in the Big Bang by as much as 20%. A
multi-level R-matrix analysis of the data indicates Γ = 122 keV for the 2− state 8Be*(18.9),
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and a T = 1 impurity of ∼24% (88KO03). At thermal energies the (n, α) cross section
is ≤ 0.1 mb and the (n, γα) cross section is 155 mb: see (74AJ01). See also (87GLZZ,
87GL1D), (79AJ01, 88BO15) and (84YA1A, 85BO1K, 85DE1K; astrophysics).

24. 8Li(β−)8Be Qm = 16.0039

8Li decays to the broad 3.0 MeV, 2+ level of 8Be, which decays into two α-particles.
Both the β-spectrum and the resulting α-spectrum have been extensively studied: see
(55AJ61, 66LA04). See also 8B(β+). Studies of the distribution of recoil momenta and
neutrino recoil correlations indicate that the decay is overwhelmingly GT, axial vector [see
reaction 1 in 8Li] and that the ground state of 8Li has Jπ = 2+: see (80MC07).

(86WA01) has performed a many-level one-channel approximation R-matrix analysis of
the β-delayed α-particle spectra in the decay of both 8Li and 8B, obtained by (71WI05) [as
well as of the L = 2 α-α phase shifts]. Warburton finds that there is no need to introduce
“intruder” states below Ex ∼ 26 MeV [see, e.g., (74AJ01)]. He extracts the GT matrix
elements for the decay to 8Be*(3.0) and the doublet near 16 MeV; and he points out the
difficulties in extracting meaningful Ex and Γ values from the β± decay for 8Be*(3.0), as
well as the log ft values for the transitions to that state (86WA01).

Beta-α angular correlations have been measured for the decays of 8Li and 8B for the
entire final-state distribution: see table 8.10 in (79AJ01). (80MC07) have measured the
β-ν-α correlations as a function of Ex in the decay of 8Li and 8B, detecting both α-
particles involved in the 8Be decay. They find that the decay is GT for 2 < Ex < 8 MeV.
The absence of Fermi decay strength is expected because the isovector contributions from
the tails of 8Be*(16.6, 16.9) interfere destructively in this energy region: see (80MC07).
The measurement of the β-decay asymmetry as a function of Eβ is reported by (86BI1D,
85BI1B; prelim.). (86NA1C; prelim.) have measured the β-spectrum and compared it with
the spectrum predicted from the α-breakup data. See also (84KO25, 85GR1A), (86HA1P,
88WA1E), (86MA1T, 86NA1C; astrophysics) and (83KU17, 84BA1J, 86QU1B, 87LY05,
88BA75; theor.).

25. 8B(β+)8Be Qm = 17.979

The decay [see reaction 1 in 8B] proceeds mainly to 8Be*(3.0) [see table 8.4 in (74AJ01)
for its parameters]. Detailed study of the high-energy portion of the α-spectrum reveals
a maximum near Eα = 8.3 MeV, corresponding to transitions to 8Be*(16.63), for which
parameters Ex = 16.67 MeV, Γ = 150 to 190 keV or Ex = 16.62 MeV, Γ = 95 keV are
derived: see (74AJ01). Log ft for the transition to 8Be*(16.6) is 3.3. An analysis by
(86WA01) of the β+ delayed α-spectrum is described in reaction 24. See also (88WA1E)
and (88BA75; theor.). The β+ spectrum has been measured by (87NA08) for momenta
greater than 9 MeV/c. Then using the α spectra from (86WA01) the 8B neutrino spectrum
is calculated. The average cross section for the “solar neutrino” 37Cl(νe, e−)37Ar reaction
is then (1.07 ± 0.02) × 10−42 cm2 [certain corrections may increase this value by as much
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as 4%] (87NA08). See also (82BA1J, 83CO1D, 83FO1A, 83HA1B, 83VO1C, 84DA1H,
84HA1M, 85BA1N, 85BA1M, 85CH1B, 86BA21, 86BE1K, 86DE1H, 86GR04, 86HA1I,
86MA1T, 86RO1N, 86WO1B, 87BA1X, 87BA1U, 87CH1G, 87FR1C, 87FU1G, 87KR10,
87RI1E, 87WE1C, 88BA1H, 88EW1A, 88HA1M; astrophysics).

26. (a) 9Be(γ, n)8Be Qm = −1.6654

(b) 9Be(n, 2n)8Be Qm = −1.6654

(c) 9Be(p, pn)8Be Qm = −1.6654

(d) 9Be(t, tn)8Be Qm = −1.6654

(e) 9Be(α, αn)8Be Qm = −1.6654

Neutron groups to 8Be*(0, 3.0) have been studied for Eγ = 18 to 26 MeV: see (74AJ01,
79AJ01) and 9Be. Reaction (b) appears to proceed largely via excited states of 9Be with
subsequent decay mainly to 8Be*(3.0): see (66LA04, 74AJ01), 9Be and 10Be. Reaction (c)
has been studied at Ep = 45 and 47 MeV: the reaction primarily populates 8Be*(0, 3.0): see
(79AJ01), 9Be and 9B. For work at Ep = 1 GeV see (85BE1J, 85DO1B). For reactions (d)
and (e) see (74AJ01) and 9Be. For reaction (e) see (79AJ01).

27. (a) 9Be(p, d)8Be Qm = 0.5592

(b) 9Be(p, pn)8Be Qm = −1.6654

(c) 9Be(p, d)2 4He Qm = 0.6511

Angular distributions of deuteron groups have been reported at Ep = 0.11 to 185 MeV
[see (74AJ01, 79AJ01, 84AJ01)] and at 18.6 MeV (86GO1N, 87GO27; d0 and d1) and 50
and 72 MeV (84ZA07; to 8Be*(0, 3.0, 16.9, 19.2)). For spectroscopic factors see (79AJ01,
84ZA07). The angular distributions to 8Be*(0, 3.0, 16.9, 17.6, 18.2, 19.1) are consistent
with ln = 1: see (74AJ01).

An anomalous group is reported in the deuteron spectra between the d0 and the d1

groups. At Ep = 26.2 MeV, its (constant with θ) Ex = 0.6 ± 0.1 MeV. Analyses of the
spectral shape and transfer cross sections are consistent with this “ghost” feature being
part of the Breit-Wigner tail of the Jπ = 0+ 8Beg.s.: it contains < 10% of the g.s. transfer
strength. An analysis of reported Γc.m. for 8Be*(3.0) in this reaction shows that there is
no Ep dependence. The average Γc.m. at Ep = 14.3 and 26.2 MeV is 1.47 ± 0.04 MeV.
Γc.m. = 5.5 ± 1.3 eV for 8Beg.s. and 5.2 ± 0.1 MeV for 8Be*(11.4). Spectroscopic factors
for 8Beg.s. (including the “ghost” anomaly) and 8Be*(3.0) are 1.23 and 0.22 respectively
at Ep = 14.3 MeV, and 1.53 and 1.02 respectively at Ep = 26.2 MeV. The width of
8Be*(3.0) is not appreciably (< 10%) reaction dependent but the nearness of the decay
threshold indicates that care must be taken in comparing decay widths from reaction and
from scattering data: ER = 3130 ± 25 keV (resonance energy in the α + α c.m. system)
[Ex = 3038±25 keV] and Γc.m. = 1.50±0.02 MeV for 8Be*(3.0): the corresponding observed
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and formal reaction widths and channel radii are γ2
R = 580 ± 50 keV, γ2

λ = 680± 100 keV
and s = 4.8 fm. See (79AJ01) for the earlier work. A study of the continuum part of
the inclusive deuteron spectra is reported at E~p = 60 MeV (87KA25). For reaction (b)
see (88BO1H). For reaction (c) [FSI through 8Be*(0, 3.0)] see (74AJ01, 84AJ01). See also
(85PU03; theor.) and 10B.

28. (a) 9Be(d, t)8Be Qm = 4.5919

(b) 9Be(d, t)2 4He Qm = 4.6838

Angular distributions have been measured for Ed = 0.3 to 28 MeV [see (79AJ01)], at
Ed = 18 MeV (88GO02; t0, t1) and at E~d = 2.0 to 2.8 MeV (84AN1D; t0). At Ed = 28 MeV
angular distributions of triton groups to 8Be*(16.6, 16.9, 17.6, 18.2, 19.1, 19.2, 19.8) have
been analyzed using DWUCK: absolute C2S are 0.074, 1.56, 0.22, 0.17, 0.41, 0.48, 0.40
respectively. See also table 8.6. An isospin amplitude impurity of 0.21 ± 0.03 is found for
8Be*(17.6, 18.2): see (79AJ01).

A kinematically complete study of reaction (b) at Ed = 26.3 MeV indicates the in-
volvement of 8Be*(0, 3.0, 11.4, 16.9, 19.9 +20.1): see (74AJ01). (86PA1E; prelim.) report
Ex = 3.10 ± 0.15 MeV, Γ ∼ 0.9–1.3 MeV. See also (88NE1A; theor.).

29. (a) 9Be(3He, α)8Be Qm = 18.9124

(b) 9Be(3He, α)2 4He Qm = 19.0043

Angular distributions have been measured in the range E(3He) = 3.0 to 26.7 MeV and

at E(3 ~He) = 33.3 MeV (to 8Be*(16.9, 17.6, 19.2)) [S = 1.74, 0.72, 1.17, assuming mixed
isospin for 8Be*(16.9)]. The possibility of a broad state at Ex ∼ 25 MeV is also suggested:
see (79AJ01). See also (87VA1I).

Reaction (b) has been studied at E(3He) = 1.0 to 10 MeV [see (79AJ01, 84AJ01)],
at E(3He) = 3 to 12 MeV (86LA26) and at 11.9 to 24.0 MeV (87WA25). The reaction
is reported to proceed via 8Be*(0, 3.0, 11.4, 16.6, 16.9, 19.9, 22.5): see (79AJ01) and
(86LA26, 87WA25). For a discussion of the width of 8Be*(11.4) see (87WA25). See also
9Be, and 12C in (80AJ01), (85MC1C, applications) and (85PU03; theor.).

30. (a) 9Be(6Li, 7Li)8Be Qm = 5.585

(b) 9Be(7Li, 8Li)8Be Qm = 0.367

(c) 9Be(9Be, 10Be)8Be Qm = 5.1466

Angular distributions have been studied at E(6Li) = 32 MeV involving 8Be*(0, 3.0)
and 7Li*(0, 0.48) (85CO09). For reaction (b) see (84KO25). For reaction (c) see 10Be
(85JA09). For the earlier work see (79AJ01).
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31. 10Be(p, t)8Be Qm = 0.0045

Angular distributions for the transition to the first T = 2 state 8Be*(27.49), and to
8Li*(10.82) reached in the (p, 3He) reaction, are very similar. They are both consistent with
L = 0 using a DWBA (LZR) analysis: see (79AJ01, 84AJ01) and table 8.5 in (84AJ01).

32. 10B(π+, 2p)8Be Qm = 132.100

See (88R1ZZ; prelim).

33. 10B(n, t)8Be Qm = 0.2307

The breakup of 10B by 14.4 MeV neutrons involves, among others, 8Beg.s. (84TU02).
See also (79AJ01) and 11B in (90AJ01).

34. 10B(p, 3He)8Be Qm = −0.5332

Angular distributions of the 3He ions to 8Be*(0, 3.0, 16.6, 16.9) have been studied at
Ep = 39.4 MeV [see (74AJ01)] and at Ep = 51.9 MeV (83YA05; see for a discussion of
isospin mixing of the 16.8 MeV states).

35. (a) 10B(d, α)8Be Qm = 17.8202

(b) 10B(d, α)2 4He Qm = 17.9121

Angular distributions have been reported at Ed = 0.5 to 7.5 MeV: see (74AJ01, 79A-
J01). At Ed = 7.5 MeV the population of 8Be*(16.63, 16.92) is closely the same consistent
with their mixed isospin character while 8Be*(17.64) is relatively weak consistent with
its nearly pure T = 1 character. 8Be*(16.63, 16.92, 17.64, 18.15) have been studied for
Ed = 4.0 to 12.0 MeV. Interference between the 2+ states [8Be*(16.63, 16.92)] varies as
a function of energy. The cross-section ratios for formation of 8Be*(17.64, 18.15) vary in
a way consistent with a change in the population of the T = 1 part of the wave function
over the energy range: at the higher energies, there is very little isospin violation. At
higher Ex only the 3+ state at Ex = 19.2 MeV is observed, the neighboring 3+ state at
Ex = 19.07 MeV is not seen. Γ16.6 = 90 ± 5 keV, Γ16.9 = 70 ± 5 keV, ∆Q = 290 ± 7 kev:
see table 8.6 and (79AJ01).

Reaction (b) [Ed < 5 MeV] takes place mainly by a sequential process involving 8Be*(0,
2.9, 11.4, 16.6, 16.9): see (79AJ01). See also (83DA11). [The work quoted in (84AJ01)
has not been published.] At Ed = 13.6 MeV in addition to 8Be*(16.6, 16.9), states with
Ex ∼ 19.9–20.2 MeV with Γ ∼ 0.7–1.1 MeV are involved (88KA1K; prelim.). See also
(84SH1D, 84SH1E) and (85PU03, 88BA75, 88KA1M; theor.).
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36. 10B(α, 6Li)8Be Qm = −4.552

See 6Li here and reaction 40 in (84AJ01). See also (SH84D,SH88D).

37. (a) 11B(p α)8Be Qm = 8.5906

(b) 11B(p, α)2 4He Qm = 8.6825

Angular distributions have been measured at Ep = 0.78 to 45 MeV [see (74AJ01,
79AJ01, 84AJ01)], at E = 0.12 to 1.10 MeV (87BE17; 11B and p; α0, α1) and at Ep = 4.5
to 7.5 MeV (83BO19; α0). Reaction (b) has been studied for Ep = 0.15 to 20 MeV: see
(74AJ01, 84AJ01). The reaction proceeds predominantly by sequential two-body decay
via 8Be*(0, 3.0). See also 12C in (90AJ01) and (83CO1A, 85MA1F, 85PU03; theor.).

38. 11B(3He, 6Li)8Be Qm = 4.5721

At E(3He) = 71.8 MeV angular distributions of the 6Li ions to 8Be*(0, 3.0, 16.6, 16.9,
17.6, 18.2) are reported (86JA14). For the earlier work at 25.6 MeV see (79AJ01). See
also (86JA02).

39. 11B(α, 7Li)8Be Qm = −8.7556

The work reported in (84AJ01) has not been published. See also 7Li here and (84SH1D,
88SH1E).

40. 11B(9Be, 12B)8Be Qm = 1.705

See (84DA17) and 12B in (90AJ01).

41. (a) 12C(n, nα)8Be Qm = −7.3666

(b) 12C(p, pα)8Be Qm = −7.3666

(c) 12C(p, d3He) 8Be Qm = −25.7198

The first two of these reactions involve 8Be*(0, 3.0): see (74AJ01, 79AJ01, 84AJ01,
85AJ01). See also (86AN1M) [reaction (a)] and (82ZH06, 85GA1B, 86VD01; theor.). For
reaction (c) see (83LI18; theor.).
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42. (a) 12C(d, 6Li)8Be Qm = −5.8916

(b) 12C(d, dα)8Be Qm = −7.3666

Angular distributions have been studied at Ed = 12.7 to 54.3 MeV [see (74AJ01,
79AJ01, 84AJ01)] and at E~d = 18 and 22 MeV (86YA12; to 8Beg.s.; also VAP, TAP) and
51.7 MeV (86YA12; to 8Be*(0, 3.0, 11.4; also VAP) as well as at Ed = 50 MeV (87GO1S),
54.2 MeV (84UM04; FRDWBA) [Sα = 0.48, 0.51 and 0.82 for 8Be*(0, 3.0, 11.4)] and
78.0 MeV (86JA14; to 8Be*(0, 3.0, 16.6, 16.9)). See also (85GO1G; Ed = 50 MeV). For
reaction (b) see (84AJ01). See also (84NE1A) and (83GA14, 83SH39, 85GA1B, 87KA1L;
theor.).

43. 12C(t, 7Li)8Be Qm = −4.8988

See 7Li.

44. 12C(3He, 7Be)8Be Qm = −5.7793

Angular distributions have been obtained at E(3He) = 25.5 to 70 MeV [see (79AJ01,

84AJ01)] and at E(3 ~He) = 33.4 MeV (86CL1B; 8Beg.s.; also Ay; prelim.). 8Be*(0, 3.0, 11.4,
16.6, 16.9, 17.6) have been populated. See also (86RA15; theor.).

45. (a) 12C(α, 2α)8Be Qm = −7.3666

(b) 12C(α, 8Be)8Be Qm = −7.4585

These reactions have been studied at Eα to 104 MeV [see (79AJ01, 84AJ01, and 12C in
85AJ01)] and at 31.2 MeV (86XI1A; reaction (a)): 8Be*(0, 3.0, 11.4) are populated. See
also (84ZE1A, 85GA1B, 87KO1E; theor.).

46. (a) 12C(9Be, 13C)8Be Qm = 3.2810

(b) 12C(11B, 15N)8Be Qm = 3.6250

Angular distributions involving 8Beg.s. + 13Cg.s. (reaction (a)) have been reported at
E(9Be) = 20 to 22.9 MeV and E(12C) = 10.5 to 13.5 MeV: see (84AJ01). For both
reactions see also (83DEZW).

47. (a) 12C(12C, 16O)8Be Qm = −0.2047

(b) 12C(16O, 20Ne)8Be Qm = −2.631

(c) 12C(20Ne, α20Ne)8Be Qm = −7.3666
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For reaction (a) see 16O in (86AJ04), (83DEZW, 84HU1E, 84SP1C, 86ALZN, 86SH10)
and (84DA1B; theor.). For reaction (b) see reaction 18 in 20Ne (87AJ02), (85MU14) and
(88AL07; location of a 10+ state in 20Ne at Ex ' 27.5 MeV). For reaction (c) see (87SI06).

48. 13C(d, 7Li)8Be Qm = −3.5879

See 7Li.

49. 13C(α, 9Be)8Be Qm = −10.7395

See (84SH1D, 88SH1F; prelim.; Eα = 27.2 MeV) and 9Be in (79AJ01).

50. 13C(9Be, 14C)8Be Qm = 6.511

See 14C in (86AJ01).

51. 14N(n, 7Li)8Be Qm = −8.9139

See 7Li.

52. 16O(p, p2α)8Be Qm = −14.5286

See (86VD04; Ep = 50 MeV).

53. 16O(16O, 24Mg)8Be Qm = −0.483

See (87CZ02).
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8B
(Figs. 13 and 14)

GENERAL: See also (84AJ01).

Model calculations: (83SH38).

Special states: (82PO12, 88KH03).

Complex reactions involving 8B: (82AL1A, 83OL1A, 84GR08, 86HA1B, 87TA1F, 88AR05,
88KI05).

Astrophysical questions: (84HA1B, 85BO1E, 85GI1C, 85KL1A, 85LA1C, 88BA1H).

Reactions involving pions: (83SP06).

Hypernuclei: (83SH38).

Other topics: (85AN28).

Ground state of 8B: (83ANZQ, 85AN28, 86GL1A, 87VA26, 88AR05, 88VA03)

µ = 1.0355± 0.0003 n.m.: see (78LEZA).

1. 8B(β+)8Be Qm = 17.979

The β+ decay leads mainly to 9Be*(3.0). The mean of half-lives listed in (74AJ01)
is 770 ± 3 msec; log ft = 5.6. There is also a branch to 8Be*(16.63): see (86WA01) and
reactions 24 and 25 in 8Be. Log ft = 3.3. See also (85GR1A) and (86QU1B; theor.).

2. 6Li(d, π−)8B Qm = −135.267

At Ed = 300 and 600 MeV, 8B*(0, 0.77, 2.32) are populated: see (84AJ01).

3. 6Li(3He, n)8B Qm = −1.975

Angular distributions for the n0 group have been reported at E(3He) = 4.8 to 5.7 MeV:
L = 0. Two measurements for the Ex of 8B*(0.77) are 767 ± 12 and 783 ± 10 keV [Γ =
40± 10 keV]: see (74AJ01) and 9B.
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Table 8.9
Energy levels of 8B

Ex (MeV± keV) Jπ; T τ1/2 or Γc.m. (keV) Decay Reactions

g.s. 2+; 1 τ1/2 = 770 ± 3 msec β+ 1, 2, 3, 4, 5, 6, 7, 8, 9

0.774 ± 6 Γ = 37± 5 γ, p 2, 3, 4, 6, 8, 9

2.32± 30 3+; 1 350 ± 40 4, 8, 9

10.619 ± 9 0+; 2 < 60 9

4. 7Li(p, π−)8B Qm = −140.293

Angular distributions and analyzing powers have been measured for the transitions to
8B*(0, 0.77, 2.32) at E~p = 199.2 MeV: the Ay to 8B*(2.32) is characteristic of that to a
stretched high-spin, two-particle one-hole final state [Jπ of 8B*(2.32) is 3+] (87CA06). See
also (87CA05).

5. 7Li(7Li, 6H)8B Qm = −35.01

See 6H.

6. 7Be(p, γ)8B Qm = 0.138

Absolute cross sections have been measured for Ep = 134 keV to 10.0 MeV. A resonance
is observed at Ep = 723 keV [ER(c.m.) = 632 ± 10 keV; Ex = 770 ± 10 keV], Γc.m. =
37±5 keV [assuming Γp À Γγ] and σpeak = 1.18±0.12 µb. Γγ is then 25±4 meV. The zero-
energy cross-section factor S17(0) = 0.0238±0.0023 keV · b (83FI13). See (79AJ01) for the
earlier work, and the discussion in (86BA38). See also (84AJ01), (84HA1F, 87SA1L) and
(82BA1J, 82KA1E, 83BA45, 83FO1A, 83HA1B, 84DA1H, 84HA1M, 84YA1A, 85BA1Q,
85CA41, 85FI1D, 86FI1B, 87KI01, 87RO1D, 88BA1H, 88BA29, 88FO1A; astrophysics).

7. 7Be(d, n)8B Qm = −2.087

See (83HA17, 85HA40).
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8. 10B(p, t)8B Qm = −18.530

At Ep = 49.5 MeV [see (74AJ01)] and 51.9 MeV (83YA05) angular distributions have
been measured for the tritons to 8B*(0, 2.32): L = 2 and L = 0+2 leading to Jπ = 2+ and
3+, respectively. Measurements of Ex for 8B*(2.32) yield 2.29±0.05 MeV, 2.34±0.04 MeV
[Γlab = 0.39 ± 0.04 MeV]. 8B*(0.77) is also observed: see (74AJ01).

9. 11B(3He, 6He)8B Qm = −16.913

At E(3He) = 72 MeV the first T = 2 state is observed at Ex = 10.619 ± 0.009 MeV,
Γ < 60 keV: dσ/dΩ (lab) = 190 nb/sr at θlab = 9◦. No other states are observed within
2.4 MeV of this state. 8B*(0, 0.77, 2.32) have also been populated: see (79AJ01).

8C
(Fig. 14)

Mass of 8C: The atomic mass excess of 8C is 35095 ± 24 keV (85WA02); Γc.m. =
230 ± 50 keV: see (79AJ01). 8C is stable with respect to 7B + p (Q = −0.13 MeV) and
unstable with respect to 6Be+2p (Q = 21.4), 5Li+3p (Q = 1.55), 4He+4p (Q = 3.51). At
E(3He) = 76 MeV the differential cross section for formation of 8Cg.s. in the 14N(3He, 9Li)
reaction is ∼5 nb/sr at θlab = 10◦. The 12C(α, 8He)8C reaction has been studied at
Eα = 156 MeV: dσ/dΩ ∼ 20 nb/sr at θlab = 20◦: see (79AJ01). See also (85AN28) and
(83ANZQ, 86HE26, 87BL18, 87SA15; theor.).
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