Energy Levels of Light Nuclei $A=8$

F. Ajzenberg-Selove
University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

Abstract

An evaluation of $A=5-10$ was published in Nuclear Physics A490 (1995), p. 1. This version of $A=8$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Also, reference key numbers have been changed to the NNDC/TUNL format see introduction to references for more information.

(References closed June 1, 1988)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-FG0286ER40279]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).

$$
\begin{gathered}
8_{\mathbf{n}} \\
\text { (Not illustrated) }
\end{gathered}
$$

${ }^{8} \mathrm{n}$ has not been observed in the interaction of 700 MeV or of 400 GeV protons with uranium: see (79AJ01). See also (87FL1A) and (87SI1E; theor.).

${ }^{8} \mathrm{He}$

(Figs. 11 and 14)

GENERAL: See also (84AJ01).
Model calculations: (84VA06, 85PO10, 87BL18).
Complex reactions involving ${ }^{8} \mathrm{He}$: (82AL1C, 83AN13, 85MA13, 85TA1D, 86SA30, 87AR1G, 87BO40, 87KO1Z, 87PE1C, 87TA1F, 88GA10, 88ST06, 88TA1A).

Hypernuclei: (82KA1D, 83DO1B, 84BO1H, 85AH1A, 85IK1A, 86BA1W, 86DA1B, 87MI1A, 87PO1H).

Other topics: (83GL1B, 85AN28, 87AJ1A, 88AJ1B).
Ground-state properties of ${ }^{8} \mathrm{He}$: (83AN1C, 84FR13, 85SA32, 86HE26, 87BL18, 87HA30, 87SA15, 88JO1C).

Mass of ${ }^{8} \mathrm{He}$: The atomic mass excess of ${ }^{8} \mathrm{He}$ adopted by us and by (88WA18) is $31598 \pm 7 \mathrm{keV} .{ }^{8} \mathrm{He}$ is then stable with respect to decay into ${ }^{6} \mathrm{He}+2 \mathrm{n}$ by 2.137 MeV . See (79AJ01, 84AJ01).

The interaction nuclear radius of ${ }^{8} \mathrm{He}$ is $2.48 \pm 0.03 \mathrm{fm}$ ($85 \mathrm{TA} 18,85 \mathrm{TA} 13$) [see also for derived nuclear matter, charge and neutron matter r.m.s. radii].

1. ${ }^{8} \mathrm{He}\left(\beta^{-}\right)^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=10.652$

The half-life of ${ }^{8} \mathrm{He}$ is $119.0 \pm 1.5 \mathrm{msec}$. The decay takes place $(84 \pm 1) \%$ to ${ }^{8} \mathrm{Li}^{*}(0.98)$ $[\log f t=4.20]$ and $(16 \pm 1) \%$ via the neutron unstable states ${ }^{8} \mathrm{Li}^{*}(3.21,5.4) . \quad(32 \pm 3) \%$ of the emitted neutrons then populate ${ }^{7} \mathrm{Li}^{*}(0.48)$. The decay to ${ }^{8} \mathrm{Li}^{*}(3.21,5.4)$ suggest $\pi=+$ for ${ }^{8} \mathrm{Li}^{*}(3.21)$ and 0^{+}or 1^{+}for ${ }^{8} \mathrm{Li}^{*}(5.4)$ (81BJ03). [(BO86Q) suggest log $f t=5.0$ for the transition to $\left.{ }^{8} \mathrm{Li}^{*}(3.21)\right]$. (86BO41) report β-delayed tritons with a branching ratio of $(0.9 \pm 0.1) \%$. This decay appears to require a 1^{+}state in ${ }^{8} \mathrm{Li}$ at 8.8 MeV with a width, $\Gamma_{\text {c.m. }} \simeq 1 \mathrm{MeV} ; \log f t$ is then 4.3 (86BO41). See also (88JO1C).

Table 8.1
Energy levels of ${ }^{8} \mathrm{He}$

$E_{\mathrm{x}}(\mathrm{MeV})$	$J^{\pi} ; T$	$\tau_{1 / 2}(\mathrm{msec})$	Decay	Reactions
g.s.	$0^{+} ; 2$	119 ± 1.5	β^{-}	$1,2,3$
$\left.2.8 \pm 0.4^{\mathrm{a}}\right)$	$\left(2^{+}\right) ; 2$			2,3

${ }^{\text {a }}$) Excited states are calculated at $E_{\mathrm{x}}=5.83,7.92$ and 8.18 MeV, with $J^{\pi}=2^{+}, 1^{-}$and $2^{-}[(0+1) \hbar \omega$ model space]. In the $(0+2) \hbar \omega$ model space the excited states are at $5.69,9.51$ and 11.59 MeV , with $J^{\pi}=2^{+}, 1^{+}$and 0^{+}(85PO10). See reaction 3 for possible evidence of other states in ${ }^{8} \mathrm{He}$ (BE87DD; prelim.).
2. ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{8} \mathrm{He} \quad Q_{\mathrm{m}}=-28.264$

At $E\left({ }^{7} \mathrm{Li}\right)=83 \mathrm{MeV}, \theta=10^{\circ}$, the population of ${ }^{8} \mathrm{He}_{\text {g.s. }}$, an excited state at $2.8 \pm 0.4 \mathrm{MeV}$ (presumably $J^{\pi}=2^{+}$) and a structure near $E_{\mathrm{x}} \sim 7 \mathrm{MeV}$ are reported by (85 AL 1 G). See also (85AL1B, 85AL1H).
3. (a) ${ }^{9} \mathrm{Be}\left({ }^{9} \mathrm{Be},{ }^{10} \mathrm{C}\right){ }^{8} \mathrm{He}$

$$
Q_{\mathrm{m}}=-24.602
$$

(b) ${ }^{11} \mathrm{~B}\left({ }^{7} \mathrm{Li},{ }^{10} \mathrm{C}\right){ }^{8} \mathrm{He}$
$Q_{\mathrm{m}}=-23.722$

At $E\left({ }^{9} \mathrm{Be}\right)=106.7 \mathrm{MeV}$ and at $E\left({ }^{11} \mathrm{~B}\right)=87 \mathrm{MeV}$ the ground state of ${ }^{8} \mathrm{He}$ is populated. In reaction (a) there is some evidence of a group corresponding to $E_{\mathrm{x}}=2.6 \pm 0.3 \mathrm{MeV}$, $\Gamma=1.0 \pm 0.5 \mathrm{MeV}$, while in reaction (b) excited states are reported at $E_{\mathrm{x}}=1.3,2.6$ and $4.0 \mathrm{MeV}(\pm 0.3 \mathrm{MeV})$. The width of the latter is $0.5 \pm 0.3 \mathrm{MeV}$ (BE87DD). See also (88BEYJ).

${ }^{8} \mathbf{L i}$

(Figs. 11 and 14)

GENERAL: See also (84AJ01).
Nuclear models: (83KU17, 83SH38, 84MO1H, 84RE1B, 84VA06, 88WO04).
Special states: (82PO12, 83KU17, 84RE1B, 84VA06, 86XU02).
Electromagnetic transitions: (83KU17).
Astrophysics: (87MA2C).
Complex reactions involving ${ }^{8}$ Li: (83FR1A, 83GU1A, 83OL1A, 83WI1A, 84GR08, 84HI1A, 84LA27, 85JA1B, 85MA02, 85MA13, 85MO17, 86AV1B, CS86C, 86GO1G, 86HA1B, 86MA19, 86MO1C, 86NA1D, 86SA30, 86SI1B, 86WE1C, 86XU02, 87BA39, 87BE1F, 87BL13, 87CH26, 87DE37, 87GR11, 87JA06, 87LY04, 87TA1F, 87WA09, 88AU1A, 88BL09, 88CA06, 88KI05, 88LI1A, 88RU01, 88ST06, 88TA1A).

Polarization of ${ }^{8}$ Li: (84KO25, 86HA1P, 86NO1C, 86NO1D, 87NO04).
Applications: (85HA40, 86NO1C, 87NO04).
Reactions involving pions and other mesons: (83HA45, 86CE04, 86GO1G).
Hypernuclei: (82KA1D, 82MO1B, 83MO1C, 83SH1E, 84AS1D, 84CH1G, 84MI1C, 84MI1E, 84SH1J, 84ZH1B, 85MO1F, 86AN1R, 86DA1B, 86YA1F, 87MI1A, 87PO1H, 87YA1M, 88TA1B).

Other topics: (85AN28).
Ground state of ${ }^{8}$ Li: (83ANZQ, 85AN28, 85SA32, 86GL1A, AR87H, 87HA30, 87VA26, 88JO1C, 88PO1E, 88VA03, 88WO04).

$$
\begin{gathered}
J=2: \text { see (74AJ01) } \\
\mu=+1.65335 \pm 0.00035 \text { n.m.: see (78LEZA) } \\
Q=24 \pm 2 \mathrm{mb}: \text { see (79AJ01) }
\end{gathered}
$$

The interaction nuclear radius of ${ }^{8} \mathrm{Li}$ is $2.36 \pm 0.02 \mathrm{fm}$ (85TA18) [see also for derived nuclear matter, charge and neutron matter r.m.s. radii].

1. ${ }^{8} \mathrm{Li}\left(\beta^{-}\right)^{8} \mathrm{Be}$

$$
Q_{\mathrm{m}}=16.0039
$$

The β^{-}decay is to the broad 2^{+}first-excited state of ${ }^{8} \mathrm{Be}$, which then breaks up into 2α [see reaction 24 in ${ }^{8} \mathrm{Be}$]. The half-life is $838 \pm 6 \mathrm{msec}$ [see (84AJ01)]; $\log f t=5.4$ (86WA01).

Table 8.2
Energy levels of ${ }^{8} \mathrm{Li}^{\mathrm{a}}$)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ or $\Gamma_{\mathrm{c} . \mathrm{m} .}(\mathrm{keV})$	Decay	Reactions
g.s.	$2^{+} ; 1$	$\tau_{1 / 2}=838 \pm 6 \mathrm{~ms}$	β^{-}	$1,2,3,7,8,9,11,12$,
			$13,14,15,17,18$	
0.9808 ± 0.1	$1^{+} ; 1$	$\tau_{\mathrm{m}}=12 \pm 4 \mathrm{fs}$	γ	$2,7,8,10,11,12,13$,
2.255 ± 3	$3^{+} ; 1$	$\Gamma=33 \pm 6 \mathrm{keV}$	γ, n	$2,3,4,7,11,12,13$
3.21	$1^{+} ; 1$	~ 1000	n	5,10
5.4	$(0,1)^{+} ; 1$	~ 650	n	5,10
6.1 ± 100	$(3) ; 1$	~ 1000	n	4
6.53 ± 20	$4^{+} ; 1$	35 ± 15	n	$2,4,7,12,13$
7.1 ± 100		~ 400	n	4
(8)	$\left(1^{+}\right)$	~ 1000	t	10
(9)		~ 6000		11
10.8222 ± 5.5	$0^{+} ; 2$	<12		16

${ }^{\text {a }}$) For additional states see reaction 4 .
2. ${ }^{6} \mathrm{Li}(\mathrm{t}, \mathrm{p})^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=0.801$

Angular distributions have been obtained at $E_{\mathrm{t}}=23 \mathrm{MeV}$ for the proton groups to ${ }^{8} \mathrm{Li}^{*}(0,0.98,2.26,6.54 \pm 0.03) ; \Gamma_{\text {c.m. }}$ for ${ }^{8} \mathrm{Li}^{*}(2.26,6.54)$ are 35 ± 10 and $35 \pm 15 \mathrm{keV}$, respectively. J for the latter is ≥ 4 : see (79AJ01).
3. ${ }^{7} \mathrm{Li}(\mathrm{n}, \gamma)^{8} \mathrm{Li} \quad Q_{\mathrm{m}}=2.033$

The cross section for capture radiation has been measured for $E_{\mathrm{n}}=40$ to 1000 keV ; it decreases from $50 \mu \mathrm{~b}$ to $5 \mu \mathrm{~b}$ over that interval. The cross section shows the resonance corresponding to ${ }^{8} \mathrm{Li}^{*}(2.26): E_{\text {res }}=254 \pm 3 \mathrm{keV}, \Gamma_{\mathrm{n}}=31 \pm 7 \mathrm{keV}, \Gamma_{\gamma}=0.07 \pm 0.03 \mathrm{eV}$: see table 8.3 and (74AJ01). See also (85SM1B), (81MUZQ, 84SH1N, 86AB1E). The decay of ${ }^{8} \mathrm{Li}^{*}(2.26) \rightarrow{ }^{7} \mathrm{Li}_{\text {g.s. }}+\mathrm{n}$ in the interaction of $35 \mathrm{MeV} / A^{14} \mathrm{~N}$ ions on Ag is reported by (87BL13).
4. ${ }^{7} \mathrm{Li}(\mathrm{n}, \mathrm{n}){ }^{7} \mathrm{Li}$

$$
E_{\mathrm{b}}=2.033
$$

The thermal cross section is $0.97 \pm 0.04 \mathrm{~b}$ [see (81 MUZQ)], $\sigma_{\text {free }}=1.07 \pm 0.03 \mathrm{~b}$ (83KO17). The real coherent scattering length is $-2.22 \pm 0.01 \mathrm{fm}$. The complex scattering lengths are $b_{+}=-4.15 \pm 0.06 \mathrm{fm}$ and $b_{-}=1.00 \pm 0.08 \mathrm{fm}$ (83 KO 17); see also (79GL12). See (84AJ01) for earlier references.

Table 8.3
Resonance parameters for ${ }^{8} \mathrm{Li}^{*}(2.26)^{\text {a }}$)

$E_{\text {res }}(\mathrm{keV})$	254 ± 3
$\left.E_{\mathrm{x}}(\mathrm{MeV})^{\mathrm{b}}\right)$	2.261
$\Gamma(\mathrm{keV})$	35 ± 5
$\Gamma_{\mathrm{n}}\left(E_{\mathrm{r}}\right)(\mathrm{keV})$	31 ± 7
$\left.\Gamma_{\gamma}(\mathrm{eV})^{\mathrm{b}}\right)$	0.07 ± 0.03
$\gamma_{\mathrm{n}}^{2}(\mathrm{keV})$	594
θ^{2}	0.091
radius (fm)	3.30
$\sigma_{\text {max }}$	12.0
J^{π}	3^{+}
l_{n}	1

${ }^{\text {a }}$) Energies in lab system except for those labeled (b). For references see (74AJ01, 79AJ01).
${ }^{\text {b }}$) Energies in c.m. system.

Total and elastic cross sections have been reported for $E_{\mathrm{n}}=5 \mathrm{eV}$ to 49.6 MeV : see (74AJ01, 79AJ01, 84AJ01). Cross sections have also been reported for $\mathrm{n}_{0}, \mathrm{n}_{0+1}$ and n_{2} at $E_{\mathrm{n}}=6.82,8.90$ and 9.80 MeV . ($87 \mathrm{SC} 08 ; \mathrm{n}_{2}$ at the two higher energies).

A pronounced resonance is observed at $E_{\mathrm{n}}=254 \mathrm{keV}$ with $J^{\pi}=3^{+}$, formed by p-waves: see table 8.3. A good account of the polarization is given by the assumption of levels at $E_{\mathrm{n}}=0.25$ and 3.4 MeV , with $J^{\pi}=3^{+}$and 2^{-}, together with a broad $J^{\pi}=3^{-}$level at higher energy. Broad peaks are reported at $E_{\mathrm{n}}=4.6$ and $5.8 \mathrm{MeV}(\pm 0.1 \mathrm{MeV})\left[{ }^{8} \mathrm{Li}^{*}(6.1\right.$, 7.1)] with $\Gamma \sim 1.0$ and 0.4 MeV , respectively, and there is indication of a narrow peak at $E_{\mathrm{n}}=5.1 \mathrm{MeV}\left[{ }^{8} \mathrm{Li}^{*}(6.5)\right]$ with $\Gamma \ll 80 \mathrm{keV}$ and of a weak, broad peak at $E_{\mathrm{n}}=3.7 \mathrm{MeV}$: see (74AJ01, 84AJ01). A multi-level, multi-channel R-matrix calculation is reported by (87KN04). This analysis leads to predictions for the cross section for elastic scattering, for $\left(\mathrm{n}, \mathrm{n}^{\prime}\right)$ to ${ }^{7} \mathrm{Li}^{*}(0.48,4.68,6.68)$ and for triton production. A number of additional (broad) states of ${ }^{8} \mathrm{Li}$, unobserved directly in this and in other reactions, derive from this analysis (87KN04). See also (84FE1A, 84MO1J), (83DA22, 83GO1H, 84SH1N, 84SH1B, 86BO1J, 87LE1D, 88MA1H) and (83FA17, 86BA2F, 86FI1E, 87VE02; theor.).
5. (a) ${ }^{7} \mathrm{Li}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{7} \mathrm{Li}$

$$
E_{\mathrm{b}}=2.033
$$

(b) ${ }^{7} \mathrm{Li}\left(\mathrm{n}, \mathrm{n}^{\prime}\right){ }^{3} \mathrm{H}+{ }^{4} \mathrm{He}$

$$
Q_{\mathrm{m}}=-2.4678
$$

The excitation function for $0.48 \mathrm{MeV} \gamma$-rays shows an abrupt rise from threshold (indicating s-wave formation and emission) and a broad maximum ($\Gamma \simeq 1 \mathrm{MeV}$) at $E_{\mathrm{n}}=1.35 \mathrm{MeV}$. A good fit is obtained with either $J^{\pi}=1^{-}$or $1^{+}\left(2^{+}\right.$not excluded),
$\Gamma_{\text {lab }}=1.14 \mathrm{MeV}$. A prominent peak is observed at $E_{\mathrm{n}}=3.8 \mathrm{MeV}\left(\Gamma_{\text {lab }}=0.75 \mathrm{MeV}\right)$ and there is some indication of a broad resonance $\left(\Gamma_{\text {lab }}=1.30 \mathrm{MeV}\right)$ at $E_{\mathrm{n}}=5.0 \mathrm{MeV}$. At higher energies there is some evidence for structuree at $E_{\mathrm{n}}=6.8$ and 8 MeV followed by a decrease in the cross section to 20 MeV : see (79AJ01, 84AJ01). The total cross section for $\left(\mathrm{n}_{0}+\mathrm{n}_{1}\right)$ and n_{2} have been reported at $E_{\mathrm{n}}=8.9 \mathrm{MeV}$ (84 FE 1 A ; prelim.). For R-matrix analyses see (87 KN 04) in reaction 4 and (84AJ01).

The cross section for reaction (b) rises from threshold to $\sim 360 \mathrm{mb}$ at $E_{\mathrm{n}} \sim 6 \mathrm{MeV}$ and then decreases slowly to $\sim 250 \mathrm{mb}$ at $E_{\mathrm{n}} \sim 16 \mathrm{MeV}$: see (85SW01, 87QA01). Cross sections for tritium production have been reported recently from threshold to $E_{\mathrm{n}}=16 \mathrm{MeV}$ (83LI1C; prelim.), 4.57 to 14.1 MeV (85SW01), 7.9 to 10.5 MeV (87QA01), 14.74 MeV (84 SM 1 B ; prelim.) and at 14.94 MeV (GO85U: $302 \pm 18 \mathrm{mb}$). At $E_{\mathrm{n}}=14.95 \mathrm{MeV}$ the total α production cross section [which includes to ($\mathrm{n}, 2 \mathrm{n} \mathrm{d}$) process] is $336 \pm 16 \mathrm{mb}$ (86 KN 06). Spectra at 14.6 MeV may indicate the involvement of states of ${ }^{4} \mathrm{H}$ (86 MI 11). The half-life of ${ }^{3} \mathrm{H}$ has recently been measured to be 12.38 ± 0.03 mean solar years (87OL04). See also (87TI07).

See also (86DE1L, 86DR1D), (84SH1N, 85BO1D, 86BO1J, 86LI1H) and (86CH1S, 86FA1B, 86GO1K, 86IG1A, 86KO32, 86MA1R, 86SE1D, 86SH1T, 86SH1U, 86TA1H, 86VE1A, 86YA1K, 86YO1D; applications).
6. ${ }^{7} \mathrm{Li}(\mathrm{n}, 2 \mathrm{n})^{6} \mathrm{Li} \quad Q_{\mathrm{m}}=-7.2501 \quad E_{\mathrm{b}}=2.033$

See (85CH37, 86CH1R). See also (84SH1B, 86BO1J, 88MA1H).

$$
\text { 7. }{ }^{7} \mathrm{Li}\left(\mathrm{p}, \pi^{+}\right)^{8} \mathrm{Li} \quad Q_{\mathrm{m}}=-138.318
$$

Angular distributions and analyzing powers for the transitions to ${ }^{8} \mathrm{Li}^{*}(0,0.98,2.26)$ have been studied at $E_{\overrightarrow{\mathrm{p}}}=200.4 \mathrm{MeV}$. [The $\left(\mathrm{p}, \pi^{-}\right)$reaction to the analog states in ${ }^{8} \mathrm{~B}$ is discussed there.] The (p, π^{+}) cross sections are an order of magnitude greater than the (p, π^{-}) cross sections and show a much stronger angular dependence (87CA06). Angular distributions and A_{y} have also been measured at $E_{\overrightarrow{\mathrm{p}}}=250,354$ and 489 MeV to the first three states of ${ }^{8} \mathrm{Li}$. Those to ${ }^{8} \mathrm{Li}^{*}(0,2.26)$ have differential cross sections which exhibit a maximum near the invariant mass of the Δ_{1232} and A_{y} which are similar to each other and to those of the $\overline{\mathrm{p}} \mathrm{p} \rightarrow \mathrm{d} \pi^{+}$reaction. ${ }^{8} \mathrm{Li}^{*}(6.53)$ is clearly populated (87 HU 12).
8. ${ }^{7} \mathrm{Li}(\mathrm{d}, \mathrm{p})^{8} \mathrm{Li}$

$$
Q_{\mathrm{m}}=-0.192
$$

Angular distributions of the p_{0} and p_{1} groups $\left[l_{\mathrm{n}}=1\right]$ at $E_{\mathrm{d}}=12 \mathrm{MeV}$ have been analyzed by DWBA: $S_{\text {exp }}=0.87$ and 0.48 respectively for ${ }^{8} \mathrm{Li}^{*}(0,0.98)$. Angular distributions have also been measured at several energies in the range of $E_{\mathrm{d}}=0.49 \rightarrow 3.44 \mathrm{MeV}\left(\mathrm{p}_{0}\right)$ and 0.95 to $2.94 \mathrm{MeV}\left(\mathrm{p}_{1}\right)$. The lifetime of ${ }^{8} \mathrm{Li}^{*}(0.98)$ is $10.1 \pm 4.5 \mathrm{fsec}$: see (79AJ01). See also (85FI1D; astrophysics).
9. (a) ${ }^{7} \mathrm{Li}\left({ }^{6} \mathrm{Li},{ }^{5} \mathrm{Li}\right)^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=-3.63$
(b) ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{Li}\right){ }^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=-5.217$

See (84KO25).
10. ${ }^{8} \mathrm{He}\left(\beta^{-}\right)^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=10.652$

See ${ }^{8} \mathrm{He}$.
11. (a) ${ }^{9} \mathrm{Be}(\mathrm{e}, \mathrm{ep})^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=-16.887$
(b) ${ }^{9} \mathrm{Be}(\mathrm{p}, 2 \mathrm{p})^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=-16.887$

For reaction (a) see (84AJ01) and (85KI1A). The summed proton spectrum (reaction (b)) at $E_{\mathrm{p}}=156 \mathrm{MeV}$ shows peaks corresponding to ${ }^{8} \mathrm{Li}(0)$ and ${ }^{8} \mathrm{Li}^{*}(0.98+2.26)$ [unresolved]. In addition s-states $\left[J^{\pi}=1^{-}, 2^{-}\right.$] are suggested at $E_{\mathrm{x}}=9$ and 16 MeV , with $\Gamma_{\text {c.m. }} \simeq 6$ and 8 MeV ; the latter may actually be due to continuum protons: see (74AJ01). At $E_{\mathrm{p}}=1 \mathrm{GeV}$ the separation energy between 5 and 8 MeV broad $1 \mathrm{p}_{3 / 2}$ and $1 \mathrm{~s}_{1 / 2}$ groups is reported to be $10.7 \pm 0.5 \mathrm{MeV}$ (85BE1J, 85DO1B). See also (87GAZM).

$$
\text { 12. }{ }^{9} \mathrm{Be}\left(\mathrm{~d},{ }^{3} \mathrm{He}\right)^{8} \mathrm{Li} \quad Q_{\mathrm{m}}=-11.393
$$

Angular distributions have been reported for the ${ }^{3} \mathrm{He}$ ions to ${ }^{8} \mathrm{Li}^{*}(0,0.98,2.26,6.53)$ at $E_{\mathrm{d}}=28 \mathrm{MeV}\left[C^{2} S\right.$ (abs.) $\left.=1.63,0.61,0.48,0.092\right]$ and 52 MeV . The distributions to ${ }^{8} \mathrm{Li}^{*}(6.53)[\Gamma<100 \mathrm{keV}]$ are featureless: see (79AJ01).
13. ${ }^{9} \mathrm{Be}(\mathrm{t}, \alpha)^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=2.927$

At $E_{\mathrm{t}}=12.98 \mathrm{MeV}$, angular distributions of the α-particles to ${ }^{8} \mathrm{Li}^{*}(0,0.98,2.26$, $6.53 \pm 0.02\left[\Gamma_{\text {c.m. }}<40 \mathrm{keV}\right]$) have been measured: see (74AJ01). At $E_{\mathrm{t}}=17 \mathrm{MeV}$ angular distributions to these four states have been analyzed by ZRDWBA and $C^{2} S$ have been derived (88LI1B). At $E_{\mathrm{t}}=17 \mathrm{MeV}, \sigma(\theta)$ and A_{y} measurements, analyzed by CCBA, lead to $J^{\pi}=4^{+}$for ${ }^{8} \mathrm{Li}^{*}(6.53)$: see (84AJ01). For ${ }^{8} \mathrm{Li}^{*}(0.98), \tau_{\mathrm{m}}=14 \pm 5 \mathrm{fsec}, E_{\mathrm{x}}=$ $980.80 \pm 0.10 \mathrm{keV}$: see (74AJ01).
14. ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li},{ }^{8} \mathrm{Be}\right){ }^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=0.367$

See (84KO25).
15. ${ }^{9} \mathrm{Be}\left({ }^{11} \mathrm{~B},{ }^{12} \mathrm{C}\right){ }^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=-0.930$

See (86BE1Q).
16. ${ }^{10} \mathrm{Be}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{8} \mathrm{Li} \quad Q_{\mathrm{m}}=-15.981$

At $E_{\mathrm{p}}=45 \mathrm{MeV},{ }^{3} \mathrm{He}$ ions are observed to a state at $E_{\mathrm{x}}=10.8222 \pm 0.0055 \mathrm{MeV}$ $\left(\Gamma_{\text {c.m. }}<12 \mathrm{keV}\right):$ the angular distributions for the transition to this state, and to its analog $\left({ }^{8} \mathrm{Be}^{*}(27.49)\right)$, measured in the analog reaction $\left[{ }^{10} \mathrm{Be}(\mathrm{p}, \mathrm{t})^{8} \mathrm{Be}\right]$ are very similar. They are both consistent with $L=0$ using a DWBA (LZR) analysis: see (79AJ01).
17. ${ }^{11} \mathrm{~B}(\mathrm{n}, \alpha)^{8} \mathrm{Li} \quad Q_{\mathrm{m}}=-6.631$

Angular distributions of the α_{0} and α_{1} groups have been measured at $E_{\mathrm{n}}=14.1$ and 14.4 MeV: see (74AJ01, 84AJ01).
18. ${ }^{11} \mathrm{~B}\left({ }^{7} \mathrm{Li},{ }^{10} \mathrm{~B}\right){ }^{8} \mathrm{Li}$

$$
Q_{\mathrm{m}}=-9.421
$$

At $E\left({ }^{7} \mathrm{Li}\right)=34 \mathrm{MeV}$ angular distributions have been studied involving ${ }^{8} \mathrm{Li}($ g.s., 0.98) and ${ }^{10} \mathrm{~B}_{\text {g.s. }}(87 \mathrm{CO} 16)$.
19. ${ }^{13} \mathrm{C}\left(\mathrm{d},{ }^{7} \mathrm{Be}\right){ }^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=-20.454$

See (84NE1A).
${ }^{8} \mathrm{Be}$
(Figs. 12 and 14)

GENERAL: See also (84AJ01).
Shell model: (84PA04, 84VA06, 84ZW1A, 85FI1E, 87BL18, 87KI1C, 88WO04).
Collective, rotational and deformed models: (84PA04, 85RO1G).
Cluster and α-particle models: (81PL1A, 83CA12, 83DR09, 83FU1D, 83HA41, 83JA09, 83SH38, 84DE24, 84DU17, 84LU1A, 84LU1B, 85FI1E, 86GU1F, 86KR12, 86SU06, 88KR01).

Special states: (81PL1A, 83AD1B, 83BI1C, 83FE07, 83FI1D, 83HA41, 84DE24, 84DU17, 84LU1A, 84LU1B, 84VA06, 84VA1C, 84ZW1A, 85FI1E, 85GO1A, 85PO19, 85PU03, 85RO1G, 86AN10, 87KA18, 87KI1C, 87SV1A, 87WA1J, 88BA75, 88KR01 88KW1A, 88KH03).

Electromagnetic transitions, giant resonances: (83FI1D, 84VA1B, 85FI1E, 85GO1A, 85GR1A, 86AN10, 86QU1B, 87KI1C).

Astrophysical questions: (85BO1E, 87FU04).
Complex reactions involving ${ }^{8} \mathrm{Be}: ~(82 \mathrm{GU} 1 \mathrm{~B}, ~ 83 \mathrm{DEZW}, 83 \mathrm{EL} 1 \mathrm{~A}, 83 \mathrm{SI} 1 \mathrm{~A}, ~ 83 W A 1 F$, $83 \mathrm{XU} 1 \mathrm{~A}, ~ 84 \mathrm{AB} 1 \mathrm{C}, ~ 84 \mathrm{PA} 13,85 \mathrm{BU} 16,85 \mathrm{HA} 1 \mathrm{~N}, 85 \mathrm{KA} 1 \mathrm{E}, 85 \mathrm{KA} 1 \mathrm{~F}, 85 \mathrm{KA1G}, 85 \mathrm{KW} 03$, 85PO11, 85PO19, 85WA22, 86BA2D, 86BL12, 86BR26, 86GA24, 86GU1F, 86IR01, 86MA1O, 86PO06, 86PO12, 86TA1M, 87AR19, 87BL16, 87CH26, 87CH33, 87CH32, 87DE1O, 87DU07, 87GE1B, 87GL1G, 87HA1M, 87PE1B, 87PO1I, 87RUZK, 88AR05, 88PO1A, 88RU01, 88SA09, 88VA1E).

Reactions involving pions and other mesons: (81MC09, 83SP06, 85BE1C, 87HU12).
Hypernuclei: (82KA1D, 83SH38, 83SH1E, 84ZH1B, 85AH1A, 85IK1A, 85MO1F, 86BA1W, 86DA1B, 87BA2K, 87MI1A, 87PO1H, 87YA1M, 88TA1B).

Other topics: (83AD1B, 83BI1C, 83FU1D, 83GR26, 83MI1E, 85AN28, 86BL1D, 86GL1E, 86MA1W, 87AB21, 87SV1A, 88AJ1B, 88BO04, 88KW1A, 88RU1B, 88RU1D, 88WA1E).

Ground-state properties of ${ }^{8} \mathrm{Be}$: (83ANZQ, 83DR09, 84DU17, 84LU1A, 84LU1B, 85AN28, $85 \mathrm{FI} 1 \mathrm{E}, 85 \mathrm{GO} 1 \mathrm{~A}, 85 \mathrm{SH} 1 \mathrm{~A}, 87 \mathrm{BL} 18,87 \mathrm{BO} 42,87 \mathrm{KI1C}, 87 \mathrm{KO} 1 \mathrm{U}, 87 \mathrm{SA} 15,87 \mathrm{SV} 1 \mathrm{~A}, 88 \mathrm{AR} 05$, 88WO04).

1. ${ }^{8} \mathrm{Be} \rightarrow 2{ }^{4} \mathrm{He}$
$Q_{\mathrm{m}}=0.09189$
$\Gamma_{\text {c.m. }}$ for ${ }^{8} \mathrm{Be}_{\text {g.s. }}=6.8 \pm 1.7 \mathrm{eV}$: see (74AJ01). See also (87WE1C, 88 BA 1 H ; astrophysics) and (83DR09; theor.).
2. ${ }^{4} \mathrm{He}(\alpha, \gamma)^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-0.09189$

The yield of γ_{1} has been measured for $E_{\alpha}=32$ to 36 MeV . The yield of γ_{0} for $E_{\alpha}=33$ to 38 MeV is twenty times lower than for γ_{1}, consistent with E2 decay. An angular correlation measurement at the resonances corresponding to ${ }^{8} \mathrm{Be}^{*}(16.6+16.9)\left[2^{+} ; T=0+1\right]$ gives $\delta=0.19 \pm 0.03, \Gamma_{\gamma}(\mathrm{M} 1)=6.4 \pm 0.5 \mathrm{eV}$ [weighted mean of the two published measurements listed in (79AJ01)]. The E_{x} of ${ }^{8} \mathrm{Be}^{*}(3.0)$ is determined in this reaction to be $3.18 \pm 0.05 \mathrm{MeV}$ [see also table 8.4 in (74AJ01)].

The E2 bremsstrahlung cross section to ${ }^{8} \mathrm{Be}_{\mathrm{g} . \mathrm{s} \text {. }}$ has been calculated as a function of E_{x} over the $3-\mathrm{MeV}$ state: the total Γ_{γ} for this transition is 8.3 meV , corresponding to $75 \mathrm{~W} . \mathrm{u}$. (86LA05). A calculation of the Γ_{γ} from the decay of the $4^{+} 11.4-\mathrm{MeV}$ state to the 2^{+}state yields 0.46 eV ($19 \mathrm{~W} . u$.). The maximum cross section for the intrastate γ-ray transition within the 2^{+}resonance is calculated to be $\leq 2.5 \mathrm{nb}$ at $E_{\mathrm{x}} \sim 3.3 \mathrm{MeV}$ (86LA19). See also (85BA45; theor.).
3. (a) ${ }^{4} \mathrm{He}(\alpha, \mathrm{n})^{7} \mathrm{Be} \quad Q_{\mathrm{m}}=-18.990 \quad E_{\mathrm{b}}=-0.09189$
(b) ${ }^{4} \mathrm{He}(\alpha, \mathrm{p})^{7} \mathrm{Li}$
$Q_{\mathrm{m}}=-17.3462$
(c) ${ }^{4} \mathrm{He}(\alpha, \mathrm{d}){ }^{6} \mathrm{Li}$
$Q_{\mathrm{m}}=-22.3716$

The cross sections for formation of ${ }^{7} \mathrm{Li}^{*}(0,0.48)\left[E_{\alpha}=39\right.$ to 49.5 MeV$]$ and ${ }^{7} \mathrm{Be}^{*}(0$, 0.43) [39.4 to 47.4 MeV] both show structures at $E_{\alpha} \sim 40.0$ and $\sim 44.5 \mathrm{MeV}$: they are due predominantly to the 2^{+}states ${ }^{8} \mathrm{Be}^{*}(20.1,22.2)$: see (79AJ01). The excitation functions for $\mathrm{p}_{0}, \mathrm{p}_{2}, \mathrm{~d}_{0}, \mathrm{~d}_{1}$ for $E_{\alpha}=54.96$ to 55.54 MeV have been measured in order to study the decay of the first $T=2$ state in ${ }^{8} \mathrm{Be}$: see table 8.5 in (84AJ01). Cross sections for p_{0+1} are also reported at $E_{\alpha}=37.5$ to 140.0 MeV : see (79AJ01, 84AJ01). The cross sections for reaction (c) has been measured at three energies in the range $E_{\alpha}=46.7$ to 49.5 MeV : see (79AJ01) and below.

The production of ${ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li}$ and ${ }^{7} \mathrm{Be}$ [and ${ }^{6} \mathrm{He}$] has been studied for $E_{\alpha}=61.5$ to 158.2 MeV by (82 GL 01) and at 198.4 MeV by (85 WO 11). The production of ${ }^{7} \mathrm{Li}$ (via reactions (a) and (b)) and of ${ }^{6} \mathrm{Li}$ is discussed. At energies beyond $E_{\alpha} \sim 250 \mathrm{MeV}$ the $\alpha+\alpha$ reaction does not contribute to the natural abundance of lithium, reinforcing theories which produce ${ }^{6} \mathrm{Li}$ in cosmic-ray processes and the "missing" ${ }^{7} \mathrm{Li}$ in the Big Bang: thus the universe is open (85WO11, 82GL01).

The inclusive cross section for production of ${ }^{3} \mathrm{He}$ has been measured at $E_{\alpha}=218 \mathrm{MeV}$ (84AL03). For a fragmentation study at 125 GeV see (85BE1E). See also (84AJ01, 84PA1E, 84RE1A).
4. ${ }^{4} \mathrm{He}(\alpha, \alpha){ }^{4} \mathrm{He}$

$$
E_{\mathrm{b}}=-0.09189
$$

The $\alpha-\alpha$ scattering reveals the ground state as a resonance with $Q_{0}=92.12 \pm 0.05 \mathrm{keV}$, $\Gamma_{\text {c.m. }}=6.8 \pm 1.7 \mathrm{eV}\left[\tau=(0.97 \pm 0.24) \times 10^{-16} \mathrm{sec}\right]$. For $E_{\alpha}=30$ to 70 MeV the $l=0$

Table 8.4
Energy levels of ${ }^{8} \mathrm{Be}^{\mathrm{a}}$)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
g.s.	$0^{+} ; 0$	$6.8 \pm 1.7 \mathrm{eV}$	α	$\begin{aligned} & 1,2,4,10,11,12,13,14, \\ & 19,20,21,22,23,26,27, \\ & 28,29,30,32,33,34,35, \\ & 36,37,38,39,40,41,42, \\ & 43,44,45,46,47,48,49, \\ & 50,51,52 \end{aligned}$
3.04 ± 30	$2^{+} ; 0$	1500 ± 20	α	$\begin{aligned} & 2,4,10,11,12,13,14, \\ & 19,20,21,22,24,25,26, \\ & 27,28,29,30,32,34,35, \\ & 36,37,38,41,42,44,45 \end{aligned}$
11.4 ± 300	$4^{+} ; 0$	$\sim 3500{ }^{\text {b }}$)	α	$\begin{aligned} & 4,12,13,19,21,27,28, \\ & 29,42,44,45 \end{aligned}$
16.626 ± 3	$2^{+} ; 0+1$	108.1 ± 0.5	γ, α	$\begin{aligned} & 2,4,10,11,13,14,19 \\ & 20,21,25,28,29,34,35 \\ & 38,42,44 \end{aligned}$
16.922 ± 3	$2^{+} ; 0+1$	74.0 ± 0.4	γ, α	$\begin{aligned} & 2,4,10,11,13,14,19 \\ & 20,21,27,28,29,34,35 \\ & 38,42,44 \end{aligned}$
17.640 ± 1.0	$1^{+} ; 1$	10.7 ± 0.5	γ, p	$\begin{aligned} & 5,11,14,16,19,20,27, \\ & 28,35,44 \end{aligned}$
18.150 ± 4	$1^{+} ; 0$	138 ± 6	γ, p	$\begin{aligned} & 11,14,16,19,20,27,28 \\ & 35,38 \end{aligned}$
18.91	2^{-}	$122{ }^{\text {e }}$)	$\gamma, \mathrm{n}, \mathrm{p}$	$11,14,15,16,19,23$
19.07 ± 30	$3^{+} ;(1)$	270 ± 20	γ, p	11, 14, 16, 19, 27, 28
19.24 ± 25	$3^{+} ;(0)$	230 ± 30	n, p	$15,16,19,27,28,29,35$
19.4	1^{-}	~ 650	n, p	11, 15, 16
19.86 ± 50	$4^{+} ; 0$	700 ± 100	p, α	$\begin{aligned} & 4,11,18,21,22,28,29 \\ & 35 \end{aligned}$
20.1	$2^{+} ; 0$	~ 1100	$\mathrm{n}, \mathrm{p}, \alpha$	$4,15,16,18,22,35$
20.2	$0^{+} ; 0$	<1000	α	4, 35
20.9	4^{-}	1600 ± 200	p	16
21.5	$3^{(+)}$	1000	$\gamma, \mathrm{n}, \mathrm{p}$	14, 15
$22.0{ }^{\text {c }}$)	$1^{-} ; 1$	~ 4000	γ, p	14
22.05 ± 100		270 ± 70		29

Table 8.4 (continued)
Energy levels of ${ }^{8} \mathrm{Be}^{\mathrm{a}}$)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\mathrm{c} . \mathrm{m} .}(\mathrm{keV})$	Decay	Reactions
22.2	$2^{+} ; 0$	~ 800	$\mathrm{n}, \mathrm{p}, \mathrm{d}, \alpha$	$4,9,13,15,16,18$
22.63 ± 100		100 ± 50		29
22.98 ± 100		230 ± 50		29
$\left.24.0^{\mathrm{c}}\right)$	$(1,2)^{-} ; 1$	~ 7000	$\gamma, \mathrm{p}, \alpha$	14,18
25.2	$2^{+} ; 0$		$\mathrm{p}, \mathrm{d}, \alpha$	$4,9,18$
25.5	$4^{+} ; 0$	broad	d, α	9
$\left.27.4941 \pm 1.8^{\mathrm{d}}\right)$	$0^{+} ; 2$	5.5 ± 2.0	$\gamma, \mathrm{n}, \mathrm{p}, \mathrm{d}, \mathrm{t},{ }^{3} \mathrm{He}, \alpha$	$5,7,9,31$
(28.6)		broad	γ, p	14

a) See also table 8.5 and reaction 4.
b) See, however, reaction 27 .
${ }^{\text {c) }}$ Giant resonance: see reaction 14 .
d) For the parameters of this state please see table 8.5 in (84AJ01).
${ }^{\text {e }}$) See reaction 23 .

Table 8.5
Electromagnetic transitions in ${ }^{8} \mathrm{Be}^{\mathrm{a}}$)

Transition	$\Gamma_{\gamma}(\mathrm{eV})$	$\|\mathrm{M}\|^{2}$ (W.u.)
$17.6 \rightarrow 0$	16.7	0.15
$17.6 \rightarrow 3.0$	$\left.8.15 \pm 0.07(\mathrm{M} 1)^{\mathrm{b}}\right)$	0.12
	$0.15 \pm 0.07(\mathrm{E} 2)$	
$17.6 \rightarrow 16.6$	$\left.0.032 \pm 0.003^{\mathrm{c}}\right)$	$1.48 \pm 0.15(\mathrm{M} 1)$
$17.6 \rightarrow 16.9$	0.0013 ± 0.0003	$0.15 \pm 0.04(\mathrm{M} 1)$
$18.15 \rightarrow 0$	3.0	
$18.15 \rightarrow 3.0$	3.8	
$18.15 \rightarrow 16.6$	0.077 ± 0.019	$1.04 \pm 0.26(\mathrm{M} 1)$
$18.15 \rightarrow 16.9$	0.062 ± 0.007	$1.51 \pm 0.17(\mathrm{M} 1)$
$18.9 \rightarrow 16.6$	0.168	$0.053(\mathrm{E} 1)$
$18.9 \rightarrow 16.9$	0.099	$0.045(\mathrm{E} 1)$
$19.07 \rightarrow 3.0$	10.5	

${ }^{\text {a }}$) See table 8.7 in (79AJ01) for the references. See also reaction 2 here.
$\left.{ }^{\text {b }}\right) \delta(\mathrm{E} 2 / \mathrm{M} 1)=0.21 \pm 0.04$, averaged over the energy of the final state.
$\left.{ }^{\text {c }}\right)$ Nearly pure M1: $\delta(\mathrm{E} 2 / \mathrm{M} 1)=-0.014 \pm 0.013$.
phase shift shows resonant behavior at $E_{\alpha}=40.7 \mathrm{MeV}$, corresponding to a 0^{+}state at $E_{\mathrm{x}}=20.2 \mathrm{MeV}, \Gamma<1 \mathrm{MeV}, \Gamma_{\alpha} / \Gamma<0.5$. No evidence for other 0^{+}states is seen above $E_{\alpha}=43 \mathrm{MeV}$.

The d-wave phase shift becomes appreciable for $E_{\alpha}>2.5 \mathrm{MeV}$ and passes through resonance at $E_{\alpha}=6 \mathrm{MeV}\left(E_{\mathrm{x}}=3.18 \mathrm{MeV}, \Gamma=1.5 \mathrm{MeV}, J^{\pi}=2^{+}\right)$: see table 8.4 in (74AJ01). Five 2^{+}levels are observed from $l=2$ phase shifts measured from $E_{\alpha}=30$ to $70 \mathrm{MeV}:{ }^{8} \mathrm{Be}^{*}(16.6,16.9)$ with $\Gamma_{\alpha}=\Gamma$ [see table 8.6], and states with $E_{\mathrm{x}}=20.1,22.2$ and 25.2 MeV . The latter has a small Γ_{α}. The $\mathrm{l}=2 \alpha-\alpha$ phase shifts have been analyzed by (86WA01) up to $E_{\alpha}=34 \mathrm{MeV}$: intruder states below $E_{\mathrm{x}}=26 \mathrm{MeV}$ need not be introduced.

The $l=4$ phase shift rises from $E_{\alpha} \sim 11 \mathrm{MeV}$ and indicates a broad 4^{+}level at $E_{\mathrm{x}}=11.5 \pm 0.3 \mathrm{MeV}[\Gamma=4.0 \pm 0.4 \mathrm{MeV}]$. A rapid rise of δ_{4} at $E_{\alpha}=40 \mathrm{MeV}$ corresponds to a 4^{+}state at 19.9 MeV with $\Gamma_{\alpha} / \Gamma \sim 0.96 ; \Gamma<1 \mathrm{MeV}$ and therefore $\Gamma_{\alpha}<1 \mathrm{MeV}$, which is $<5 \%$ of the Wigner limit. A broad 4^{+}state is also observed near $E_{\alpha}=51.3 \mathrm{MeV}$ $\left(E_{\mathrm{x}}=25.5 \mathrm{MeV}\right)$.

Over the range $E_{\alpha}=30$ to 70 MeV a gradual increase in δ_{6} is observed. Some indications of a 6^{+}state at $E_{\mathrm{x}} \sim 28 \mathrm{MeV}$ and of an 8^{+}state at $\sim 57 \mathrm{MeV}$ have been reported; $\Gamma_{\text {c.m. }} \sim 20$ and $\sim 73 \mathrm{MeV}$, respectively. A resonance is not observed at the first $T=2$ state, ${ }^{8} \mathrm{Be}^{*}(27.49)$. See (79AJ01) for references.

The elastic scattering has also been studied at $E_{\alpha}=56.3$ to 95.5 MeV (87NE1C; prelim.), $158.2 \mathrm{MeV}, 650$ and 850 MeV and at 4.32 and $5.07 \mathrm{GeV} / c$ [see (79AJ01, 84AJ01)] as well as at 198.4 MeV (85 WO 11). For $\alpha-\alpha$ correlations involving ${ }^{8} \mathrm{Be}^{*}(0,3.0)$ see (87CH33, 87PO03). See also (86FO04, 86GO1D, 86KR1B, 86UC1A, 87FO08) and p. 84. For inclusive cross sections see (84AJ01) and (84AL03; 218 MeV).

For studies at very high energies see reaction 3 and (82AB1B, 84SA1C, 84TA1D, 84TA1G, 85AB1A, 85AK1A, 85CA1C, BE86DD, 86BE1S, 86BE1T, 86TA1N, 86TA1P, 87BA13). See also (86CH1M), (82NA1B, 83FA1A, 84FA1B, 84FR1C, 85CA41, 85FA1A, 85FR1E, 85WI1B, 86AN1F, 86CH1J, 86ST1D, 87HE1B, 87OT1D), (85NO1B, 86LA16, 87FU04, 87MU1B; astrophysics) and (82WE15, 83AL1C, 83BU15, 83FI1D, 83GO25, 83KO41, 83MA73, 83OK06, 83PR1A, 83SA16, 84DE24, 84FI11, 84FI13, 84FR10, 84HE1D, 84KR10, 84LI1D, 84MA16, 84MA1H, 84MA68, 84NA11, 84OK03, 84TA1E, 84VA1C, 84ZA1B, 85BA45, 85FI1E, 85FR1F, 85HO1B, 85KI11, 85PR1A, 85PR1B, 85SP05, 85TH08, 85YA05, 85YI1B, 85YI1C, 86CR1B, 86FR12, 86HO33, 86LA12, 86MA03, 86OC1A, 86SA30, 86SU06, 86WI04, 86YU01, 87BA35, 87FR1D, 87KA1W, 87KR03, 87OC1B, 87PR01, 87SA37, 87SH1M, 87WA07, 88BA75, 88KR01, 88MO05; theor.).
5. ${ }^{6} \operatorname{Li}(\mathrm{~d}, \gamma){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=22.2798$

The yield of γ-rays to ${ }^{8} \mathrm{Be}^{*}(17.64)\left[1^{+} ; T=1\right]$ has been measured for $E_{\mathrm{d}}=6.85$ to 7.10 MeV . A resonance is observed at $E_{\mathrm{d}}=6965 \mathrm{keV}\left[E_{\mathrm{x}}=27495.8 \pm 2.4 \mathrm{keV}, \Gamma_{\text {c.m. }}=\right.$ $5.5 \pm 2.0 \mathrm{keV}] ; \Gamma_{\gamma}=23 \pm 4 \mathrm{eV}[1.14 \pm 0.20 \mathrm{~W}$. u. $]$ for this M1 transition from the first $0^{+} ;$ $T=2$ state in ${ }^{8} \mathrm{Be}$, in good agreement with the intermediate coupling model: see table 8.5 in (84AJ01). See also (79AJ01).

Table 8.6
Some ${ }^{8}$ Be states with $16.6<E_{\mathrm{x}}<23.0 \mathrm{MeV}^{\mathrm{a}}$)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$\operatorname{Reaction}$
16.627 ± 5	113 ± 3	${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$
	90 ± 5	${ }^{10} \mathrm{~B}(\mathrm{~d}, \alpha)$
16.623 ± 3	107.7 ± 0.5	$\left.{ }^{4} \mathrm{He}(\alpha, \alpha){ }^{\mathrm{b}}\right)$
16.630 ± 3	108.5 ± 0.5	$\left.{ }^{4} \mathrm{He}(\alpha, \alpha){ }^{\mathrm{c}}\right)$
16.626 ± 3	108.1 ± 0.5	"best" value
16.901 ± 5	77 ± 3	${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$
	70 ± 5	${ }^{10} \mathrm{~B}(\mathrm{~d}, \alpha)$
16.925 ± 3	74.4 ± 0.4	$\left.{ }^{4} \mathrm{He}(\alpha, \alpha){ }^{\mathrm{b}}\right)$
16.918 ± 3	73.6 ± 0.4	$\left.{ }^{4} \mathrm{He}(\alpha, \alpha){ }^{\mathrm{c}}\right)$
16.922 ± 3	74.0 ± 0.4	${ }^{\text {"best" value }}$
17.640 ± 1.0	10.7 ± 0.5	${ }^{7} \mathrm{Li}(\mathrm{p}, \gamma)$
18.155 ± 5	147	${ }^{7} \mathrm{Li}(\mathrm{p}, \gamma)$
18.150 ± 5	138 ± 6	${ }^{10} \mathrm{~B}(\mathrm{~d}, \alpha)$
18.144 ± 5		${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{t})$
18.150 ± 4	138 ± 6	${ }^{\text {"best" value }}$
19.06 ± 20	270 ± 20	${ }^{7} \mathrm{Li}(\mathrm{p}, \gamma)$
19.071 ± 10	270 ± 30	${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{t})$
19.07 ± 30	270 ± 20	${ }^{\text {"best" value }}$
19.21	208 ± 30	${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{d})$
19.22 ± 30	265 ± 30	${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \alpha\right)$
19.26 ± 30	220 ± 30	${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{t})$
19.24 ± 25	230 ± 30	${ }^{\text {"best" value }}$
19.86 ± 50	700 ± 100	${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{t})$
22.05 ± 100	270 ± 70	${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \alpha\right)$
22.63 ± 100	100 ± 50	${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \alpha\right)$
22.98 ± 100	230 ± 50	${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \alpha\right)$

${ }^{\text {a }}$) See table 8.5 in (79AJ01) for references. See also tables 8.7 and 8.8 here.
$\left.{ }^{\text {b }}\right) R$-matrix theory.
${ }^{\text {c }}$) Complex eigenvalue theory.
6. ${ }^{6} \mathrm{Li}(\mathrm{d}, \mathrm{n}){ }^{7} \mathrm{Be}$

$$
Q_{\mathrm{m}}=3.381
$$

$$
E_{\mathrm{b}}=22.2798
$$

Yield curves and cross sections have been measured for $E_{\mathrm{d}}=48 \mathrm{keV}$ to 17 MeV : see (79AJ01, 84AJ01). See also ($83 \mathrm{SZ1A}$). Polarization measurements are reported at $E_{\mathrm{d}}=0.27$ to 3.7 MeV . Comparisons of the populations of ${ }^{7} \mathrm{Be}^{*}(0,0.43)$ and of ${ }^{7} \mathrm{Li}^{*}(0$, 0.48) have been made at many energies, to $E_{\mathrm{d}}=7.2 \mathrm{MeV}$. The n / p ratios are closely equal for analog states, as expected for charge symmetry: see (79AJ01). However, the $\mathrm{n}_{1} / \mathrm{p}_{1}$ yield ratio decreases from 1.05 at $E_{\mathrm{d}}=160 \mathrm{keV}$ to 0.94 at 60 keV : it is suggested that this is due to polarization of the deuteron (85CE12). See also ${ }^{7} \mathrm{Be}, ~(85 \mathrm{WA1C})$ and (84KU15; theor.).
7. ${ }^{6} \operatorname{Li}(\mathrm{~d}, \mathrm{p}){ }^{7} \mathrm{Li}$

$$
Q_{\mathrm{m}}=5.0255
$$

$$
E_{\mathrm{b}}=22.2798
$$

Excitation functions have been measured for $E_{\mathrm{d}}=30 \mathrm{keV}$ to 5.4 MeV : see (79AJ01, $84 \mathrm{AJ} 01)$. The thick target yield of $0.48-\mathrm{MeV} \gamma$-rays is reported from ~ 50 to $\sim 170 \mathrm{keV}$ (85CE12). See also (83SZ1A). An anomaly is observed in the $\mathrm{p}_{1} / \mathrm{p}_{0}$ intensity ratio at $E_{\mathrm{d}}=6.945 \mathrm{MeV}$, corresponding to the first $0^{+} ; T=2$ state, $\Gamma=10 \pm 3 \mathrm{keV}, \Gamma_{\mathrm{p}_{0}} \ll \Gamma_{\mathrm{p}_{1}}$, $\Gamma_{\mathrm{p}_{0}}<\Gamma_{\mathrm{d}}$. Polarization measurements have been reported at $E_{\mathrm{d}}=0.6$ to 10.9 MeV : see (79AJ01). See also ${ }^{7} \mathrm{Li}$ and (84KU15; theor.).
8. (a) ${ }^{6} \mathrm{Li}(\mathrm{d}, \mathrm{d}){ }^{6} \mathrm{Li}$

$$
E_{\mathrm{b}}=22.2798
$$

(b) ${ }^{6} \mathrm{Li}(\mathrm{d}, \mathrm{t})^{5} \mathrm{Li}$
$Q_{\mathrm{m}}=0.59$

The yield of elastically scattered deuterons has been measured for $E_{\mathrm{d}}=2$ to 7.14 MeV . No resonances are observed: see (74AJ01). See also (83HA1D, 85LI1C; theor.). The cross section for tritium production rises rapidly to 190 mb at 1 MeV , then more slowly to 290 mb near 4 MeV : see (74AJ01). For VAP and TAP measurements at $E_{\overrightarrow{\mathrm{d}}}=191$ and 395 MeV see (86GA18).
9. (a) ${ }^{6} \mathrm{Li}(\mathrm{d}, \alpha)^{4} \mathrm{He}$
$Q_{\mathrm{m}}=22.3716$
$E_{\mathrm{b}}=22.2798$
(b) ${ }^{6} \mathrm{Li}(\mathrm{d}, \alpha \mathrm{p})^{3} \mathrm{H}$
$Q_{\mathrm{m}}=2.5576$

Cross sections and angular distributions (reaction (a)) have been measured at $E_{\mathrm{d}}=$ 30 keV to 31 MeV : see (79AJ01, 84AJ01). See also (83SZ1A). A critical analysis of the low-energy data has led to a calculation of the reaction rate parameters for thermonuclear reactions for plasma temperatures of 2 keV to 1 MeV : see (84AJ01). Polarization measurements are reported in the range 0.4 to 11 MeV : see (79AJ01, 84AJ01) and see below.

Pronounced variations are observed in the cross sections and in the analyzing powers. Maxima are seen at $E_{\mathrm{d}}=0.8 \mathrm{MeV}, \Gamma_{\text {lab }} \sim 0.8 \mathrm{MeV}$ and $E_{\mathrm{d}}=3.75 \mathrm{MeV}, \Gamma_{\text {lab }} \sim 1.4 \mathrm{MeV}$.

The 4 MeV peak is also observed in the tensor component coefficients with $L=0,4$ and 8 and in the vector component coefficients: two overlapping resonances are suggested. At higher energies all coefficients show a fairly smooth behavior which suggests that only broad resonances can exist. The results are in agreement with those from reaction 4, that is with two 2^{+}states at $E_{\mathrm{x}}=22.2$ and 25.2 MeV and a 4^{+}state at 25.5 MeV . A strong resonance is seen in the α^{*} channel [to ${ }^{4} \mathrm{He}(20.1), J^{\pi}=0^{+}$] presumably due to ${ }^{8} \mathrm{Be}^{*}(25.2$, 25.5). In addition the ratio of the α^{*} / α differential cross sections at 30° shows a broad peak centered at $E_{\mathrm{x}} \sim 26.5 \mathrm{MeV}$ (which may be due to interference effects) and suggests a resonance-like anomaly at $E_{\mathrm{x}} \sim 28 \mathrm{MeV} . A_{y y}=1$ points are reported at $E_{\mathrm{d}}=5.55 \pm 0.12$ $\left(\theta_{\text {c.m. }}=29.7 \pm 1.0^{\circ}\right)$ and $8.80 \pm 0.25 \mathrm{MeV}\left(\theta_{\text {c.m. }}=90.0 \pm 1.0^{\circ}\right)$ [corresponds to $E_{\mathrm{x}}=26.44$ and 28.87 MeV$]$. For references see (74AJ01, 79AJ01).

At $E_{\mathrm{d}}=6.945 \mathrm{MeV}$, the α_{0} yield shows an anomaly corresponding to ${ }^{8} \mathrm{Be}^{*}(27.49)$, the $0^{+} ; T=2$ analog of ${ }^{8} \mathrm{He}_{\text {g.s. }}$. This $T=2$ state has recently been studied using both polarized deuterons and ${ }^{6} \mathrm{Li}$ ions. The ratio of the partial widths for decay into ${ }^{6} \mathrm{Li}+\mathrm{d}$ states with channel spin 2 and $0, \Gamma_{2} / \Gamma_{1}=0.322 \pm 0.091$ (86 SO 07).

A kinematically complete study of reaction (b) has been reported at $E_{d}=1.2$ to 8.0 MeV : the transition matrix element squared plotted as a function of $E_{\alpha \alpha^{*}}$ (the relative energy in the channel $\left.{ }^{4} \mathrm{He}_{\text {g.s. }}+{ }^{4} \mathrm{He}^{*}(20.1)\left[0^{+}\right]\right)$shows a broad maximum at $E_{\mathrm{x}} \sim 25 \mathrm{MeV}$. Analysis of these results, and of a study of ${ }^{7} \mathrm{Li}(\mathrm{p}, \alpha) \alpha^{*}$ [see reaction 18] which shows a peak of different shape at $E_{\mathrm{x}} \sim 24 \mathrm{MeV}$, indicate the formation and decay of overlapping states of high spatial symmetry, if the observed structures are interpreted in terms of ${ }^{8} \mathrm{Be}$ resonances: see (84AJ01). For other work see (84AJ01). See also ${ }^{6} \mathrm{Li}$, (86ST1E), (84VO1A, 88 KU 1 E ; applications) and (83HA1D, 84KR1B, 84 KU 15 ; theor.).
10. ${ }^{6} \mathrm{Li}(\mathrm{t}, \mathrm{n})^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=16.0225$

At $E_{\mathrm{t}}=2$ to $4.5 \mathrm{MeV}^{8} \mathrm{Be}^{*}(0,3.0,16.6,16.9)$ are populated (84LIZY; prelim.). See also (66LA04, 74AJ01).

Angular distributions have been studied in the range $E\left({ }^{3} \mathrm{He}\right)=0.46$ to 17 MeV and at $E\left({ }^{6} \overrightarrow{\mathrm{Li}}\right)=21 \mathrm{MeV} .{ }^{8} \mathrm{Be}^{*}(0,3.0,16.63,16.92,17.64,18.15,19.0,19.4,19.9)$ are populated in this reaction: see (74AJ01, 79AJ01, 84AJ01). For reaction (b) see (74AJ01) and (87ZA07). See also ${ }^{9}$ B.
12. (a) ${ }^{6} \mathrm{Li}(\alpha, \mathrm{d})^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-1.5669$
(b) ${ }^{6} \mathrm{Li}(\alpha, 2 \alpha)^{2} \mathrm{H} \quad Q_{\mathrm{m}}=-1.4750$

Deuteron groups have been observed to ${ }^{8} \mathrm{Be}^{*}(0,3.0,11.3 \pm 0.4)$. Angular distributions have been measured at $E_{\alpha}=15.8$ to 48 MeV : see (74AJ01, 79AJ01). A study of reaction (b) shows that the peak due to ${ }^{8} \mathrm{Be}^{*}(3.0)$ is best fitted by using $\Gamma=1.2 \pm 0.3 \mathrm{MeV}$. At $E_{\alpha}=42 \mathrm{MeV}$ the $\alpha-\alpha$ FSI is dominated by ${ }^{8} \mathrm{Be}^{*}(0,3.0)$. See also table 8.4 in (74AJ01) and (83BE1H; theor.).
13. (a) ${ }^{6} \mathrm{Li}\left({ }^{6} \mathrm{Li}, \alpha\right)^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=20.805$
(b) ${ }^{6} \mathrm{Li}\left({ }^{6} \mathrm{Li}, \alpha\right) 2{ }^{4} \mathrm{He} \quad Q_{\mathrm{m}}=20.897$
(c) ${ }^{6} \mathrm{Li}\left({ }^{6} \mathrm{Li}, 2 \mathrm{~d}\right) 2{ }^{4} \mathrm{He} \quad Q_{\mathrm{m}}=-2.950$

At $E_{\max }\left({ }^{6} \mathrm{Li}\right)=13 \mathrm{MeV}$ reaction (a) proceeds via ${ }^{8} \mathrm{Be}^{*}(0,3.0,16.6,16.9,22.5)$. The involvement of a state at $E_{\mathrm{x}}=19.9 \mathrm{MeV}(\Gamma=1.3 \mathrm{MeV})$ is suggested. Good agreement with the shapes of the peaks corresponding to ${ }^{8} \mathrm{Be}^{*}(16.6,16.9)$ is obtained by using a simple two-level formula with interference, corrected for the effect of final-state Coulomb interaction, assuming $\Gamma(16.6)=90 \mathrm{keV}$ and $\Gamma(16.9)=70 \mathrm{keV}$: see also table 8.6. The ratio of the intensities of the groups corresponding to ${ }^{8} \mathrm{Be}^{*}(16.6,16.9)$ remains constant for $E\left({ }^{6} \mathrm{Li}\right)=4.3$ to $5.5 \mathrm{MeV}: I(16.6) / I(16.9)=1.22 \pm 0.08$. Partial angular distributions for the α_{0} group have been measured at fourteen energies for $E\left({ }^{6} \mathrm{Li}\right)=4$ to 24 MeV . See (79AJ01) for the references.

At $E\left({ }^{6} \mathrm{Li}\right)=36$ to 46 MeV sequential decay (reaction (b)) via ${ }^{8} \mathrm{Be}$ states at $E_{\mathrm{x}}=$ $3.0,11.4,16.9$ and 19.65 MeV is reported: see (84AJ01). (87LA25) report the possible involvement of the 2^{+}state ${ }^{8} \mathrm{Be}^{*}(22.2)$.

For reaction (c) see (83WA09) and ${ }^{12} \mathrm{C}$ in (85AJ01). See also (83MI10) and (82LA19, 85 NO 1 A ; theor.).
14. ${ }^{7} \mathrm{Li}(\mathrm{p}, \gamma)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=17.2543$

Cross sections and angular distributions have been reported from $E_{\mathrm{p}}=30 \mathrm{keV}$ to 18 MeV . Gamma rays are observed to the ground $\left(\gamma_{0}\right)$ and to the broad, 2^{+}, excited state at $3.0 \mathrm{MeV}\left(\gamma_{1}\right)$ and to ${ }^{8} \mathrm{Be}^{*}(16.6,16.9)\left(\gamma_{3}, \gamma_{4}\right)$. Resonances for both γ_{0} and γ_{1} occur at $E_{\mathrm{p}}=0.44$ and 1.03 MeV , and for γ_{1} alone at $2,4.9,6.0,7.3$, and possibly at 3.1 and 11.1 MeV . In addition broad resonances are reported at $E_{\mathrm{p}} \sim 5 \mathrm{MeV}\left(\gamma_{0}\right)$, $\Gamma \sim 4-5 \mathrm{MeV}$, and at $E_{\mathrm{p}} \sim 7.3 \mathrm{MeV}\left(\gamma_{1}\right), \Gamma \sim 8 \mathrm{MeV}$: see table 8.7. The $E_{\mathrm{p}} \sim 5 \mathrm{MeV}$ resonance ($E_{\mathrm{x}} \sim 22 \mathrm{MeV}$) represents the giant dipole resonance based on ${ }^{8} \mathrm{Be}(0)$ while the γ_{1} resonance, $\sim 2.2 \mathrm{MeV}$ higher, is based on ${ }^{8} \mathrm{Be}^{*}(3.0)$. The γ_{0} and γ_{1} giant resonance peaks each contain about 10% of the dipole sum strength. The main trend between $E_{\mathrm{p}}=8$ and 17.5 MeV is a decreasing cross section.

Table 8.7
${ }^{8} \mathrm{Be}$ levels from $\left.{ }^{7} \mathrm{Li}(\mathrm{p}, \gamma)^{8} \mathrm{Be}^{\mathrm{a}}\right)$

$E_{\text {res }}(\mathrm{keV})$	$\Gamma_{\text {lab }}(\mathrm{keV})$	${ }^{8} \mathrm{Be}^{*}(\mathrm{MeV})$	l_{p}	J^{π}	Res. $\left.^{\mathrm{d}}\right)$
$\left.441.4 \pm 0.5^{\mathrm{b}}\right)$	12.2 ± 0.5	17.640	1	1^{+}	$\gamma_{0}, \gamma_{1}, \gamma_{3}, \gamma_{4}$
1030 ± 5	168	18.155	1	1^{+}	$\gamma_{0}, \gamma_{1}, \gamma_{3}, \gamma_{4}$
1890	150 ± 50	18.91		$\left(2^{-}\right)$	γ_{3}, γ_{4}
2060 ± 20	310 ± 20	19.06		$J=1,2,3$,	γ_{1}
				$\left.\pi=(-)^{\mathrm{c}}\right)$	
(3100)		(20.0)			γ_{1}
4900		21.5			γ_{1}
5000	~ 4500	21.6	0	$1^{-} ; T=1$	γ_{0}
6000		22.5			γ_{1}
7500	~ 8000	23.8	(0)	$\left(1^{-}, 2^{-}\right) ; T=1$	γ_{1}
(11100)		(27.0)			γ_{1}
13000	broad	28.6			

${ }^{\text {a }}$) See tables 8.6 in (74AJ01, 79AJ01) for the references.
${ }^{\text {b }}$) See (59AJ76). See also (83FI13, 84JE1B).
${ }^{\text {c }}$) See, however, reaction 16 .
$\left.{ }^{\text {d }}\right) \gamma_{0}, \gamma_{1}, \gamma_{3}, \gamma_{4}$ represent transitions to ${ }^{8} \mathrm{Be}^{*}(0,3.0,16.6,16.9)$, respectively.

At the $E_{\mathrm{p}}=0.44 \mathrm{MeV}$ resonance $\left(E_{\mathrm{x}}=17.64 \mathrm{MeV}\right)$ the radiation is nearly isotropic consistent with p-wave formation, $J^{\pi}=1^{+}$, with channel spin ration $\sigma\left(J_{\mathrm{c}}=2\right) / \sigma\left(J_{\mathrm{c}}=\right.$ $1)=3.2 \pm 0.5$. Radiative widths for the γ_{0} and γ_{1} decay are displayed in table 8.5. A careful study of the α-breakup of ${ }^{8} \mathrm{Be}^{*}(16.63,16.92)$ [both $J^{\pi}=2^{+}$] for $E_{\mathrm{p}}=0.44$ to 2.45 MeV shows that the non-resonant part of the cross section for production of ${ }^{8} \mathrm{Be}^{*}(16.63)$ is accounted for by an extranuclear direct-capture process. Resonances for production of ${ }^{8} \mathrm{Be}^{*}(16.63,16.92)$ are observed at $E_{\mathrm{p}}=0.44,1.03$ and $1.89 \mathrm{MeV}\left[{ }^{8} \mathrm{Be}^{*}(17.64,18.15\right.$, 18.9)]. The results are consistent with the hypothesis of nearly maximal isospin mixing for ${ }^{8} \mathrm{Be}^{*}(16.63,16.92)$: decay to these states is not observed from the 3^{+}states at $E_{\mathrm{x}}=$ 19 MeV , but rather from the 2^{-}state at $E_{\mathrm{x}}=18.9 \mathrm{MeV}$. Squared $T=1$ components calculated for ${ }^{8} \mathrm{Be}^{*}(16.6,16.9)$ are 40 and 60%, and 95 and 5% for ${ }^{8} \mathrm{Be}^{*}(17.6,18.2)$. The cross section for $\left(\gamma_{3}+\gamma_{4}\right)$ has also been measured for $E_{\mathrm{p}}=11.5$ to $30 \mathrm{MeV}\left(\theta=90^{\circ}\right)$ by detecting the γ-rays and for $E_{\mathrm{p}}=4$ to 13 MeV (at five energies) by detecting the two α particles from the decay of ${ }^{8} \mathrm{Be}^{*}(16.6,16.9)$: a broad bump is observed at $E_{\mathrm{p}}=8 \pm 2 \mathrm{MeV}$ (81MA33). The angle and energy integrated yield only exhausts 8.6% of the classical dipole sum for $E_{\mathrm{p}}=4$ to 30 MeV , suggesting that this structure does not represent the GDR built on ${ }^{8} \mathrm{Be}^{*}(16.6,16.9)$. A weak, very broad $[\Gamma \geq 20 \mathrm{MeV}]$ peak may also be present at $E_{\mathrm{x}}=20-30 \mathrm{MeV}$. A direct capture calculation adequately describes the observed cross section (81MA33). A study of the γ-decay of ${ }^{8} \mathrm{Be}^{*}(17.64,18.15)$ shows no evidence for a pseudoscalar particle postulated to account for narrow peaks in e^{+}spectra in heavy-ion reactions (88SA2A). For the earlier references see (79AJ01). See also (83CH1C), (86WE1D), (84DA1H; astrophysics), (88KI1C; applied) and (83GO1B, 84SE16, 85GO1B,

87KI1C; theor.).
15. ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})^{7} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.644$

$$
E_{\mathrm{b}}=17.2543
$$

Measurements of cross sections have been reported for $E_{\mathrm{p}}=1.9$ to 199.1 MeV [see (74AJ01, 79AJ01, 84AJ01)] and in the range 60.1 to 480.0 MeV (84DA22; activation σ). Polarization measurements have been reported at $E_{\mathrm{p}}=2.05$ to $5.5 \mathrm{MeV}, 30$ and 50 MeV [see (74AJ01)] and at $E_{\overrightarrow{\mathrm{p}}}=52.8 \mathrm{MeV}$ (88HE08) $\left[K_{z}^{z^{\prime}}=0.07 \pm 0.02\right.$]. See also below.

The yield of ground state neutrons $\left(\mathrm{n}_{0}\right)$ rises steeply from threshold and shows pronounced resonances at $E_{\mathrm{p}}=2.25$ and 4.9 MeV . The yield of n_{1} also rises steeply from threshold and exhibits a broad maximum near $E_{\mathrm{p}}=3.2 \mathrm{MeV}$ and a broad dip at $E_{\mathrm{p}} \sim$ 5.5 MeV , also observed in the p_{1} yield. Multi-channel scattering length approximation analysis of the 2^{-}partial wave near the n_{0} threshold indicates that the 2^{-}state at $E_{\mathrm{x}}=18.9 \mathrm{MeV}$ is virtual relative to the threshold and that its width $\Gamma=50 \pm 20 \mathrm{keV}$. The ratio of the cross section for ${ }^{7} \mathrm{Li}(\mathrm{p}, \gamma)^{8} \mathrm{Be}^{*}(18.9) \rightarrow{ }^{8} \mathrm{Be}^{*}(16.6+16.9)+\gamma$ to the thermal neutron capture cross section ${ }^{7} \mathrm{Be}(\mathrm{n}, \gamma)^{8} \mathrm{Be}^{*}(18.9) \rightarrow{ }^{8} \mathrm{Be}^{*}(16.6+16.9)+\gamma$, provides a rough estimate of the isospin impurity of ${ }^{8} \mathrm{Be}^{*}(18.9): \sigma_{\mathrm{p}, \gamma} / \sigma_{\mathrm{n}, \gamma} \sim 1.5 \times 10^{-5}$. The $T=1$ isospin impurity is $\leq 10 \%$ in intensity. See also reaction 23. See (79AJ01, 84AJ01).

The structure at $E_{\mathrm{p}}=2.25 \mathrm{MeV}$ is ascribed to a $3^{+}, T=(1), l=1$ resonance with $\Gamma_{\mathrm{n}} \sim \Gamma_{\mathrm{p}}$ and $\gamma_{\mathrm{n}}^{2} / \gamma_{\mathrm{p}}^{2}=3$ to 10: see (66LA04). At higher energies the broad peak in the n_{0} yield at $E_{\mathrm{p}}=4.9 \mathrm{MeV}$ can be fitted by $J^{\pi}=3^{(+)}$with $\Gamma=1.1 \mathrm{MeV}, \gamma_{\mathrm{n}}^{2} \sim \gamma_{\mathrm{p}}^{2}$. The behavior of the n_{1} cross section can be fitted by assuming a 1^{-}state at $E_{\mathrm{x}}=19.5 \mathrm{MeV}$ and a $J=0,1,2$, positive-parity state at 19.9 MeV [presumably the $20.1-20.2 \mathrm{MeV}$ states reported in reaction 4]. In addition the broad dip at $E_{\mathrm{p}} \sim 5.5 \mathrm{MeV}$ may be accounted for by the interference of two 2^{+}states. See table 8.8 in (79AJ01). The 0° differential cross section increases rapidly to $\sim 35 \mathrm{mb} / \mathrm{sr}$ at 30 MeV and then remains constant to 100 MeV : see (85 BO 1 C). The total reaction cross section $\left[{ }^{7} \mathrm{Be}{ }^{*}(0,0.43)\right]$ decreases inversely with E_{p} in the range 60.1 to 480.0 MeV (84DA22) [note: the values of σ_{t} supersede those reported earlier]. The transverse polarization transfer, $D_{\mathrm{NN}}\left(0^{\circ}\right)$, for the g.s. transition has been measured at $E_{\overrightarrow{\mathrm{p}}}=160 \mathrm{MeV}$ (84TA07). See also ($86 \mathrm{MC09}$; $\left.E_{\overrightarrow{\mathrm{p}}}=800 \mathrm{MeV}\right),(87 \mathrm{WA} 1 \mathrm{~K}),(84 \mathrm{BA} 1 \mathrm{U}),(85 \mathrm{CA} 41 ;$ astrophysics), (83LO12; applications), (86RA1F, 87TA22) and (88GU1F; theor.).
16. (a) ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{p})^{7} \mathrm{Li}$

$$
E_{\mathrm{b}}=17.2543
$$

(b) ${ }^{7} \mathrm{Li}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{7} \mathrm{Li}^{*}$

Absolute differential cross sections for elastic scattering have been reported for $E_{\mathrm{p}}=0.4$ to 12 MeV and at $14.5,20.0$ and 31.5 MeV . The yields of inelastically scattered protons (to ${ }^{7} \mathrm{Li}^{*}(0.48)$) and of $0.48 \mathrm{MeV} \gamma$-rays have been measured for $E_{\mathrm{p}}=0.8$ to 12 MeV : see (74AJ01). Polarization measurements have been reported at a number of energies in the range $E_{\mathrm{p}}=0.67 \mathrm{MeV}$ to $2.1 \mathrm{GeV} / c$ [see (74AJ01, 79AJ01, 84AJ01)], at $E_{\overrightarrow{\mathrm{p}}}=1.89$ to

Table 8.8
${ }^{8}$ Be levels from ${ }^{7} \mathrm{Li}\left(\mathrm{p}, \mathrm{p}_{0}\right)^{7} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}\left(\mathrm{p}, \mathrm{p}_{1}\right)^{7} \mathrm{Li}{ }^{*}$ a)

$E_{\mathrm{p}}(\mathrm{MeV})$	$\Gamma_{\text {lab }}(\mathrm{keV})$	${ }^{8} \mathrm{Be}^{*}(\mathrm{MeV})$	J^{π}	$\Gamma_{\mathrm{p}^{\prime}}(\mathrm{keV})$
0.441	$\left.12.2^{\mathrm{c}}\right)$	$\left.17.640^{\mathrm{h}}\right)$	1^{+}	
1.030 ± 0.005	168	18.155	1^{+}	~ 6
$\left.1.88^{\mathrm{b}}\right)$	55 ± 20	18.90	2^{-}	
2.05	$\simeq 400$	19.05	3^{+}	small
2.25		19.22	3^{+}	small
$\left.2.5^{\mathrm{d}}\right)$	$\simeq 750$	19.4	1^{-}	res
$\left.\mathrm{e}^{-}\right)$				
$\left.4.2 \pm 0.2^{\mathrm{f}}\right)$	1800 ± 200	20.9	4^{-}	(res)
5.6	broad	22.2	$\left.\mathrm{~g}^{\mathrm{g}}\right)$	res

${ }^{\text {a }}$) See references in table 8.9 (79AJ01).
$\left.{ }^{\text {b }}\right)(\mathrm{p}, \mathrm{n})$ threshold: see reaction 15 .
$\left.{ }^{\text {c }}\right) \theta_{\mathrm{p}}^{2}=0.064$.
${ }^{\text {d }}$) See also table $8.8, \gamma_{\mathrm{n} 1}^{2}$ and $\gamma_{\mathrm{p} 1}^{2} \simeq 1 \%$ of Wigner limit.
${ }^{e}$) $\mathrm{A} 2^{+}$state at $E_{\mathrm{x}} \sim 20 \mathrm{MeV}$ appears to be necessary to account for the cross sections: see table 8.3 and reaction 4 .
${ }^{\mathrm{f}}$) Reduced width is 70% of the Wigner limit.
${ }^{\text {g }}$) May be due to two 2^{+}states. See also reaction 15 .
${ }^{\text {h }}$) See also (81BA36; theor.).
2.59 MeV (86SA1P; p p_{0}; prelim.) and at 65 MeV (87TO06; continuum; prelim.). See also (83GL1A).

Anomalies in the elastic scattering appear at $E_{\mathrm{p}}=0.44,1.03,1.88,2.1,2.5,4.2$ and 5.6 MeV . Resonances at $E_{\mathrm{p}}=1.03,3$ and 5.5 MeV and an anomaly at $E_{\mathrm{p}}=1.88 \mathrm{MeV}$ appear in the inelastic channel. A phase-shift analysis and a review of the cross-section data show that the 0.44 and 1.03 MeV resonances are due to 1^{+}states which are a mixture of ${ }^{5} \mathrm{P}_{1}$ and ${ }^{3} \mathrm{P}_{1}$ with a mixing parameter of $+25^{\circ}$; that the 2^{-}state at the neutron threshold ($E_{\mathrm{p}}=$ 1.88 MeV) has a width of about 50 keV [see also reaction 14]; and that the $E_{\mathrm{p}}=2.05 \mathrm{MeV}$ resonance corresponds to a 3^{+}state. The anomalous behavior of the ${ }^{5} \mathrm{P}_{3}$ phase around $E_{\mathrm{p}}=2.2 \mathrm{MeV}$ appears to result from the coupling of the two 3^{+}states [resonances at $E_{\mathrm{p}}=2.05$ and 2.25 MeV$]$. The ${ }^{3} \mathrm{~S}_{1}$ phase begins to turn positive after 2.2 MeV suggesting a 1^{-}state at $E_{\mathrm{p}}=2.5 \mathrm{MeV}$: see table 8.8. The polarization data show structures at $E_{\mathrm{p}}=1.9$ and 2.3 MeV . A phase-shift analysis of the (p, p) data finds no indication of a possible 1^{-}state with $17.4<E_{\mathrm{x}}<18.5 \mathrm{MeV}$ [see, however, reaction 15 in (79AJ01)].

An attempt has been made to observe the $T=2$ state $\left[{ }^{8} \mathrm{Be}^{*}(27.47)\right]$ in the $\mathrm{p}_{0}, \mathrm{p}_{1}$ and p_{2} yields. None of these shows the effect of the $T=2$ state. Table 8.5 in (84AJ01) displays the upper limit for $\Gamma_{\mathrm{p}_{0}} / \Gamma$.

The proton total reaction has been reported for $E_{\mathrm{p}}=25.1$ to 48.1 MeV by (85CA36). (87CH33, 87PO03) have studied p- ${ }^{7} \mathrm{Li}$ correlations involving ${ }^{8} \mathrm{Be}^{*}(17.64,18.15,18.9+$ $19.1+19.2$). See also ${ }^{7} \mathrm{Li}(84 \mathrm{BA} 1 \mathrm{U}),(86 \mathrm{BA} 1 \mathrm{~N}),(86 \mathrm{RA} 1 \mathrm{D}$; applications) and (86HA1K, 88GU1F; theor.) and p. 84.
17. ${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{d}){ }^{6} \mathrm{Li}$

$$
Q_{\mathrm{m}}=-5.025
$$

$$
E_{\mathrm{b}}=17.2543
$$

The excitation function for d_{0} measured for $E_{\mathrm{p}}=11.64$ to 11.76 MeV does not show any effect from the $T=2$ state $\left[{ }^{8} \mathrm{Be}^{*}(27.47)\right]$: see (79AJ01). See also (84BA1T).
18. ${ }^{7} \mathrm{Li}(\mathrm{p}, \alpha){ }^{4} \mathrm{He}$

$$
Q_{\mathrm{m}}=17.3462
$$

$$
E_{\mathrm{b}}=17.2543
$$

The cross section increases from $(4.3 \pm 0.9) \times 10^{-5} \mathrm{mb}$ at $E_{\mathrm{p}}=28.1 \mathrm{keV}$ to 6.33 mb at 998 keV . Astrophysical S-factors have been calculated over that range: $S(0)=52 \pm$ $8 \mathrm{keV} \cdot \mathrm{b}$ (86RO13). For the earlier work see (84AJ01).

Excitation functions and angular distributions have been measured at many energies in the range $E_{\mathrm{p}}=23 \mathrm{keV}$ to 62.5 MeV : see (79AJ01, 84 AJ 01). Polarization measurements have been carried out for $E_{\mathrm{p}}=0.8$ to 10.6 MeV [see (AJ74)]: in the range $E_{\mathrm{p}}=3$ to 10 MeV the asymmetry has one broad peak in the angular distribution at all energies except near 5 MeV ; the peak value is 0.98 ± 0.04 at 6 MeV and is essentially 1.0 for $E_{\mathrm{p}}=8.5$ to 10 MeV .

Broad resonances are reported to occur at $E_{\mathrm{p}}=3.0 \mathrm{MeV}[\Gamma \simeq 1 \mathrm{MeV}]$ and at $\sim 5.7 \mathrm{MeV}$ $[\Gamma \sim 1 \mathrm{MeV}]$. Structures are also reported at $E_{\mathrm{p}}=6.8 \mathrm{MeV}$ and at $E_{\mathrm{p}}=9.0 \mathrm{MeV}$: see (79AJ01). The 9.0 MeV resonance is also reflected in the behavior of the A_{2} coefficient. The experimental data on yields and on polarization appear to require including two 0^{+} states [at $E_{\mathrm{x}} \sim 19.7$ and 21.8 MeV] with very small α-particle widths, and four 2^{+}states [at $E_{\mathrm{x}} \sim 15.9,20.1,22.2$ and 25 MeV]. See, however, reaction 4. A 4^{+}state near 20 MeV was also introduced in the calculation but its contribution was negligible. The observed discrepancies are said to be probably due to the assumption of pure $T=0$ for these states. At $E_{\mathrm{p}}=11.64$ to 11.76 MeV the excitation function does not show any effect due to the $T=2$ state at $E_{\mathrm{x}}=27.47 \mathrm{MeV}$. See (79AJ01) for references.

A study of the ${ }^{7} \mathrm{Li}(\mathrm{p}, \alpha)^{4} \mathrm{He}^{*}$ reaction to ${ }^{4} \mathrm{He}^{*}(20.1)\left[0^{+}\right]$at $E_{\mathrm{p}}=4.5$ to 12.0 MeV shows a broad maximum at $E_{\mathrm{x}} \sim 24 \mathrm{MeV}$: see reaction 9 and (84AJ01). See also (86ZA09), (84HA1M, 84YA1A, 85BO1K, 85CA41, 85DE1K, 86BO1H, 87AS05, 87KA1R, 87RO1D, 88BA1H, 88FO1A; astrophysics), (86RA1D, 86ST1E, 86TU1B; applications) and (84BL21, 84KR1B; theor.).
19. (a) ${ }^{7} \mathrm{Li}(\mathrm{d}, \mathrm{n})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=15.0297$
(b) ${ }^{7} \mathrm{Li}(\mathrm{d}, \mathrm{n}) 2{ }^{4} \mathrm{He}$
$Q_{\mathrm{m}}=15.1216$

The population of ${ }^{8} \mathrm{Be}^{*}(0,3.0,16.6,16.9,17.6,18.2,18.9,19.1,19.2)$ has been reported in reaction (a). For the parameters of ${ }^{8} \mathrm{Be}^{*}(3.0)$ see table 8.4 in (74AJ01). Angular distributions of n_{0} and n_{1} have been reported at $E_{\mathrm{d}}=0.7$ to 3.0 MeV and at $E_{\mathrm{d}}=$ 15.25 MeV [see (74AJ01, 79AJ01)] and at 0.19 MeV (83DA32, 87DA25) and 0.40 and 0.46 MeV ($84 \mathrm{GA} 07 ; \mathrm{n}_{0}$ only). The angular distributions of the neutrons to ${ }^{8} \mathrm{Be}^{*}(16.6$, $17.6,18.2$) are fit by $l_{\mathrm{p}}=1$: see (74AJ01).

Reaction (b) at $E_{\mathrm{d}}=2.85$ to 14.97 MeV proceeds almost entirely through the excitation and sequential decay of ${ }^{8} \mathrm{Be}^{*}(16.6,16.9)(87 \mathrm{WA} 21) .{ }^{8} \mathrm{Be}^{*}(11.4)$ may also be involved $\left[E_{\mathrm{x}}=\right.$ $\left.11.4 \pm 0.05 \mathrm{MeV}, \Gamma_{\text {c.m. }}=2.8 \pm 0.2 \mathrm{MeV}\right]$ as may state(s) at $E_{\mathrm{x}} \sim 20 \mathrm{MeV}$: see (79AJ01). See also ${ }^{9} \mathrm{Be},(83 \mathrm{BL} 17,86 \mathrm{BA} 40)$, (86LE1E; applications) and (83MU13, 84BL21; theor.).
20.
(a) ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=11.7608$
(b) ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \alpha \mathrm{d}\right){ }^{4} \mathrm{He}$
$Q_{\mathrm{m}}=11.8527$

Deuteron groups are observed to ${ }^{8} \mathrm{Be}^{*}(0,3.0,16.6,16.9,17.6,18.2)$. For the parameters of ${ }^{8} \mathrm{Be}^{*}(3.0)$ see table 8.4 in (74AJ01). For the $J^{\pi}=2^{+}$mixed isospin states see table 8.6. Angular distributions have been measured for $E\left({ }^{3} \mathrm{He}\right)=0.9$ to 24.3 MeV and at $E\left({ }^{3} \mathrm{He}\right)=$ 33.3 MeV : see (74AJ01, 79AJ01, 84AJ01). Reaction (b) has been studied at $E\left({ }^{3} \mathrm{He}\right)=$ 5.0 MeV (85DA29) and at 9,11 and 12 MeV (86ZA09). ${ }^{8} \mathrm{Be}^{*}(0,3.0)$ are reported to be involved (85DA29). See also ${ }^{10} \mathrm{~B}$ and (83KU17; theor.).
21. (a) ${ }^{7} \mathrm{Li}(\alpha, \mathrm{t})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-2.5597$
(b) ${ }^{7} \mathrm{Li}(\alpha, \alpha \mathrm{t})^{4} \mathrm{He}$
$Q_{\mathrm{m}}=-2.4678$

Angular distributions have been measured to $E_{\alpha}=50 \mathrm{MeV}$: see (66LA04, 74AJ01, 79AJ01). The ground state of ${ }^{8} \mathrm{Be}$ decays isotropically in the c.m. system: $J^{\pi}=0^{+}$. Sequential decay (reaction (b)) is reported at $E_{\alpha}=50 \mathrm{MeV}$ via ${ }^{8} \mathrm{Be}^{*}(0,3.0,11.4,16.6$, $16.9,19.9$): see (74AJ01). See also (83BE1H, 85PU03; theor.).
22. ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{He}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=7.280$
${ }^{8} \mathrm{Be}^{*}(0,3.0)$ have been populated in this reaction $\left(87 \mathrm{BO} 1 \mathrm{M} ; E\left({ }^{7} \mathrm{Li}\right)=22 \mathrm{MeV}\right)$. See also (88AL1G).
23.
(a) ${ }^{7} \mathrm{Be}(\mathrm{n}, \mathrm{p})^{7} \mathrm{Li}$
$Q_{\mathrm{m}}=1.644$
$E_{\mathrm{b}}=18.8985$
(b) ${ }^{7} \mathrm{Be}(\mathrm{n}, \alpha)^{4} \mathrm{He}$
$Q_{\mathrm{m}}=18.9905$
(c) ${ }^{7} \mathrm{Be}(\mathrm{n}, \gamma \alpha){ }^{4} \mathrm{He}$
$Q_{\mathrm{m}}=18.9905$

The total (n, p) cross section has been measured from $25 \times 10^{-3} \mathrm{eV}$ to 13.5 keV . For thermal neutrons the cross sections to ${ }^{7} \mathrm{Li}^{*}(0,0.48)$ are 38400 ± 800 and $420 \pm 120 \mathrm{~b}$, respectively. A departure from a $1 / v$ shape in σ_{t} is observed for $E_{\mathrm{n}}>100 \mathrm{eV}$. The astrophysical reaction rate is $\sim \frac{1}{3}$ lower than that previously used: this could lead to an increase in the calculated rate of production of ${ }^{7} \mathrm{Li}$ in the Big Bang by as much as 20%. A multi-level R-matrix analysis of the data indicates $\Gamma=122 \mathrm{keV}$ for the 2^{-}state ${ }^{8} \mathrm{Be}^{*}(18.9)$,
and a $T=1$ impurity of $\sim 24 \%$ (88 KO 03). At thermal energies the (n, α) cross section is $\leq 0.1 \mathrm{mb}$ and the $(\mathrm{n}, \gamma \alpha)$ cross section is 155 mb : see (74AJ01). See also (87GLZZ, 87GL1D), (79AJ01, 88BO15) and (84YA1A, 85BO1K, 85DE1K; astrophysics).

$$
\text { 24. }{ }^{8} \mathrm{Li}\left(\beta^{-}\right)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=16.0039
$$

${ }^{8} \mathrm{Li}$ decays to the broad $3.0 \mathrm{MeV}, 2^{+}$level of ${ }^{8} \mathrm{Be}$, which decays into two α-particles. Both the β-spectrum and the resulting α-spectrum have been extensively studied: see (55AJ61, 66LA04). See also ${ }^{8} \mathrm{~B}\left(\beta^{+}\right)$. Studies of the distribution of recoil momenta and neutrino recoil correlations indicate that the decay is overwhelmingly GT, axial vector [see reaction 1 in $\left.{ }^{8} \mathrm{Li}\right]$ and that the ground state of ${ }^{8} \mathrm{Li}$ has $J^{\pi}=2^{+}$: see (80 MC 07).
(86WA01) has performed a many-level one-channel approximation R-matrix analysis of the β-delayed α-particle spectra in the decay of both ${ }^{8} \mathrm{Li}$ and ${ }^{8} \mathrm{~B}$, obtained by (71WI05) [as well as of the $L=2 \alpha-\alpha$ phase shifts]. Warburton finds that there is no need to introduce "intruder" states below $E_{\mathrm{x}} \sim 26 \mathrm{MeV}$ [see, e.g., (74AJ01)]. He extracts the GT matrix elements for the decay to ${ }^{8} \mathrm{Be}^{*}(3.0)$ and the doublet near 16 MeV ; and he points out the difficulties in extracting meaningful E_{x} and Γ values from the $\beta^{ \pm}$decay for ${ }^{8} \mathrm{Be}^{*}(3.0)$, as well as the $\log f t$ values for the transitions to that state (86 WA 01).

Beta- α angular correlations have been measured for the decays of ${ }^{8} \mathrm{Li}$ and ${ }^{8} \mathrm{~B}$ for the entire final-state distribution: see table 8.10 in (79AJ01). (80MC07) have measured the $\beta-\nu-\alpha$ correlations as a function of E_{x} in the decay of ${ }^{8} \mathrm{Li}$ and ${ }^{8} \mathrm{~B}$, detecting both α particles involved in the ${ }^{8} \mathrm{Be}$ decay. They find that the decay is GT for $2<E_{\mathrm{x}}<8 \mathrm{MeV}$. The absence of Fermi decay strength is expected because the isovector contributions from the tails of ${ }^{8} \mathrm{Be}^{*}(16.6,16.9)$ interfere destructively in this energy region: see (80 MC 07). The measurement of the β-decay asymmetry as a function of E_{β} is reported by (86BI1D, 85BI1B; prelim.). (86NA1C; prelim.) have measured the β-spectrum and compared it with the spectrum predicted from the α-breakup data. See also (84KO25, 85GR1A), (86HA1P, 88WA1E), (86MA1T, 86NA1C; astrophysics) and (83KU17, 84BA1J, 86QU1B, 87LY05, 88BA75; theor.).
25. ${ }^{8} \mathrm{~B}\left(\beta^{+}\right)^{8} \mathrm{Be}$

$$
Q_{\mathrm{m}}=17.979
$$

The decay [see reaction 1 in ${ }^{8} \mathrm{~B}$] proceeds mainly to ${ }^{8} \mathrm{Be}^{*}(3.0)$ [see table 8.4 in (74AJ01) for its parameters]. Detailed study of the high-energy portion of the α-spectrum reveals a maximum near $E_{\alpha}=8.3 \mathrm{MeV}$, corresponding to transitions to ${ }^{8} \mathrm{Be}^{*}(16.63)$, for which parameters $E_{\mathrm{x}}=16.67 \mathrm{MeV}, \Gamma=150$ to 190 keV or $E_{\mathrm{x}}=16.62 \mathrm{MeV}, \Gamma=95 \mathrm{keV}$ are derived: see (74AJ01). Log $f t$ for the transition to ${ }^{8} \mathrm{Be}^{*}(16.6)$ is 3.3 . An analysis by (86WA01) of the β^{+}delayed α-spectrum is described in reaction 24. See also (88WA1E) and (88BA75; theor.). The β^{+}spectrum has been measured by (87 NA 08) for momenta greater than $9 \mathrm{MeV} / c$. Then using the α spectra from (86 WA 01) the ${ }^{8} \mathrm{~B}$ neutrino spectrum is calculated. The average cross section for the "solar neutrino" ${ }^{37} \mathrm{Cl}\left(\nu_{\mathrm{e}}, \mathrm{e}^{-}\right){ }^{37} \mathrm{Ar}$ reaction is then $(1.07 \pm 0.02) \times 10^{-42} \mathrm{~cm}^{2}$ [certain corrections may increase this value by as much
as 4%] (87 NA 08). See also (82BA1J, 83CO1D, $83 \mathrm{FO} 1 \mathrm{~A}, ~ 83 \mathrm{HA} 1 \mathrm{~B}, 83 \mathrm{VO} 1 \mathrm{C}, ~ 84 \mathrm{DA} 1 \mathrm{H}$, $84 \mathrm{HA} 1 \mathrm{M}, ~ 85 \mathrm{BA} 1 \mathrm{~N}, ~ 85 \mathrm{BA} 1 \mathrm{M}, ~ 85 \mathrm{CH} 1 \mathrm{~B}, ~ 86 \mathrm{BA} 21, ~ 86 \mathrm{BE} 1 \mathrm{~K}, ~ 86 \mathrm{DE} 1 \mathrm{H}, 86 \mathrm{GR} 04,86 \mathrm{HA} 1 \mathrm{I}$, $86 \mathrm{MA} 1 \mathrm{~T}, ~ 86 \mathrm{RO} 1 \mathrm{~N}, ~ 86 \mathrm{WO} 1 \mathrm{~B}, ~ 87 \mathrm{BA} 1 \mathrm{X}, ~ 87 \mathrm{BA} 1 \mathrm{U}, ~ 87 \mathrm{CH} 1 \mathrm{G}, ~ 87 \mathrm{FR} 1 \mathrm{C}, ~ 87 \mathrm{FU} 1 \mathrm{G}, ~ 87 \mathrm{KR} 10$, 87RI1E, 87WE1C, 88BA1H, 88EW1A, 88HA1M; astrophysics).
26.
(a) ${ }^{9} \mathrm{Be}(\gamma, n){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.6654$
(b) ${ }^{9} \mathrm{Be}(\mathrm{n}, 2 \mathrm{n})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.6654$
(c) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{pn})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.6654$
(d) ${ }^{9} \mathrm{Be}(\mathrm{t}, \mathrm{tn})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.6654$
(e) ${ }^{9} \mathrm{Be}(\alpha, \alpha \mathrm{n}){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.6654$

Neutron groups to ${ }^{8} \mathrm{Be}^{*}(0,3.0)$ have been studied for $E_{\gamma}=18$ to 26 MeV : see (74AJ01, 79AJ01) and ${ }^{9} \mathrm{Be}$. Reaction (b) appears to proceed largely via excited states of ${ }^{9} \mathrm{Be}$ with subsequent decay mainly to ${ }^{8} \mathrm{Be} *(3.0)$: see ($66 \mathrm{LA} 04,74 \mathrm{AJ} 01$), ${ }^{9} \mathrm{Be}$ and ${ }^{10} \mathrm{Be}$. Reaction (c) has been studied at $E_{\mathrm{p}}=45$ and 47 MeV : the reaction primarily populates ${ }^{8} \mathrm{Be}^{*}(0,3.0)$: see (79AJ01), ${ }^{9} \mathrm{Be}$ and ${ }^{9} \mathrm{~B}$. For work at $E_{\mathrm{p}}=1 \mathrm{GeV}$ see (85BE1J, 85DO1B). For reactions (d) and (e) see (74AJ01) and ${ }^{9} \mathrm{Be}$. For reaction (e) see (79AJ01).
27.
(a) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{d})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=0.5592$
(b) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{pn})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.6654$
(c) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{d}) 2{ }^{4} \mathrm{He}$
$Q_{\mathrm{m}}=0.6511$

Angular distributions of deuteron groups have been reported at $E_{\mathrm{p}}=0.11$ to 185 MeV [see (74AJ01, 79AJ01, 84AJ01)] and at 18.6 MeV (86GO1N, $87 \mathrm{GO} 27 ; \mathrm{d}_{0}$ and d_{1}) and 50 and 72 MeV (84 ZA 07 ; to ${ }^{8} \mathrm{Be}^{*}(0,3.0,16.9,19.2)$). For spectroscopic factors see (79AJ01, $84 \mathrm{ZA} 07)$. The angular distributions to ${ }^{8} \mathrm{Be}^{*}(0,3.0,16.9,17.6,18.2,19.1)$ are consistent with $l_{\mathrm{n}}=1$: see (74AJ01).

An anomalous group is reported in the deuteron spectra between the d_{0} and the d_{1} groups. At $E_{\mathrm{p}}=26.2 \mathrm{MeV}$, its (constant with θ) $E_{\mathrm{x}}=0.6 \pm 0.1 \mathrm{MeV}$. Analyses of the spectral shape and transfer cross sections are consistent with this "ghost" feature being part of the Breit-Wigner tail of the $J^{\pi}=0^{+}{ }^{8} \mathrm{Be}_{\text {g.s. }}$: it contains $<10 \%$ of the g.s. transfer strength. An analysis of reported $\Gamma_{\text {c.m. }}$ for ${ }^{8} \mathrm{Be}^{*}(3.0)$ in this reaction shows that there is no E_{p} dependence. The average $\Gamma_{\text {c.m. }}$ at $E_{\mathrm{p}}=14.3$ and 26.2 MeV is $1.47 \pm 0.04 \mathrm{MeV}$. $\Gamma_{\text {c.m. }}=5.5 \pm 1.3 \mathrm{eV}$ for ${ }^{8} \mathrm{Be}_{\mathrm{g} . \mathrm{s} .}$ and $5.2 \pm 0.1 \mathrm{MeV}$ for ${ }^{8} \mathrm{Be}^{*}(11.4)$. Spectroscopic factors for ${ }^{8} \mathrm{Be}_{\text {g.s. }}$ (including the "ghost" anomaly) and ${ }^{8} \mathrm{Be}^{*}(3.0)$ are 1.23 and 0.22 respectively at $E_{\mathrm{p}}=14.3 \mathrm{MeV}$, and 1.53 and 1.02 respectively at $E_{\mathrm{p}}=26.2 \mathrm{MeV}$. The width of ${ }^{8} \mathrm{Be}^{*}(3.0)$ is not appreciably $(<10 \%)$ reaction dependent but the nearness of the decay threshold indicates that care must be taken in comparing decay widths from reaction and from scattering data: $E_{\mathrm{R}}=3130 \pm 25 \mathrm{keV}$ (resonance energy in the $\alpha+\alpha$ c.m. system) $\left[E_{\mathrm{x}}=3038 \pm 25 \mathrm{keV}\right]$ and $\Gamma_{\text {c.m. }}=1.50 \pm 0.02 \mathrm{MeV}$ for ${ }^{8} \mathrm{Be}^{*}(3.0)$: the corresponding observed
and formal reaction widths and channel radii are $\gamma_{\mathrm{R}}^{2}=580 \pm 50 \mathrm{keV}, \gamma_{\lambda}^{2}=680 \pm 100 \mathrm{keV}$ and $\mathrm{s}=4.8 \mathrm{fm}$. See (79AJ01) for the earlier work. A study of the continuum part of the inclusive deuteron spectra is reported at $E_{\overrightarrow{\mathrm{p}}}=60 \mathrm{MeV}$ (87KA25). For reaction (b) see (88BO1H). For reaction (c) [FSI through $\left.{ }^{8} \mathrm{Be}^{*}(0,3.0)\right]$ see (74AJ01, 84AJ01). See also (85PU03; theor.) and ${ }^{10} \mathrm{~B}$.
28. (a) ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{t})^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=4.5919$
(b) ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{t}) 2{ }^{4} \mathrm{He} \quad Q_{\mathrm{m}}=4.6838$

Angular distributions have been measured for $E_{\mathrm{d}}=0.3$ to 28 MeV [see (79AJ01)], at $E_{\mathrm{d}}=18 \mathrm{MeV}\left(88 \mathrm{GO} 02 ; \mathrm{t}_{0}, \mathrm{t}_{1}\right)$ and at $E_{\overrightarrow{\mathrm{d}}}=2.0$ to $2.8 \mathrm{MeV}\left(84 \mathrm{AN} 1 \mathrm{D} ; \mathrm{t}_{0}\right)$. At $E_{\mathrm{d}}=28 \mathrm{MeV}$ angular distributions of triton groups to ${ }^{8} \mathrm{Be}^{*}(16.6,16.9,17.6,18.2,19.1,19.2,19.8)$ have been analyzed using DWUCK: absolute $C^{2} S$ are $0.074,1.56,0.22,0.17,0.41,0.48,0.40$ respectively. See also table 8.6. An isospin amplitude impurity of 0.21 ± 0.03 is found for ${ }^{8} \mathrm{Be}^{*}(17.6,18.2)$: see (79AJ01).

A kinematically complete study of reaction (b) at $E_{\mathrm{d}}=26.3 \mathrm{MeV}$ indicates the involvement of ${ }^{8} \mathrm{Be}^{*}(0,3.0,11.4,16.9,19.9+20.1)$: see (74AJ01). (86PA1E; prelim.) report $E_{\mathrm{x}}=3.10 \pm 0.15 \mathrm{MeV}, \Gamma \sim 0.9-1.3 \mathrm{MeV}$. See also (88NE1A; theor.).
29. (a) ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \alpha\right)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=18.9124$
(b) ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \alpha\right) 2{ }^{4} \mathrm{He} \quad Q_{\mathrm{m}}=19.0043$

Angular distributions have been measured in the range $E\left({ }^{3} \mathrm{He}\right)=3.0$ to 26.7 MeV and at $E\left({ }^{3} \overrightarrow{\mathrm{He}}\right)=33.3 \mathrm{MeV}\left(\right.$ to ${ }^{8} \mathrm{Be}^{*}(16.9,17.6,19.2)$) $[S=1.74,0.72,1.17$, assuming mixed isospin for $\left.{ }^{8} \mathrm{Be}^{*}(16.9)\right]$. The possibility of a broad state at $E_{\mathrm{x}} \sim 25 \mathrm{MeV}$ is also suggested: see (79AJ01). See also (87VA1I).

Reaction (b) has been studied at $E\left({ }^{3} \mathrm{He}\right)=1.0$ to 10 MeV [see (79AJ01, 84AJ01)], at $E\left({ }^{3} \mathrm{He}\right)=3$ to $12 \mathrm{MeV}(86 \mathrm{LA} 26)$ and at 11.9 to 24.0 MeV (87WA25). The reaction is reported to proceed via ${ }^{8} \mathrm{Be}^{*}(0,3.0,11.4,16.6,16.9,19.9,22.5)$: see (79AJ01) and (86LA26, 87WA25). For a discussion of the width of ${ }^{8} \mathrm{Be}^{*}(11.4)$ see (87WA25). See also ${ }^{9} \mathrm{Be}$, and ${ }^{12} \mathrm{C}$ in (80AJ01), (85MC1C, applications) and (85PU03; theor.).
30. (a) ${ }^{9} \mathrm{Be}\left({ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li}\right)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=5.585$
(b) ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li},{ }^{8} \mathrm{Li}\right)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=0.367$
(c) ${ }^{9} \mathrm{Be}\left({ }^{9} \mathrm{Be},{ }^{10} \mathrm{Be}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=5.1466$

Angular distributions have been studied at $E\left({ }^{6} \mathrm{Li}\right)=32 \mathrm{MeV}$ involving ${ }^{8} \mathrm{Be}^{*}(0,3.0)$ and ${ }^{7} \mathrm{Li}^{*}(0,0.48)$ (85CO09). For reaction (b) see (84KO25). For reaction (c) see ${ }^{10} \mathrm{Be}$ (85JA09). For the earlier work see (79AJ01).
31. ${ }^{10} \mathrm{Be}(\mathrm{p}, \mathrm{t})^{8} \mathrm{Be}$

$$
Q_{\mathrm{m}}=0.0045
$$

Angular distributions for the transition to the first $T=2$ state ${ }^{8} \mathrm{Be}^{*}(27.49)$, and to ${ }^{8} \mathrm{Li}^{*}(10.82)$ reached in the ($\mathrm{p},{ }^{3} \mathrm{He}$) reaction, are very similar. They are both consistent with $L=0$ using a DWBA (LZR) analysis: see (79AJ01, 84AJ01) and table 8.5 in (84AJ01).
32. ${ }^{10} \mathrm{~B}\left(\pi^{+}, 2 \mathrm{p}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=132.100$

See (88R1ZZ; prelim).
33. ${ }^{10} \mathrm{~B}(\mathrm{n}, \mathrm{t})^{8} \mathrm{Be}$

$$
Q_{\mathrm{m}}=0.2307
$$

The breakup of ${ }^{10} \mathrm{~B}$ by 14.4 MeV neutrons involves, among others, ${ }^{8} \mathrm{Be}_{\text {g.s. }}$ (84TU02). See also (79AJ01) and ${ }^{11} \mathrm{~B}$ in (90AJ01).
34. ${ }^{10} \mathrm{~B}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-0.5332$

Angular distributions of the ${ }^{3} \mathrm{He}$ ions to ${ }^{8} \mathrm{Be}^{*}(0,3.0,16.6,16.9)$ have been studied at $E_{\mathrm{p}}=39.4 \mathrm{MeV}$ [see (74AJ01)] and at $E_{\mathrm{p}}=51.9 \mathrm{MeV}$ (83YA05; see for a discussion of isospin mixing of the 16.8 MeV states).
35. (a) ${ }^{10} \mathrm{~B}(\mathrm{~d}, \alpha)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=17.8202$
(b) ${ }^{10} \mathrm{~B}(\mathrm{~d}, \alpha) 2{ }^{4} \mathrm{He} \quad Q_{\mathrm{m}}=17.9121$

Angular distributions have been reported at $E_{\mathrm{d}}=0.5$ to 7.5 MeV : see (74AJ01, 79AJ01). At $E_{\mathrm{d}}=7.5 \mathrm{MeV}$ the population of ${ }^{8} \mathrm{Be}^{*}(16.63,16.92)$ is closely the same consistent with their mixed isospin character while ${ }^{8} \mathrm{Be}^{*}(17.64)$ is relatively weak consistent with its nearly pure $T=1$ character. ${ }^{8} \mathrm{Be}^{*}(16.63,16.92,17.64,18.15)$ have been studied for $E_{\mathrm{d}}=4.0$ to 12.0 MeV . Interference between the 2^{+}states $\left[{ }^{8} \mathrm{Be}^{*}(16.63,16.92)\right]$ varies as a function of energy. The cross-section ratios for formation of ${ }^{8} \mathrm{Be}^{*}(17.64,18.15)$ vary in a way consistent with a change in the population of the $T=1$ part of the wave function over the energy range: at the higher energies, there is very little isospin violation. At higher E_{x} only the 3^{+}state at $E_{\mathrm{x}}=19.2 \mathrm{MeV}$ is observed, the neighboring 3^{+}state at $E_{\mathrm{x}}=19.07 \mathrm{MeV}$ is not seen. $\Gamma_{16.6}=90 \pm 5 \mathrm{keV}, \Gamma_{16.9}=70 \pm 5 \mathrm{keV}, \Delta Q=290 \pm 7 \mathrm{kev}$: see table 8.6 and (79AJ01).

Reaction (b) $\left[E_{\mathrm{d}}<5 \mathrm{MeV}\right]$ takes place mainly by a sequential process involving ${ }^{8} \mathrm{Be}^{*}(0$, $2.9,11.4,16.6,16.9)$: see (79AJ01). See also (83DA11). [The work quoted in (84AJ01) has not been published.] At $E_{\mathrm{d}}=13.6 \mathrm{MeV}$ in addition to ${ }^{8} \mathrm{Be}^{*}(16.6,16.9)$, states with $E_{\mathrm{x}} \sim 19.9-20.2 \mathrm{MeV}$ with $\Gamma \sim 0.7-1.1 \mathrm{MeV}$ are involved (88 KA 1 K ; prelim.). See also (84SH1D, 84SH1E) and (85PU03, 88BA75, 88KA1M; theor.).
36. ${ }^{10} \mathrm{~B}\left(\alpha,{ }^{6} \mathrm{Li}\right){ }^{8} \mathrm{Be}$

See ${ }^{6} \mathrm{Li}$ here and reaction 40 in (84AJ01). See also (SH84D,SH88D).
37. (a) ${ }^{11} \mathrm{~B}(\mathrm{p} \alpha)^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=8.5906$
(b) ${ }^{11} \mathrm{~B}(\mathrm{p}, \alpha) 2{ }^{4} \mathrm{He}$
$Q_{\mathrm{m}}=8.6825$

Angular distributions have been measured at $E_{\mathrm{p}}=0.78$ to 45 MeV [see (74AJ01, 79AJ01, 84AJ01)], at $E=0.12$ to 1.10 MeV ($87 \mathrm{BE} 17 ;{ }^{11} \mathrm{~B}$ and p; α_{0}, α_{1}) and at $E_{\mathrm{p}}=4.5$ to 7.5 MeV ($83 \mathrm{BO} 19 ; \alpha_{0}$). Reaction (b) has been studied for $E_{\mathrm{p}}=0.15$ to 20 MeV : see (74AJ01, 84AJ01). The reaction proceeds predominantly by sequential two-body decay via ${ }^{8} \mathrm{Be}^{*}(0,3.0)$. See also ${ }^{12} \mathrm{C}$ in (90AJ01) and (83CO1A, $85 \mathrm{MA1F}$, 85 PU 03 ; theor.).
38. ${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{Li}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=4.5721$

At $E\left({ }^{3} \mathrm{He}\right)=71.8 \mathrm{MeV}$ angular distributions of the ${ }^{6} \mathrm{Li}$ ions to ${ }^{8} \mathrm{Be}^{*}(0,3.0,16.6,16.9$, $17.6,18.2$) are reported (86JA14). For the earlier work at 25.6 MeV see (79AJ01). See also (86JA02).
39. ${ }^{11} \mathrm{~B}\left(\alpha,{ }^{7} \mathrm{Li}\right){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-8.7556$

The work reported in (84AJ01) has not been published. See also ${ }^{7}$ Li here and (84SH1D, 88SH1E).
40. ${ }^{11} \mathrm{~B}\left({ }^{9} \mathrm{Be},{ }^{12} \mathrm{~B}\right){ }^{8} \mathrm{Be}$

$$
Q_{\mathrm{m}}=1.705
$$

See (84DA17) and ${ }^{12}$ B in (90AJ01).
41. (a) ${ }^{12} \mathrm{C}(\mathrm{n}, \mathrm{n} \alpha)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-7.3666$
(b) ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{p} \alpha)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-7.3666$
(c) ${ }^{12} \mathrm{C}\left(\mathrm{p}, \mathrm{d}^{3} \mathrm{He}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-25.7198$

The first two of these reactions involve ${ }^{8} \mathrm{Be}^{*}(0,3.0)$: see (74AJ01, 79AJ01, 84AJ01, 85AJ01). See also (86AN1M) [reaction (a)] and (82ZH06, 85GA1B, 86VD01; theor.). For reaction (c) see (83LI18; theor.).
42. (a) ${ }^{12} \mathrm{C}\left(\mathrm{d},{ }^{6} \mathrm{Li}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-5.8916$
(b) ${ }^{12} \mathrm{C}(\mathrm{d}, \mathrm{d} \alpha)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-7.3666$

Angular distributions have been studied at $E_{\mathrm{d}}=12.7$ to 54.3 MeV [see (74AJ01, 79AJ01, 84AJ01)] and at $E_{\overrightarrow{\mathrm{d}}}=18$ and 22 MeV (86YA12; to ${ }^{8} \mathrm{Be}_{\text {g.s. }}$; also VAP, TAP) and 51.7 MeV (86YA12; to ${ }^{8} \mathrm{Be}^{*}\left(0,3.0,11.4\right.$; also VAP) as well as at $E_{\mathrm{d}}=50 \mathrm{MeV}$ (87GO1S), 54.2 MeV (84UM04; FRDWBA) $\left[S_{\alpha}=0.48,0.51\right.$ and 0.82 for $\left.{ }^{8} \mathrm{Be}^{*}(0,3.0,11.4)\right]$ and 78.0 MeV (86JA14; to ${ }^{8} \mathrm{Be}^{*}(0,3.0,16.6,16.9)$). See also ($85 \mathrm{GO} \mathrm{G} ; E_{\mathrm{d}}=50 \mathrm{MeV}$). For reaction (b) see (84AJ01). See also (84NE1A) and (83GA14, 83SH39, 85GA1B, 87KA1L; theor.).
43. ${ }^{12} \mathrm{C}\left(\mathrm{t},{ }^{7} \mathrm{Li}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-4.8988$

See ${ }^{7} \mathrm{Li}$.
44. ${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{He},{ }^{7} \mathrm{Be}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-5.7793$

Angular distributions have been obtained at $E\left({ }^{3} \mathrm{He}\right)=25.5$ to 70 MeV [see (79AJ01, $84 \mathrm{AJ} 01)]$ and at $E\left({ }^{3} \overrightarrow{\mathrm{He}}\right)=33.4 \mathrm{MeV}\left(86 \mathrm{CL} 1 \mathrm{~B} ;{ }^{8} \mathrm{Be}_{\mathrm{g} . \mathrm{s} .} ;\right.$ also $A_{y} ;$ prelim. $) .{ }^{8} \mathrm{Be}^{*}(0,3.0,11.4$, $16.6,16.9,17.6$) have been populated. See also (86RA15; theor.).
45. (a) ${ }^{12} \mathrm{C}(\alpha, 2 \alpha){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-7.3666$
(b) ${ }^{12} \mathrm{C}\left(\alpha,{ }^{8} \mathrm{Be}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-7.4585$

These reactions have been studied at E_{α} to 104 MeV [see (79AJ01, 84AJ01, and ${ }^{12} \mathrm{C}$ in 85AJ01)] and at 31.2 MeV (86XI1A; reaction (a)): ${ }^{8} \mathrm{Be}^{*}(0,3.0,11.4)$ are populated. See also (84ZE1A, 85GA1B, 87KO1E; theor.).
46. (a) ${ }^{12} \mathrm{C}\left({ }^{9} \mathrm{Be},{ }^{13} \mathrm{C}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=3.2810$
(b) ${ }^{12} \mathrm{C}\left({ }^{11} \mathrm{~B},{ }^{15} \mathrm{~N}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=3.6250$

Angular distributions involving ${ }^{8} \mathrm{Be}_{\text {g.s. }}+{ }^{13} \mathrm{C}_{\text {g.s. }}$ (reaction (a)) have been reported at $E\left({ }^{9} \mathrm{Be}\right)=20$ to 22.9 MeV and $E\left({ }^{12} \mathrm{C}\right)=10.5$ to 13.5 MeV : see (84AJ01). For both reactions see also (83DEZW).
47. (a) ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{16} \mathrm{O}\right)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-0.2047$
(b) ${ }^{12} \mathrm{C}\left({ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-2.631$
(c) ${ }^{12} \mathrm{C}\left({ }^{20} \mathrm{Ne}, \alpha^{20} \mathrm{Ne}\right)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-7.3666$

For reaction (a) see ${ }^{16} \mathrm{O}$ in (86AJ04), (83DEZW, 84HU1E, 84SP1C, 86ALZN, 86SH10) and (84DA1B; theor.). For reaction (b) see reaction 18 in ${ }^{20} \mathrm{Ne}$ (87AJ02), (85MU14) and (88AL07; location of a 10^{+}state in ${ }^{20} \mathrm{Ne}$ at $E_{\mathrm{x}} \simeq 27.5 \mathrm{MeV}$). For reaction (c) see (87SI06).
48. ${ }^{13} \mathrm{C}\left(\mathrm{d},{ }^{7} \mathrm{Li}\right)^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-3.5879$

See ${ }^{7} \mathrm{Li}$.
49. ${ }^{13} \mathrm{C}\left(\alpha,{ }^{9} \mathrm{Be}\right){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-10.7395$

See (84SH1D, 88SH1F; prelim.; $E_{\alpha}=27.2 \mathrm{MeV}$) and ${ }^{9} \mathrm{Be}$ in (79AJ01).
50. ${ }^{13} \mathrm{C}\left({ }^{9} \mathrm{Be},{ }^{14} \mathrm{C}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=6.511$

See ${ }^{14} \mathrm{C}$ in (86AJ01).
51. ${ }^{14} \mathrm{~N}\left(\mathrm{n},{ }^{7} \mathrm{Li}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-8.9139$

See ${ }^{7} \mathrm{Li}$.
52. ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{p} 2 \alpha){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-14.5286$

See (86VD04; $\left.E_{\mathrm{p}}=50 \mathrm{MeV}\right)$.
53. ${ }^{16} \mathrm{O}\left({ }^{16} \mathrm{O},{ }^{24} \mathrm{Mg}\right){ }^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-0.483$

See (87CZ02).
${ }^{8}$ B
(Figs. 13 and 14)

GENERAL: See also (84AJ01).
Model calculations: (83SH38).
Special states: (82PO12, 88 KH 03).
Complex reactions involving ${ }^{8}$ B: (82AL1A, 83OL1A, 84GR08, 86HA1B, 87TA1F, 88AR05, 88KI05).

Astrophysical questions: (84HA1B, 85BO1E, 85GI1C, 85KL1A, 85LA1C, 88BA1H).
Reactions involving pions: (83SP06).
Hypernuclei: (83SH38).
Other topics: (85AN28).
Ground state of ${ }^{8} B$: (83ANZQ, 85AN28, 86GL1A, 87VA26, 88AR05, 88VA03)

$$
\mu=1.0355 \pm 0.0003 \text { n.m.: see (78LEZA). }
$$

1. ${ }^{8} \mathrm{~B}\left(\beta^{+}\right)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=17.979$

The β^{+}decay leads mainly to ${ }^{9} \mathrm{Be}^{*}(3.0)$. The mean of half-lives listed in (74AJ01) is $770 \pm 3 \mathrm{msec} ; \log f t=5.6$. There is also a branch to ${ }^{8} \mathrm{Be}^{*}(16.63)$: see (86 WA 01) and reactions 24 and 25 in ${ }^{8} \mathrm{Be} . \log f t=3.3$. See also (85GR1A) and (86QU1B; theor.).
2. ${ }^{6} \mathrm{Li}\left(\mathrm{d}, \pi^{-}\right)^{8} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-135.267
$$

At $E_{\mathrm{d}}=300$ and $600 \mathrm{MeV},{ }^{8} \mathrm{~B}^{*}(0,0.77,2.32)$ are populated: see (84AJ01).
3. ${ }^{6} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{8} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-1.975
$$

Angular distributions for the n_{0} group have been reported at $E\left({ }^{3} \mathrm{He}\right)=4.8$ to 5.7 MeV : $L=0$. Two measurements for the E_{x} of ${ }^{8} \mathrm{~B}^{*}(0.77)$ are 767 ± 12 and $783 \pm 10 \mathrm{keV}[\Gamma=$ $40 \pm 10 \mathrm{keV}]$: see (74AJ01) and ${ }^{9}$ B.

Table 8.9
Energy levels of ${ }^{8} \mathrm{~B}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\tau_{1 / 2}$ or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
g.s.	$2^{+} ; 1$	$\tau_{1 / 2}=770 \pm 3 \mathrm{msec}$	β^{+}	$1,2,3,4,5,6,7,8,9$
0.774 ± 6		$\Gamma=37 \pm 5$	γ, p	$2,3,4,6,8,9$
2.32 ± 30	$3^{+} ; 1$	350 ± 40		$4,8,9$
10.619 ± 9	$0^{+} ; 2$	<60		9

4. ${ }^{7} \mathrm{Li}\left(\mathrm{p}, \pi^{-}\right)^{8} \mathrm{~B}$
$Q_{\mathrm{m}}=-140.293$

Angular distributions and analyzing powers have been measured for the transitions to ${ }^{8} \mathrm{~B}^{*}(0,0.77,2.32)$ at $E_{\overrightarrow{\mathrm{p}}}=199.2 \mathrm{MeV}$: the A_{y} to ${ }^{8} \mathrm{~B}^{*}(2.32)$ is characteristic of that to a stretched high-spin, two-particle one-hole final state $\left[J^{\pi}\right.$ of ${ }^{8} \mathrm{~B}^{*}(2.32)$ is $\left.3^{+}\right]$(87CA06). See also (87CA05).
5. ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{H}\right){ }^{8} \mathrm{~B} \quad Q_{\mathrm{m}}=-35.01$

See ${ }^{6} \mathrm{H}$.
6. ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)^{8} \mathrm{~B} \quad Q_{\mathrm{m}}=0.138$

Absolute cross sections have been measured for $E_{\mathrm{p}}=134 \mathrm{keV}$ to 10.0 MeV . A resonance is observed at $E_{\mathrm{p}}=723 \mathrm{keV}\left[E_{\mathrm{R}}\right.$ (c.m.) $\left.=632 \pm 10 \mathrm{keV} ; E_{\mathrm{x}}=770 \pm 10 \mathrm{keV}\right], \Gamma_{\text {c.m. }}=$ $37 \pm 5 \mathrm{keV}$ [assuming $\Gamma_{\mathrm{p}} \gg \Gamma_{\gamma}$] and $\sigma_{\text {peak }}=1.18 \pm 0.12 \mu \mathrm{~b} . \Gamma_{\gamma}$ is then $25 \pm 4 \mathrm{meV}$. The zeroenergy cross-section factor $S_{17}(0)=0.0238 \pm 0.0023 \mathrm{keV} \cdot \mathrm{b}$ (83FI13). See (79AJ01) for the earlier work, and the discussion in (86BA38). See also (84AJ01), (84HA1F, 87SA1L) and (82BA1J, 82KA1E, 83BA45, 83FO1A, $83 \mathrm{HA} 1 \mathrm{~B}, 84 \mathrm{DA} 1 \mathrm{H}, 84 \mathrm{HA} 1 \mathrm{M}, 84 \mathrm{YA} 1 \mathrm{~A}, 85 \mathrm{BA} 1 \mathrm{Q}$, $85 \mathrm{CA} 41,85 \mathrm{FI} 1 \mathrm{D}, 86 \mathrm{FI} 1 \mathrm{~B}, 87 \mathrm{KI} 01,87 \mathrm{RO} 1 \mathrm{D}, 88 \mathrm{BA} 1 \mathrm{H}, 88 \mathrm{BA} 29,88 \mathrm{FO} 1 \mathrm{~A}$; astrophysics).
7. ${ }^{7} \mathrm{Be}(\mathrm{d}, \mathrm{n})^{8} \mathrm{~B} \quad Q_{\mathrm{m}}=-2.087$

See (83HA17, 85HA40).
8. ${ }^{10} \mathrm{~B}(\mathrm{p}, \mathrm{t})^{8} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-18.530
$$

At $E_{\mathrm{p}}=49.5 \mathrm{MeV}$ [see (74AJ01)] and 51.9 MeV (83YA05) angular distributions have been measured for the tritons to ${ }^{8} \mathrm{~B}^{*}(0,2.32): L=2$ and $L=0+2$ leading to $J^{\pi}=2^{+}$and 3^{+}, respectively. Measurements of E_{x} for ${ }^{8} \mathrm{~B}^{*}(2.32)$ yield $2.29 \pm 0.05 \mathrm{MeV}, 2.34 \pm 0.04 \mathrm{MeV}$ $\left[\Gamma_{\text {lab }}=0.39 \pm 0.04 \mathrm{MeV}\right] .{ }^{8} \mathrm{~B}^{*}(0.77)$ is also observed: see (74AJ01).
9. ${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right){ }^{8} \mathrm{~B} \quad Q_{\mathrm{m}}=-16.913$

At $E\left({ }^{3} \mathrm{He}\right)=72 \mathrm{MeV}$ the first $T=2$ state is observed at $E_{\mathrm{x}}=10.619 \pm 0.009 \mathrm{MeV}$, $\Gamma<60 \mathrm{keV}: \mathrm{d} \sigma / \mathrm{d} \Omega(\mathrm{lab})=190 \mathrm{nb} / \mathrm{sr}$ at $\theta_{\text {lab }}=9^{\circ}$. No other states are observed within 2.4 MeV of this state. ${ }^{8} \mathrm{~B}^{*}(0,0.77,2.32)$ have also been populated: see (79AJ01).

${ }^{8} \mathrm{C}$

(Fig. 14)

Mass of ${ }^{8} C$: The atomic mass excess of ${ }^{8} \mathrm{C}$ is $35095 \pm 24 \mathrm{keV}(85 \mathrm{WA} 02) ; \Gamma_{\text {c.m. }}=$ $230 \pm 50 \mathrm{keV}$: see (79AJ01). ${ }^{8} \mathrm{C}$ is stable with respect to ${ }^{7} \mathrm{~B}+\mathrm{p}(Q=-0.13 \mathrm{MeV})$ and unstable with respect to ${ }^{6} \mathrm{Be}+2 \mathrm{p}(Q=21.4),{ }^{5} \mathrm{Li}+3 \mathrm{p}(Q=1.55),{ }^{4} \mathrm{He}+4 \mathrm{p}(Q=3.51)$. At $E\left({ }^{3} \mathrm{He}\right)=76 \mathrm{MeV}$ the differential cross section for formation of ${ }^{8} \mathrm{C}_{\text {g.s. }}$ in the ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He},{ }^{9} \mathrm{Li}\right)$ reaction is $\sim 5 \mathrm{nb} / \mathrm{sr}$ at $\theta_{\text {lab }}=10^{\circ}$. The ${ }^{12} \mathrm{C}\left(\alpha,{ }^{8} \mathrm{He}\right)^{8} \mathrm{C}$ reaction has been studied at $E_{\alpha}=156 \mathrm{MeV}: \mathrm{d} \sigma / \mathrm{d} \Omega \sim 20 \mathrm{nb} / \mathrm{sr}$ at $\theta_{\text {lab }}=20^{\circ}$: see (79AJ01). See also (85AN28) and (83ANZQ, 86HE26, 87BL18, 87SA15; theor.).

References

(Closed 1 June 1988)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author's name and then by two additional characters. Most of the references appear in National Nuclear Data Center files (Nuclear Science References database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form $1 \mathrm{~A}, 1 \mathrm{~B}$, etc.

55AJ61 Ajzenberg and Lauritsen, Rev. Mod. Phys. 27 (1955) 77
59AJ76 Ajzenberg-Selove and Lauritsen, Nucl. Phys. 11 (1959) 1
66LA04 Lauritsen and Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1
71WI05 Wilkinson and Alburger, Phys. Rev. Lett. 26 (1971) 1127
74AJ01 Ajzenberg-Selove and Lauritsen, Nucl. Phys. A227 (1974) 1
78LEZA Lederer and Shirley, Table of Isotopes, John Wiley Pubs. (1978)
79AJ01 Ajzenberg-Selove, Nucl. Phys. A320 (1979) 1
79GL12 Glattli et al, J. Physique 40 (1979) 629
80AJ01 Ajzenberg-Selove and Busch, Nucl. Phys. A336 (1980) 1
80MC07 Mc Keown, Garvey and Gagliardi, Phys. Rev. C22 (1980) 738; Ibid C26 (1982) 2336
81BA36 Barker and Ferdous, J. Phys. G7 (1981) 1239
81BJ03 Bjornstad et al, Nucl. Phys. A366 (1981) 461
81MA33 Manglos, Roberson, Weller and Tilley, Phys. Rev. C24 (1981) 2378
81MC09 Mc Keown et al, Phys. Rev. C24 (1981) 211
81MUZQ Mughabghab, Divadeenam, and Holden, Neutron Cross Sections, Vol. 1a, Academic Press (1981)
81PL1A Plattner, Nukleonika 26 (1981) 1005
82AB1B Ableev et al, Sov. J. Nucl. Phys. 36 (1982) 834
82AL1A Aleksandrov et al, Soviet J. Nucl. Phys. 35 (1982) 158
82AL1C Aleksandrov et al, Soviet J. Nucl. Phys. 36 (1982) 783
82BA1J Bahcall and Davis, Essays in Nucl. Astrophys. (1982) P. 243
82GL01 Glagola et al, Phys. Rev. C25 (1982) 34
82GU1B Gurbanovich and Zelenskaya, Soviet J. Nucl. Phys. 36 (1982) 688
82KA1D Kar and Parikh, Pramana 19 (1982) 555
82KA1E Kavanagh, Essays in Nucl. Astrophys. (1982) P. 159
82LA19 Lattuada et al, Phys. Rev. C26 (1982) 1330
82MO1B Motoba, Proc. Workshop on Hypernuclear Phys., Japan (1982) P. 36; Phys. Abs. 4792 (1984)

82NA1B Narayan, Proc. Vi High Energy Phys. Symp., Mysore, India (1982) P. 57; Phys. Abs. 75002 (1983)
82 PO12 Popov, Kudryavtsev, Lisin and Mur, Jetp Lett. 36 (1982) 257
82 WE15 Wen, Zhang and Sun, Chin. J. Nucl. Phys. 4 (1982) 289; Phys. Abs. 49875 (1983)
82ZH06 Zhusupov and Uzikov, Sov. J. Nucl. Phys. 36 (1982) 810

83AD1B Adelberger, in Symmetries in Nuclear Structure, Edited by Abrahams, Allaart and Dieperink (Plenum Press 1983), P. 55
83AL1C Alberi, Malecki and Roberto, Lett. Nuovo Cim. 36 (1983) 409
83AN13 Anderson et al, Phys. Rev. C28 (1983) 1224
83AN1C Antonov and Petkov, in Florence (1983) P. 334
83ANZQ Ando, Uno, and Yamada, Jaeri-M-83-025 (1983)
83BA45 Barker, Phys. Rev. C28 (1983) 1407
83BE1H Belyaeva, Zelenskaya and Teplov, Sov. J. Nucl. Phys. 38 (1983) 540
83BI1C Bizzeti, Riv. Nuovo Cim. 6 (1983) 1
83 BL17 Blagus, Miljanic and Rendic, Nucl. Instrum. Meth. Phys. Res. 216 (1983) 415
83 BO19 Borchers et al, Nucl. Phys. A405 (1983) 141
83BU15 Burov, Knyazkov, Shirokova and Shitikova, Z. Phys. A313 (1983) 319
83CA12 Caurier and Grammaticos, J. Phys. G9 (1983) L125
83CH1C Chung, Kim and Sung, J. Korean Phys. Soc. 16 (1983) 105
83CO1A Compani-Tabrizi and Malik, in Florence (1983) P. 666
83CO1D Cowan, Bull. Amer. Phys. Soc. 28 (1983) 994
83DA11 D'amico, Fazio, Giardina and Mezzanares, Can J. Phys. 61 (1983) 923
83DA22 Dave and Gould, Phys. Rev. C28 (1983) 2212
83DA32 Dai et al, Chin. J. Nucl. Phys. 5 (1983) 19
83DEZW Dennis, Frawley and Mateja, Bull. Amer. Phys. Soc. 28 (1983) 669
83DO1B Dover and Gal, Ann. Phys. 146 (1983) 309
83DR09 Drozdz, Okolowicz and Ploszajczak, Phys. Lett. 128b (1983) 5
83EL1A El-Naghy and Hussein, 18th Inter. Cosmic Ray Conf. (Bombay, India: Tata Inst. Fundamental Res. 1983) P. 207, Vol. 5; Phys. Abs. 102307 (1984)
$83 F A 17$ Fawzy, Azzam and El-Monim, Indian J. Phys. 57a (1983) 378; Phys. Abs. 37533 (1984)
83FA1A Faessler, Nucl. Phys. A400 (1983) 525c
83FE07 Fetisov, Majling, Zofka and Eramzhyan, Z. Phys. A314 (1983) 239
83 FI13 Filippone, Elwyn, Davids and Koetke, Phys. Rev. C28 (1983) 2222
83FI1D Filippov, Vasilevskii and Nesterov, Sov. J. Nucl. Phys. 38 (1983) 347
83FO1A Fowler, Aip Conf. Proc. 96 (1983) 80
83FR1A Friedman and Lynch, Phys. Rev. C28 (1983) 950
83FU1D Fujiwara, Tang and Horiuchi, Prog. Theor. Phys. 70 (1983) 809
83GA14 Galanina and Zelenskaya, Izv. Akad. Nauk Sssr Ser. Fiz. 47 (1983) 1018
83GL1A Glover et al, Bull. Amer. Phys. Soc. 28 (1983) 996
83GL1B Glaudemans, in Symmetries in Nuclear Structure, Edited by Abrahams, Allaart and Dieperink (Plenum Press 1983), P. 119
83GO1B Goncharova, Kissener and Eramzhyan, in Orsay (1983) P. 61
83GO1H Gould, Dave and Walter, Proc. Inter. Conf., Antwerp, Belgium 1982 (Dordrecht, Netherlands: Reidel 1983) P. 766; Phys. Abs. 37620 (1984)
83GO25 Goeke, Grummer and Reinhard, Ann. Phys. 150 (1983) 504
83GR26 Gross and Nemes, Phys. Lett. 130b (1983) 131
83GU1A Guet, Nucl. Phys. A400 (1983) 191c
83HA17 Haight et al, Nucl. Instr. Meth. Phys. Res. 212 (1983) 245

83HA1B Harris, Fowler, Caughlan and Zimmerman, Ann. Rev. Astron. Astrophys. 21 (1983) 165
83HA1D Han and Lu, in Florence (1983) P. 314
83HA41 Han and Lu, Chin. J. Nucl. Phys. 5 (1983) 105
83HA45 Hayashi and Iwata, Annu. Rep. Res. React. Inst. Kyoto Univ. 16 (1983) 131; Phys. Abs. 59282 (1984)
83JA09 Jarczyk et al, Phys. Rev. C28 (1983) 700
$83 \mathrm{KO17}$ Koester, Knopf and Waschkowski, Z. Phys. A312 (1983) 81
83KO41 Kolawa, Acta Phys. Pol. B14 (1983) 743
83 KU17 Kumar, Nucl. Phys. A410 (1983) 50
83 LI 18 Liu and Chen, Chin. J. Nucl. Phys. 5 (1983) 249; Phys. Abs. 117567 (1983)
83LI1C Liskien, Wolfle and Qaim, Proc. Inter. Conf. Antwerp, Belgium 1982 (Dordrecht, Netherlands: Reidel 1983) P. 349; Phys. Abs. 37591 (1984)
83LO12 Lone et al, Nucl. Instr. Meth. Phys. Res. 214 (1983) 333
83MA73 Marquez, Phys. Rev. C28 (1983) 2525
83MI10 Miljanic, Kossionides, Vourvopoulos and Assimakopoulos, Z. Phys. A312 (1983) 267
83MI1E Miyahara, Ikeda and Bando, Prog. Theor. Phys. 69 (1983) 1717
83MO1C Motoba, Bando and Ikeda, Prog. Theor. Phys. 70 (1983) 189
83MU13 Mukhamedzhanov, Yarmukhamedov and Dzhamalov, Soviet J. Nucl. Phys. 37 (1983) 838
83OK06 Okabe, Nucl. Phys. A404 (1983) 179
83OL1A Olson et al, Phys. Rev. C28 (1983) 1602
83PR1A Proriol and Jargeaix, Nuovo Cim. 77a (1983) 289
83SA16 Saraceno, Kramer and Fernandez, Nucl. Phys. A405 (1983) 88
83SH1E Shi and Zhuang, Phys. Energ. Fortis \& Phys. Nucl. 7 (1983) 605
83SH38 Shi, Phys. Rev. C28 (1983) 2452
83SH39 Shvedov, Dobrikov and Nemets, Jetp Lett. 38 (1983) 36
83SI1A Siemssen, Nucl. Phys. A400 (1983) 245c
83 SP06 Spassov, Chernev, Batusov and Eramzhyan, Bulg. J. Phys. 10 (1983) 581; Phys. Abs. 37662 (1984)
83SZ1A Szabo, Varnagy, Body and Csidai, Proc. Inter. Conf., Antwerp, Belgium 1982 (Dordrecht, Netherlands: Reidel 1983) P. 956; Phys. Abs. 37644 (1984)
83VO1C Vogel, in Symmetries in Nuclear Structure, Edited by Abrahams, Allaart and Dieperink (Plenum Press 1983), P. 203
83WA09 Warner et al, Nucl. Phys. A401 (1983) 521
83WA1F Wang et al, in Florence (1983) P. 591
83WI1A Wilczynski, in Proc. of the Int. Conf. on Nucl. Phys., Florence, Aug.-Sept. 1983, Vol. 2, Editors: P. Blasi and R.A. Ricci; Tipografia Compositori Bologna (1983) P. 305
83XU1A Xu, Wu, Miao and Han, Chin. Phys. 3 (1983) 646
$83 Y A 05$ Yasue et al, Nucl. Phys. A408 (1983) 205
84AB1C Abdurazakov, Bondarenko, Gulyamov and Chernov, Sov. J. Nucl. Phys. 39 (1984) 169
84AJ01 Ajzenberg-Selove, Nucl. Phys. A413 (1984) 1
84AL03 Alard et al, Lett. Nuovo Cim. 39 (1984) 139
84AN1D Antuf'ev et al, Sov. J. Nucl. Phys. 40 (1984) 35
84AS1D Asai, Bando and Sano, Phys. Lett. 145b (1984) 19

84BA1J	Bandurina, Krivskii, Lendel and Medvedev, Sov. J. Nucl. Phys. 39 (1984) 187
84BA1T	Bayukov et al, in Panic (1984) I16
84BA1U	Bayukov et al, in Panic (1984) I25
84BL21	Blokhintsev, Mukjamaedzhanov and Safronov, Sov. J. Part. \& Nucl. 15 (1984) 580
84BO1H	Bogdanova and Markushin, Sov. J. Part. \& Nucl. 15 (1984) 361
84CH1G	Chen, Zhuang, Shi and Jin, Chin. J. Nucl. Phys. 6 (1984) 303
84DA17	Dasmahapatra, Cujec and Lahlou, Nucl. Phys. A427 (1984) 186
84DA1B	Danilin and Zhukov, in Alma Ata (1984) P. 460
84DA1H	Davis, in Aip Conf. Proc. 123 (1984) P. 1037
84DA22	D'auria et al, Phys. Rev. C30 (1984) 1999
84DE24	Deumens, Nucl. Phys. A423 (1984) 52
84DU17	Dubovichenko and Zhusupov, Izv. Akad. Nauk Sssr Ser. Fiz. 48 (1984) 935
84FA1B	Faessler, Phys. Rep. 115 (1984) 1
84FE1A	Ferch et al, Indc (Ccp)-221/L (1984) P. 18
84FI11	Fiedeldey, Lipperheide, Naidoo and Sofianos, Phys. Rev. C30 (1984) 434
84FI13	Filippov, Vasilevsky and Nesterov, Nucl Phys. A426 (1984) 327
84FR10	Friedrich, Phys. Rev. C30 (1984) 1102
84FR13	Friedrich, Phys. Lett. 146b (1984) 135
84FR1C	Frati, Nucl. Phys. A418 (1984) 177c
84GA07	Galloway and Ghazarian, Phys. Rev. C29 (1984) 2349
84GR08	Green, Korteling and Jackson, Phys. Rev. C29 (1984) 1806
84HA1B	Hampel, Nature 308 (1984) 312
84HA1F	Haight, Bull. Amer. Phys. Soc. 29 (1984) 1086
84HA1M	Haxton, in Aip Conf. Proc. 123 (1984) P. 1026
84HE1D	Hefter and Gridnev, Prog. Theor. Phys. 72 (1984) 549
84HI1A	Hirsch et al, Phys. Rev. C29 (1984) 508
84HU1E	Hunyadi, Szoghy and Cujec, Nucl. Tracks \& Radiat. Meas. 8 (1984) 525
84JE1B	Jeong et al, New Phys. (Korea) 24 (1984) 404; Phys. Abs. 123552 (1985)
84KO25	Koenig et al, Z. Phys. A318 (1984) 135
84KR10	Krasnopolskii, Kukulin and Neudachin, Izv. Akad. Nauk Sssr Ser. Fiz. 48 (1984) 82
84KR1B	Kravtsov, Popov and Solyakin, Jetp Lett. 40 (1984) 875
84KU15	Kukulin, Kamal, Voronchev and Krasnopol'sky, J. Phys. G10 (1984) L213
84LA27	Langevin et al, Phys. Lett. 146b (1984) 176
84LI1D	Liand Lo, Aust. J. Phys. 37 (1984) 255
84LIZY	Lisowski et al, Bull. Amer. Phys. Soc. 29 (1984) 748
84LU1A	Lu, Han, Zhang and Li, Chin. J. Nucl. Phys. 6 (1984) 34
84LU1B	Lu, Han, Zhang and Li, Chin. Phys. 4 (1984) 654; Phys. Abs. 30769 (1985)
84MA16	Malecki, Picozza and Satta, Phys. Lett. 136b (1984) 319
84MA1H	Marquez, Phys. Rev. C30 (1984) 1104
84MA68	Majumdar, Chowdhury and Roy, Ann. Phys. 41 (1984) 218
84MI1C	Millener, Gal, Dover and Dalitz, in Panic (1984) M7
84MI1E	Millener, in Aip Conf. Proc. 123 (1984) P. 850
84	

84MO1H Motoba, Bando and Ikeda, Proc. Inter. Summer School, Changchun, China 1983 (Singapore: World Scientific 1984) P. 702; Phys. Abs. 30835 (1985)
84MO1J Mori et al, Annu. Rep. Res. React. Inst. Kyoto Univ. 17 (1984) 22; Phys. Abs. 74896 (1985)

84NA11 Naidoo, Fiedeldey, Sofianos and Lipperheide, Nucl. Phys. A419 (1984) 13
84NE1A Nemets, Rudchik and Chuvilski, in Alma Ata (1984) P. 334
84OK03 Okhrimenko, Sov. J. Nucl. Phys. 40 (1984) 262
84PA04 Park et al, Nucl. Phys. A414 (1984) 93
84PA13 Parker, Asher, Conlon and Naqib, Phys. Rev. C30 (1984) 143
84PA1E Paic, Antolkovic and Kadija, Fizika 16 (1984) 37
84RE1A Read and Viola, at. Data Nucl. Data Tables 31 (1984) 359
84RE1B Resler, Knox, Lane and Grimes, Bull. Amer. Phys. Soc. 29 (1984) 629
84SA1C Satta et al, Phys. Lett. 139b (1984) 263
84SE16 Seyler and Weller, Phys. Rev. C30 (1984) 1146
84SH1B Shibata, Rep. Jaeri-M-84-204 (1984); Phys. Abs. 88790 (1985)
84SH1D Shvedov, Dobrikov and Nemets, in Alma Ata (1984) P. 331
84SH1E Shvedov, Dobrikov and Nemets, in Alma Ata (1984) P. 332
84SH1J Shoeb and Khan, J. Phys. G10 (1984) 1047
84SH1N Shibata, Jaeri-M-84-163 (1984)
84SM1B Smith, Meadows, Bretscher and Cox, Bull. Amer. Phys. Soc. 29 (1984) 1036
84SP1C Sprengel et al, Fizika 16 (1984) 25; Phys. Abs. 10892 (1985)
84 TA07 Taddeucci et al, Phys. Rev. Lett. 52 (1984) 1960
84TA1D Tanaka et al, Nucl. Phys. A418 (1984) 321c
84TA1E Takagi, Prog. Theor. Phys. 71 (1984) 585
84TA1G Tanaka et al, in Aip Conf. Proc. 123 (1984) P. 762
$84 T$ U02 Turk and Antolkovic, Nucl. Phys. A431 (1984) 381
84UM04 Umeda et al, Nucl. Phys. A429 (1984) 88
84VA06 Van Hees and Glaudemans, Z. Phys. A315 (1984) 223
84VA1B Vasilevsky, Chopovski and Fillipov, in Alma Ata (1984) P. 197
84VA1C Vasilevsky, Krutschinin, Filippov and Chopovski, in Alma Ata (1984) P. 463
84VO1A Voronchev, Kukulin and Krasnopol'skii, Nucl. Fusion 24 (1984) 1117
84YA1A Yang et al, Astrophys. J. 281 (1984) 493
84ZA07 Zaika et al, Sov. J. Nucl. Phys. 39 (1984) 682
84ZA1B Zadorozhnyi, Uzhinskii and Shmakov, Sov. J. Nucl. Phys. 39 (1984) 729
84ZE1A Zelenskaya and Morzabaev, in Alma Ata (1984) P. 466
84ZH1B Zhuang, Chen and Jin, Phys. Energ. Fortis \& Phys. Nucl. 8 (1984) 215
84ZW1A Zwarts, Unpublished Ph.D. Thesis, Utrecht (1984)
85AB1A Ableev et al, Acta Phys. Pol. B16 (1985) 913
85AH1A Ahmad, Mian and Rahman Khan, Phys. Rev. C31 (1985) 1590
85AJ01 Ajzenberg-Selove, Nucl. Phys. A433 (1985) 1
85AK1A Akesson et al, Phys. Lett. 152b (1985) 140
85AL1B Aleksandrov et al, in Leningrad (1985) P. 354, 355
85AL1G Aleksandrov et al, in Questions in Atomic Physics and in Technology, Ussr (1985) 3

85AL1H	Aleksandrov et al, Izv. Akad. Nauk Sssr Ser. Fiz. 49 (1985) 2115
85AN28	Antony, Britz, Bueb and Pape, at. Data Nucl. Data Tables 33 (1985) 447
85BA1M	Bahcall, Solar Phys. 100 (1985) 53
85BA1N	Bahcall, in Aip Conf. Proc. 126 (1985) 60
85BA1Q	Baye and Descouvemont, Ann. Phys. 165 (1985) 115
85BA45	Baye and Descouvemont, Nucl. Phys. A443 (1985) 302
85BE1C	Berdnikov et al, in Leningrad (1985) P. 302
85BE1E	Bell et al, Nucl. Phys. B254 (1985) 475
85BE1J	Belostotskii et al, Sov. J. Nucl. Phys. 41 (1985) 903
85BI1B	Bigelow, Quin, Freedman and Napolitano, Bull. Am. Phys. Soc. 30 (1985) 701
85BO1C	Bowman, Wender and Auchampaugh, in Aip Conf. Proc. 124 (1985) 259
85BO1D	Body and Mihaly, Indc (Hun)-22/L (1985)
85BO1E	Boyd et al, in Aip Conf. Proc. 126 (1985) 145
85BO1K	Boesgaard and Steigman, Ann. Rev. Astron. Astrophys. 23 (1985) 319
85BU16	Budzanowski et al, Phys. Rev. C32 (1985) 1534
85CA1C	Cavasinni et al, Z. Phys. C28 (1985) 487
85CA36	Carlson et al, Nucl. Phys. A445 (1985) 57
85CA41	Caughlan, Fowler, Harris and Zimmerman, at. Data Nucl. Data Tables 32 (1985) 197
85CE12	Cecil, Peterson and Kunz, Nucl. Phys. A441 (1985) 477
85 CH 1 B	Chen, in Aip Conf. Proc. 126 (1985) 249
85 CH 37	Chiba et al, J. Nucl. Sci. \& Technol. (Japan) 22 (1985) 771
85 CO 09	Cook and Kemper, Phys. Rev. C31 (1985) 1745
85DA29	D'amico et al, Can. J. Phys. 63 (1985) 1438
85DE1K	Delbourgo-Salvador, Gry, Malinie and Audouze, Astron. Astrophys. 150 (1985) 53
85DO1B	Dotsenko and Starodubskii, Sov. J. Nucl. Phys. 42 (1985) 66
85FA1A	Faessler, Nucl. Phys. A434 (1985) 563c
85FI1D	Filippone, in Aip Conf. Proc. 126 (1985) P. 100
85FI1E	Filippov, Vasilevskii and Chopovskii, Sov. J. Part. \& Nucl. 16 (1985) 153
85FR1E	Frankel, Comments Nucl. \& Part. Phys. 14 (1985) 1
85FR1F	Franco and Yin, Phys. Rev. Lett. 55 (1985) 1059
85GA1B	Galanina and Zelenskaya, Nucl. Phys. A445 (1985) 625
85GI1C	Gilliland, Astrophys. J. 290 (1985) 344
85GO1A	Goncharova, Kissener, and Eramzhyan, Sov. J. Part. and Nucl. 16 (1985) 337
85GO1B	Goncharova, Kissener, and Eramzhyan, Izv. Akad. Nauk Sssr Ser. Fiz. 49 (1985) 1032
85GO1G	Gorionov et al, in Leningrad (1985) P. 310
85GR1A	Grenacs, Ann. Rev. Nucl. Part. Sci. 35 (1985) 455
85 HA 1 N	Harvey, Nucl. Phys. A444 (1985) 498
85HA40	Haight, Mathews and Bauer, Nucl. Instr. Meth. Phys. Res. B10-11 (1985) 361
85HO1B	Horiuchi, Prog. Theor. Phys. 74 (1985) 66
85IK1A	Ikeda, Bando and Motoba, Suppl. Prog. Theor. Phys. 81 (1985) 147
85JA09	Jarczyk et al, J. Phys. G11 (1985) 843
85JA1B	Jacak, Fox and Westfall, Phys. Rev. C31 (1985) 704
85KA1E	Kadmenskii and Chuvilskii, in Leningrad (1985) P. 437, 440

85KA1F Kadmenskii, Kurgalin and Chuvilskii, in Leningrad (1985) P. 438
85KA1G Kadmenskii, Furman and Chuvilskii, in Leningrad (1985) P. 439
85KI11 Kircher, Kamada, Oryu and Schmid, Prog. Theor. Phys. 73 (1985) 1442
85KI1A Kitching, Mc Donald, Maris and Vasconcellos, Adv. in Nucl. Phys. 15 (1985) P. 43
85KL1A Klapdor, Fortschr. Phys. 33 (1985) 1
85KW03 Kwasniewicz, Kisiel and Jarczyk, Acta Phys. Pol. B16 (1985) 947
85LA1C Lagage, Nature 316 (1985) 420
85LI1C Ling, Zhao and Zeng, Phys. Energ. Fortis \& Phys. Nucl. 9 (1985) 236; Phys. Abs. 83976 (1985)

85MA02 Machner et al, Phys. Rev. C31 (1985) 443
85MA13 Magda, Pop and Sandulescu, J. Phys. G11 (1985) L75
85MA1F Mazitov and Rasulov, in Leningrad (1985) P. 298
85MC1C Mc Nally, Fusion Technol. 7 (1985) 331
85 MO 17 Morrissey et al, Phys. Rev. C32 (1985) 877
85MO1F Motoba, Bando, Ikeda and Yamada, Suppl. Prog. Theor. Phys. 81 (1985) 42
85MU14 Murakami et al, Phys. Rev. C32 (1985) 1558
85NO1A Norbeck and Lin, Bull. Amer. Phys. Soc. 30 (1985) 1248
85NO1B Nomoto, Thielemann and Miyaji, Astron. Astrophys. 149 (1985) 239
85PO10 Poppelier, Wood, and Glaudemans, Phys. Lett. 157b (1985) 120
85 PO 11 Poenaru, Ivascu, Sandulescu and Greiner, Phys. Rev. C32 (1985) 572
85PO19 Pochodzalla et al, Phys. Lett. 161b (1985) 275
85PR1A Proriol, Lett. Nuovo Cim. 42 (1985) 28
85PR1B Proriol, Nuovo Cim. 85a (1985) 310
85PU03 Pugach et al, Izv. Akad. Nauk Sssr Ser. Fiz. 49 (1985) 905
85RO1G Rowe, Rep. Prog. Phys. 48 (1985) 1419
85SA32 Sato and Okuhara, Phys. Lett. 162b (1985) 217
85SH1A Shitikova, Sov. J. Part. \& Nucl. 16 (1985) 364
85SM1B Smith and Meadows, Bull. Amer. Phys. Soc. 30 (1985) 1252
85SP05 Spitz, Klar and Schmid, Z. Phys. A322 (1985) 49
85SW01 Swinhoe and Uttley, Nucl. Sci. \& Eng. 89 (1985) 261
85TA13 Tanihata et al, Phys. Lett. 160b (1985) 380
85 TA 18 Tanihata et al, Phys. Rev. Lett. 55 (1985) 2676
85TA1D Tanihata, Hyperfine Interactions 21 (1985) 251
85TH08 Thaler, Phys. Rev. C32 (1985) 2189
85WA02 Wapstra and Audi, Nucl. Phys. A432 (1985) 1
85WA1C Walter, Bull. Amer. Phys. Soc. 30 (1985) 113
85WA22 Wald et al, Phys. Rev. C32 (1985) 894
85WI1B Wilkinson, Nucl. Phys. A434 (1985) 573c
85 WO11 Woo, Kwiatkowski, Zhou and Viola, Phys. Rev. C32 (1985) 706
85 YA05 Yamada, Ikeda, Bando and Motoba, Prog. Theor. Phys. 73 (1985) 397
85YI1B Yin, Tan and Chen, Nucl. Phys. A440 (1985) 685
85YI1C Yin, Tan and Chen, Phys. Energ. Fortis \& Phys. Nucl. 9 (1985) 569; Phys. Abs. 24940 (1986)

86AB1E Abrahams, J. Phys. Soc. Jpn. Suppl. 55 (1986) 572
86AJ01 Ajzenberg-Selove, Nucl. Phys. A449 (1986) 1
86AJ04 Ajzenberg-Selove, Nucl. Phys. A460 (1986) 1
86ALZN Allcock et al, in Harrogate (1986) 46
86AN10 Antony, Britz and Bueb, Nuovo Cim. A91 (1986) 283
86AN1F Andersson et al, Phys. Scripta 34 (1986) 451
86AN1M Antolkovic, Turk and Kadija, in Santa Fe (1985) 183
86AN1R Ansari, Shoeb and Rahman Khan, J. Phys. G12 (1986) 1369
86AV1B Avdeichikov, in Dubna (1986) P. 122
86BA1N Bauhoff, at. Data Nucl. Data Tables 35 (1986) 429
86BA1W Bando, Nucl. Phys. A450 (1986) 217c
86BA21 Bahcall and Holstein, Phys. Rev. C33 (1986) 2121
86BA2D Babinet, Ann. Physique 11 (1986) 113
86BA2F Badalov and Filippov, Sov. J. Nucl. Phys. 43 (1986) 45
86BA38 Barker and Spear, Astrophys. J. 307 (1986) 847
86BA40 Baumann et al, Nucl. Instr. Meth. Phys. Res. A247 (1986) 359
86BE1K Bethe, Phys. Rev. Lett. 56 (1986) 1305
86BE1Q Belozerov et al, in P7-86-322, Dubna (1986) P. 53
86BE1S Bell et al, Z. Phys. C30 (1986) 513
86BE1T Bell et al, Z. Phys. A325 (1986) 7
86BI1D Bigelow, Freedman, Napolitano and Quin, J. Phys. Soc. Jpn. Suppl. 55 (1986) 1030
86BL12 Bloch et al, Phys. Rev. C34 (1986) 850
86BL1D Blokhintsev, Razikov, Ubaidullaeva and Yarmukhamedov, in Kharkov (1986) P. 449
86BO1H Boesgaard and Lavery, Astrophys. J. 309 (1986) 762
86BO1J Bondarenko and Petrov, Indc (Ccp)-265/L (1986)
86BO41 Borge et al, Nucl Phys. A460 (1986) 373
86BR26 Brandan et al, J. Phys. G12 (1986) 391
86CE04 Cernigoi et al, Nucl. Phys. A456 (1986) 599
86CH1J Chant, Aip Conf. Proc. 142 (1986) P. 246
86CH1M Choi et al, Bull. Amer. Phys. Soc. 31 (1986) 877
86CH1R Chiba et al, in Santa Fe (1985) 227
86CH1S Cheng and Huang, in Santa Fe (1985) 231
86CL1B Clarke et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 756
86CR1B Cravo and Fonseca, Few-Body Syst. Suppl. (Austria) 1 (1986) 221
86DA1B Davis and Pniewski, Contemp. Phys. 27 (1986) 91
86DE1H De Rujula, Glashow and Hall, Nature 320 (1986) 38
86DE1L Dekempeneer, Liskien, Mewissen and Poortmans, in Santa Fe (1985) 133
86DR1D Drosg et al, in Santa Fe (1985) 145
86FA1B Fawcett, in Santa Fe (1985) 1581
86FI1B Filippone, Ann. Rev. Nucl. Part. Sci. 36 (1986) 717
86FI1E Filippov and Badalov, in Kharkov (1986) P. 149
86FO04 Fox et al, Phys. Rev. C33 (1986) 1540
86FR12 Franco and Yin, Phys. Rev. C34 (1986) 608

86GA18 Garcon et al, Nucl. Phys. A458 (1986) 287
86GA24 Gay, Dennis, and Fletcher, Phys. Rev. C34 (1986) 2144
86GL1A Glaudemans, Aip Conf. Proc. 142 (1986) 316
86GL1E Glukhov et al, in Kharkov (1986) P. 377, 378
86GO1D Gordon et al, Bull. Amer. Phys. Soc. 31 (1986) 784
86GO1G Goswami, Singh and Goswami, Indian J. Pure Appl. Phys. 24 (1986) 7
86GO1K Gohar, in Santa Fe (1985) 15
86GO1N Goncharov et al, Sov. J. Nucl. Phys. 44 (1986) 191
86GR04 Grotz, Klapdor and Metzinger, Phys. Rev. C33 (1986) 1263
86GU1F Gupta and Malik, in Harrogate (1986) C23
86HA1B Harvey, J. Physique 47 (1986) C4-29
86HA1I Haxton, in Aip Conf. Proc. 150 (1986) P. 738
86HA1K Haneishi and Fujita, Phys. Rev. C33 (1986) 260
86HA1P Hanna, J. Phys. Soc. Jpn. Suppl. 55 (1986) 528
86HE26 Hefter and Mitropolsky, Nuovo Cim. A95 (1986) 63
86HO33 Horiuchi, Wada, and Yabana, Prog. Theor. Phys. 76 (1986) 837
86IG1A Iguchi et al, in Santa Fe (1985) 203
86IR01 Iriondo, Jerrestam and Liotta, Nucl. Phys. A454 (1986) 252
86JA02 Jarczyk et al, Nucl. Phys. A448 (1986) 1
86JA14 Jarczyk et al, Nucl. Phys. A459 (1986) 52
86KN06 Kneff, Oliver, Goldberg and Haight, Nucl. Sci. \& Eng. 94 (1986) 136
86KO32 Kochetkov and Seregina, Sov. at. Energy 60 (1986) 322
86KR12 Kruppa, Lovas, Beck and Dickmann, Phys. Lett. 179b (1986) 317
86KR1B Kristiansson et al, Nucl. Phys. A447 (1986) 577c
86LA05 Langanke and Rolfs, Phys. Rev. C33 (1986) 790
86LA12 Langanke, Phys. Lett. 174b (1986) 27
86LA16 Langanke, Wiescher and Thielemann, Z. Phys. A324 (1986) 147
86LA19 Langanke and Rolfs, Z. Phys. A324 (1986) 307
86LA26 Lattuada et al, Nucl. Phys. A458 (1986) 493
86LE1E Leeper et al, Bull. Amer. Phys. Soc. 31 (1986) 1286
86LI1H Liskien, in Santa Fe (1985) 1277
86MA03 Malecki and Satta, Phys. Rev. C33 (1986) 382
86MA19 Mateja et al, Phys. Rev. C33 (1986) 1649
86MA1O Macdonald et al, in Harrogate (1986) C214
86MA1R Maekawa et al, in Santa Fe (1985) 101
86MA1T Mathews et al, in Santa Fe (1985) 835
86MA1W May, Nucl. Phys. A450 (1986) 179c
86MC09 Mcnaughton, Spinka and Shimizu, Nucl. Instr. Meth. Phys. Res. A243 (1986) 137
86MI11 Miljanic, Blagus and Zadro, Phys. Rev. C33 (1986) 2204
86MO1C Morrissey et al, Nucl. Phys. A447 (1986) 603c
86NA1C Napolitano, Camp and Freedman, Bull. Amer. Phys. Soc. 31 (1986) 780
86NA1D Nakayama et al, in Harrogate (1986) B112
86NO1C Nojiri et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 391

86NO1D	Nojiri et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 1086
$86 \mathrm{OC1A}$	Ochiai, Prog. Theor. Phys. 75 (1986) 1184
86PA1E	Pavlenko et al, in Kharkov (1986) P. 320
86PO06	Poenaru et al, at. Data Nucl. Data Tables 34 (1986) 423
86 PO 12	Pochodzalla, Butsch, Heck and Rosner, Phys. Lett. 181b (1986) 33
86QU1B	Quin and Bigelow, Bull. Amer. Phys. Soc. 31 (1986) 1219
86RA15	Rahman and Sen Gupta, Nuovo Cim. A93 (1986) 236
86RA1D	Raisanen and Lappalainen, Nucl. Instr. Meth. Phys. Res. B15 (1986) 546
86RA1F	Rapaport, in Santa Fe (1985) 1229
86RO13	Rolfs and Kavanagh, Nucl. Phys. A455 (1986) 179
86 RO 1 N	Rosen and Gelb, in Harrogate (1986) F2
86SA1P	Sale et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 992
86SA30	Sato and Okuhara, Phys. Rev. C34 (1986) 2171
86SE1D	Sekimoto et al, in Santa Fe (1985) 107
86SH10	Shimoura et al, Nucl. Phys. A452 (1986) 123
86SH1T	Shin, Oyama and Abdou, in Santa Fe (1985) 239
$86 \mathrm{SH1U}$	Shibata and Kikuchi, in Santa Fe (1985) 1585
86SI1B	Simmonds et al, in Harrogate (1986) C128
86 SO 07	Soderstrum and Knutson, Phys. Rev. C34 (1986) 401
86ST1D	Stenlund, Nucl. Phys. A447 (1986) 181c
86ST1E	Steffens, J. Phys. Soc. Jpn. Suppl. 55 (1986) 459
86SU06	Suzuki and Hecht, Nucl. Phys. A455 (1986) 315
86TA1H	Takahashi, in Santa Fe (1985) 59
86TA1M	Tamain, in Proc. Inter. Nucl. Phys. Conf., Harrogate, U.K. (1986) No. 68, Vol. 2, P. 247; Publ. by Institute of Physics, Bristol, U.K.
86TA1N	Tannenbaum, in Aip Conf. Proc. 150 (1986) P. 858
86TA1P	Tanaka, in Aip Conf. Proc. 150 (1986) P. 872
86TU1B	Tungate et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 1116
$86 \mathrm{UC1A}$	Uckert et al, J. Physique 47 (1986) C4-95
86 VD 01	Vdovin, Golovin and Loshchakov, Sov. J. Nucl. Phys. 43 (1986) 930
86VD04	Vdovin et al, Izv. Akad. Nauk Sssr Ser. Fiz. 50 (1986) 936
86VE1A	Velarde et al, in Santa Fe (1985) 195
86WA01	Warburton, Phys. Rev. C33 (1986) 303
86WE1C	Westfall, Nucl. Phys. A447 (1986) 591c
86 WE 1 D	Weller, J. Phys. Soc. Jpn. Suppl. 55 (1986) 113
86WI04	Wilkinson, Nucl. Phys. A452 (1986) 296
86 WO 1 B	Wolfenstein, Nature 323 (1986) 579
86XI1A	Xie, Kong, Sun and Wang, Chin. Phys. 6 (1986) 52
86XU02	Xu et al, Phys. Lett. 182b (1986) 155
86YA12	Yamaya et al, Phys. Rev. C34 (1986) 2369
86YA1F	Yamamoto, Prog. Theor. Phys. 75 (1986) 639
86YA1K	Yamamoto et al, in Santa Fe (1985) 171
86YO1D	Youssef, Jung and Sawan, in Santa Fe (1985) 117

86YU01 Yu, Motoba and Bando, Prog. Theor. Phys. 76 (1986) 861
86ZA09 Zadro et al, Z. Phys. A325 (1986) 119
87AB21 Abouzi, Antony and Ndocko Ndongue, Nuovo Cim. A97 (1987) 753
87AJ02 Ajzenberg-Selove, Nucl. Phys. A475 (1987) 1
87AJ1A Ajzenberg-Selove, Dubna (1987) P. 341
87AR19 Arnell et al, Phys. Scripta 36 (1987) 214
87AR1G Artemov et al, in Yurmala (1987) P. 386
87AS05 Assenbaum, Langanke and Rolfs, Z. Phys. A327 (1987) 461
87BA13 Banaigs et al, Phys. Rev. C35 (1987) 1416
87BA1U Bahcall, Rev. Mod. Phys. 59 (1987) 505
87BA1X Bahcall, Dar and Piran, Nature 326 (1987) 135
87BA2K Bando, Yamada and Zofka, Phys. Rev. C36 (1987) 1640
87BA35 Baye, Phys. Rev. Lett. 58 (1987) 2738
87BA39 Balster et al, Nucl. Phys. A468 (1987) 131
87BE17 Becker, Rolfs and Trautvetter, Z. Phys. A327 (1987) 341
87BE1F Berthier et al, Phys. Lett. B193 (1987) 417
87BL13 Bloch et al, Phys. Rev. C36 (1987) 203
87BL16 Bloch and Kashy, Phys. Rev. C36 (1987) 855
87BL18 Blumel and Dietrich, Nucl. Phys. A471 (1987) 453
87BO1M Bochkarev et al, in Yurmala (1987) P. 384
$87 \mathrm{BO} 40 \quad$ Borcea et al, Rev. Roum. Phys. 32 (1987) 497
$87 B O 42$ Bosca, Buendia, and Guardiola, Phys. Lett. B198 (1987) 312
87CA05 Cao, Bent, Nann and Ward, Phys. Rev. C35 (1987) 625
87CA06 Cao et al, Phys. Rev. C35 (1987) 825
87CH1G Cherry, Davis and Lande, Telemark Iv: Neutrino Masses \& Neutrino Astrophys., Ashland (1987)
87CH26 Chen et al, Nucl. Phys. A473 (1987) 564
87CH32 Chen et al, Phys. Lett. B199 (1987) 171
87CH33 Chen et al, Phys. Rev. C36 (1987) 2297
87 CO16 Cook, Stephens and Kemper, Nucl. Phys. A466 (1987) 168
87CZ02 Czakanski et al, Phys. Lett. B199 (1987) 166
87DA25 Dai et al, Chin. J. Nucl. Phys. 9 (1987) 103
87DE1O Detraz, Dubna (1987) P. 42
87DE37 Deak et al, Nucl. Instr. Meth. Phys. Res. A258 (1987) 67
87DU07 Duflo, Phys. Rev. C36 (1987) 1425
87FL1A Flerov, Dubna (1987) P. 9
87FO08 Fox et al, Phys. Rev. C36 (1987) 640
87FR1C Friedlander and Weneser, Science 235 (1987) 760
87FR1D Franco, Phys. Rev. C35 (1987) 1328
87FU04 Fushiki and Lamb, Astrophys. J. 317 (1987) 368
87FU1G Fuller, Mayle, Wilson and Schramm, Astrophys. J. 322 (1987) 795
87GAZM Gaidaenko et al, in Yurmala (1987) P. 299
87GE1B Gelbke and Boal, Prog. Part. Nucl. Phys. 19 (1987) 33

87GL1D Gledenov et al, in Yurmala (1987) P. 404
87GL1G Glukhov, Dem'yanova, Ogloblin and Sakuta, Sov. J. Nucl. Phys. 45 (1987) 767
87GLZZ Gledenov et al, in Yurmala (1987) P. 298
87GO1S Goryunov et al, in Yurmala (1987) P. 474
87 GO 27 Goncharov et al, Czech. J. Phys. 37 (1987) 168
87GR11 Green et al, Phys. Rev. C35 (1987) 1341
87HA1M Hahn and Stocker, Phys. Rev. C35 (1987) 1311
87HA30 Hansen and Jonson, Europhys. Lett. 4 (1987) 409
87HE1B Heinz, Rep. Prog. Phys. 50 (1987) 145
87HU12 Huber et al, Phys. Rev. C36 (1987) 2683
87JA06 Jacak et al, Phys. Rev. C35 (1987) 1751
87KA18 Kato, Kazama and Tanaka, Prog. Theor. Phys. 77 (1987) 185
87KA1L Kadmenskii, Kadmenskii, Lukyanovich and Rudchik, in Yurmala (1987) P. 473
87KA1R Kajino, Toki and Austin, Astrophys. J. 319 (1987) 531
87KA1W Kamran and Qureshi, Phys. Lett. B188 (1987) 122
$87 K A 25$ Kadija et al, Nucl. Phys. A469 (1987) 183
87KI01 Kim, Park and Kim, Phys. Rev. C35 (1987) 363
87KI1C Kissener, Rotter and Goncharova, Fortschr. Phys. 35 (1987) 277
87KN04 Knox, Resler and Lane, Nucl. Phys. A466 (19870 245
87KO1E Kozmyr, Yurmala (1987) 332
87KO1U Kocbach and Walderhaug, Xv Icpeac Brighton '87 (Belfast, Uk: Queen's Univ. 1987)
623; Phys. Abs. 30515 (1988)
87KO1Z Kobayashi et al, in Panic (1987) P. 478
87KR03 Krolle et al, Phys. Rev. C35 (1987) 1631
$87 K R 10$ Krofcheck et al, Phys. Lett. B189 (1987) 299
87LA25 Lattuada et al, Z. Phys. A328 (1987) 497
87LE1D Levin, Nucl. Phys. A463 (1987) C487
87LY04 Lynch, Nucl. Phys. A471 (1987) 309c
87LY05 Lyutostanskii and Tikhonov, Sov. J. Nucl. Phys. 46 (1987) 42
87MA2C Malaney and Fowler, Oap-680, To Be Published in Origin and Distribution of the Elements (1987)
87MI1A Mian, Phys. Rev. C35 (1987) 1463
87MU1B Murphy, Dermer, and Ramaty, Astrophys. J. Suppl. 63 (1987) 721
87NA08 Napolitano, Freedman and Camp, Phys. Rev. C36 (1987) 298
87NE1C Nemets et al, in Yurmala (1987) 323
87 NO 04 Nojiri et al, Hyperfine Interactions 35 (1987) 1015
87OC1B Ochiai, Z. Phys. C35 (1987) 209
87 OL04 Oliver, Farrar and Bretscher, Appl. Radiat. Isot. (Uk) 38 (1987) 959; Phys. Abs. 557 (1988)

87OT1D Otterlund, Nucl. Phys. A461 (1987) C113
87PE1B Peter, Dubna (1987) 562
87PE1C Penionshkevich, Dubna (1987) 364

```
87PO03 Pochodzalla et al, Phys. Rev. C35 (1987) }169
87PO1H Povh, Prog. Part. Nucl. Phys. (Gb) 18 (1987) }18
87PO1I Pochodzalla, Nucl. Phys. A471 (1987) C289
87PR01 Provoost, Grummer and Goeke, Ann. Phys. 174 (1987) 202
87QA01 Qaim and Wolfle, Nucl. Sci. & Eng. 96 (1987) }5
87RI1E Rich, Owen and Spiro, Phys. Rep. }151\mathrm{ (1987) }23
87RO1D Rolfs, Trautvetter and Rodney, Rep. Prog. Phys. }50\mathrm{ (1987) }23
87RUZK Rutkevich et al, in Yurmala (1987) 320
87SA15 Sagawa and Toki, J. Phys. G13 (1987) 453
87SA1L Sale et al, Nucl. Instr. Meth. Phys. Res. B24-25 (1987) 490
87SA37 Saito, Nucl. Phys. A472 (1987) 161
87SC08 Schmidt et al, Nucl. Sci. & Eng. 96 (1987) }15
87SH1M Shmakov and Uzhinskii, Z. Phys. C36 (1987) }7
87SI06 Siwek-Wilczynska et al, Phys. Rev. C35 (1987) }131
87SI1E Simenog, in Yurmala (1987) }16
87SV1A Sviciulis and Kalinauskas, Sov. Phys.-Collect. 27 (1987) }1
87TA1F Tanihata et al, in Panic (1987) 474
87TA22 Taddeucci, Can. J. Phys. 65 (1987) 557
87TI07 Tilley, Weller and Hasan, Nucl. Phys. A474 (1987) 1
87TO06 Tosaki et al, Nucl. Phys. A463 (1987) C429
87VA1I Valiev et al, in Yurmala (1987) }34
87VA26 Van Hees, Wolters and Glaudemans, Phys. Lett. B196 (1987) }1
87VE02 Verma et al, Ann. Nucl. Energy (Gb) }14\mathrm{ (1987) 159; Phys. Abs. }73755\mathrm{ (1987)
87WA07 Walliser and Nakaichi-Maeda, Nucl. Phys. A464 (1987)}36
87WA09 Wada et al, Phys. Rev. Lett. }58\mathrm{ (1987) }182
87WA1J Wang, Bando and Takaki, Z. Phys. A327 (1987) 59
87WA1K Watson et al, Bull. Amer. Phys. Soc. 32 (1987) }157
87WA21 Warner et al, Nucl. Phys. A470 (1987) }33
87WA25 Warner et al, Nucl. Phys. A472 (1987) 522
87WE1C Weneser and Friedlander, Science 235 (1987) }75
87YA1M Yamamoto, Phys. Rev. C36 (1987) }216
87ZA07 Zadro et al, Nucl. Phys. A474 (1987) 373
88AJ1B Ajzenberg- Selove, in Interactions and Structures in Nuclei, Proc. in Honor of
                D.H.Wilkinson, Sussex, September 7-9 (1987); Adam Hilger Pub. (1988) P. }18
88AL07 Allcock et al, Phys. Lett. B201 (1988) }20
88AL1G Aleksandrov et al, Baku (1988) }37
88AR05 Arena et al, Europhys. Lett. 5 (1988) }51
88AU1A Aushev et al, Baku (1988) 369
88BA1H Bahcall and Ulrich, Rev. Mod. Phys. 60 (1988) }29
88BA29 Barker, Phys. Rev. C37 (1988) }292
88BA75 Barker, Austr. J. Phys. }41\mathrm{ (1988) 743
88BEYJ Belozerov et al, Baku (1988) 380
88BL09 Bloch et al, Phys. Rev. C37 (1988) }246
```

```
88BO04 Bosca and Guardiola, Nucl. Phys. A476 (1988) }47
88BO15 Bowman, J. Phys. G14 (1988) S399
88BO1H Bodek et al, Few- Body Syst. 3 (1988) 135
88CA06 Caskey et al, Phys. Rev. C37 (1988) }96
88EW1A Ewan, Aip Conf. Proc. }164\mathrm{ (1988) P. }58
88FO1A Fowler, Iin Nteractions and Structures in Nuclei, Proc. in Honor of D.H. Wilkinson,
        Sussex, September7-9 (1987); Adam Hilger Publ. (1988) P. }11
88GA10 Gagliardi et al, Phys. Rev. C37 (1988) }288
88GO02 Goncharov et al, Czech. J. Phys. }38\mathrm{ (1988) 12
88GU1F Guzhovsky, Lazarev, and Ershov, Baku (1988)}48
88HA1M Haxton and Johnson, Nature 333 (1988) }32
88HE08 Henneck et al, Phys. Rev. C37 (1988) }222
88JO1C Jonson et al, in Aip Conf. Proc. }164\mathrm{ (1988) P. }22
88KA1K Karmanov et al, Baku (1988) }32
88KA1M Karmanov et al, Baku (1988) }48
88KH03 Myint and Akaishi, Prog. Theor. Phys. 79 (1988) }45
88KI05 Kidd et al, Phys. Rev. C37 (1988) }261
88KI1C Kiptily, Baku (1988) }53
88KO03 Koehler et al, Phys. Rev. C37 (1988) }91
88KR01 Kruppa, Lovas and Gyarmati, Phys. Rev. C37 (1988) }38
88KU1E Kukulin, Baku (1988) }39
88KW1A Kwasniewicz and Kisiel, Acta Phys. Pol. B19 (1988) }14
88LI1A Liu et al, Bull. Am. Phys. Soc. }33\mathrm{ (1988) }90
88LI1B Liu and Fortune, Private Communication (1988)
88MA1H Manokhin, Indc(Ccp)-283 (1988)
88MO05 Mohring et al, Phys. Lett. B203 (1988) }21
88NE1A Nemets, Pavlenko and Pugach, Baku (1988) }32
88PO1A Pouliot et al, Bull. Amer. Phys. Soc. 33 (1988) }117
88PO1E Poppelier et al, Aip Conf. Proc. 164 (1988)}33
88R1ZZ Ritchie et al, Bull. Amer. Phys. Soc. }33\mathrm{ (1988) 903, Ai11
88RU01 Rubchenya and Yavshits, Z. Phys. A329 (1988) }21
88RU1B Ruza et al, Baku (1988) }14
88RU1D Rubchenya and Yavchits, Baku (1988) }34
88SA09 Saint-Laurent et al, Phys. Lett. 202b (1988) }19
88SA2A Savage, Filippone and Mitchell, Phys. Rev. D37 (1988) }113
88SH1E Shvedov, Nemets and Rudchik, Baku (1988) }35
88SH1F Shvedov, Nemets and Rudchik, Baku (1988) }35
88ST06 Stevenson et al, Phys. Rev. C37 (1988) }222
88TA1A Tanihata, Nucl. Phys. A478 (1988) 795c
88TA1B Tamura et al, Nucl. Phys. A479 (1988) 161c
88VA03 Van Hees, Wolters and Glaudemans, Nucl. Phys. A476 (1988) }6
88VA1E Vagner et al, Baku (1988) 383
88WA18 Wapstra, Audi and Hoekstra, at. Data Nucl. Data Tables 39 (1988) }28
```

88WA1E Warburton, Interactions and Structures in Nuclei, Proc. in Honor of D.H. Wilkinson, Sussex, September 7-9 (1987); Adam Hilger Publ. (1988) P. 81
88WO04 Wolters, Van Hees and Glaudemans, Europhys. Lett. 5 (1988) 7
90AJ01 Ajzenberg-Selove, Nucl. Phys. A506 (1990) 1

