Energy Levels of Light Nuclei $A=10$

F. Ajzenberg-Selove
University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

Abstract

An evaluation of $A=5-10$ was published in Nuclear Physics A490 (1995), p. 1. This version of $A=10$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Also, reference key numbers have been changed to the NNDC/TUNL format see introduction to references for more information.

(References closed June 1, 1988)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-FG0286ER40279]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).
${ }^{\mathbf{1 0}} \mathbf{n}$
(Not illustrated)
${ }^{10} \mathrm{n}$ has not been observed: see (79AJ01). See also (86AB10; theor.).

```
10}\mathbf{He
(Not illustrated)
```

${ }^{10} \mathrm{He}$ has not been observed. It has been searched for in the spontaneous fission of ${ }^{252} \mathrm{Cf}$ (82AL1C), in the fragmentation of $0.79 \mathrm{GeV} / A{ }^{11} \mathrm{Li}$ ions (87KO1Y) and in the fragmentation of a $30 \mathrm{MeV} / A^{18} \mathrm{O}$ beam (88 ST 06). The production rate in the latter experiment is $<3 \times 10^{-5}$ of the measured production probability of ${ }^{8} \mathrm{He}$ (88 ST 06). See also (84AJ01). The calculated value of the atomic mass excess of ${ }^{10} \mathrm{He}$ is $48.92 \pm 0.14 \mathrm{MeV}$: ${ }^{10} \mathrm{He}$ is then unstable with respect to breakup into ${ }^{9} \mathrm{He}+\mathrm{n}$ and ${ }^{8} \mathrm{He}+2 \mathrm{n}$ by 0.04 and 1.18 MeV , respectively (88BRZZ). See also (84BE1C), (79AJ01, 84AJ01, 87FL1A, 87HA1R, 87PE1C, 87SE05) and (83ANZQ, 83PO1A, 84VA06, 85PO10, 85SA32, 86SA30, 87BL18, 87SA15; theor.).

${ }^{10} \mathrm{Li}$

(Fig. 22)

At $E\left({ }^{9} \mathrm{Be}\right)=121 \mathrm{MeV},{ }^{10} \mathrm{Li}$ has been observed in the ${ }^{9} \mathrm{Be}\left({ }^{9} \mathrm{Be},{ }^{8} \mathrm{~B}\right){ }^{10} \mathrm{Li}$ reaction with a differential cross section (c.m.) of $\approx 30 \mathrm{nb} / \mathrm{sr}$ at $\theta=14^{\circ}$ (lab): $Q_{0}=-34.06 \pm 0.25 \mathrm{MeV}$, and the atomic mass excess of ${ }^{10} \mathrm{Li}$ is $33.83 \pm 0.25 \mathrm{MeV}$ if the group observed ($\Gamma \approx 1.2 \pm$ $0.3 \mathrm{MeV})$ corresponds to the ground state. ${ }^{10} \mathrm{Li}_{\text {g.s. }}$ would then be unbound with respect to breakup into ${ }^{9} \mathrm{Li}+\mathrm{n}$ by $0.80 \pm 0.25 \mathrm{MeV}$: see (79AJ01). See also (86GI10, 87AB1M), (84AJ01, 85AL1G, 87PE1C) and (82KA1D, 83ANZQ, 83FE07, 84VA06, 85PO10, 86AB10, 88PO1E; theor.).

${ }^{10} \mathrm{Be}$
 (Figs. 19 and 22)

GENERAL: See also (84AJ01).
Model calculations: (83MI1E, 83SH38, 84NI12, 84VA06, 85KW02).
Special states: (84NI12, 84VA06, 87AB1H, 87BL18).
Electromagnetic transitions: (84NI12).
Astrophysical questions: (84BE1F, 84EN1A, 84NE1D, 84SA1D, 85WE1A, 87EL1E, 87GR1Q, 87NA1M, 87SO1E, 88BE1B, 88FE1A, 88HA1M).

Complex reactions involving ${ }^{10} \mathrm{Be}$: (83EN04, 83OL1A, 83WI1A, 84GR08, 84HI1A, 84ST1B, 85JA1B, 85MA13, 85PO11, 85TA18, 85TR1B, 86AN1F, 86AV1B, 86BA69, 86CS1A, 86HA1B, 86ME06, 86PO06, 86SA30, 86SI1B, 86SO10, 86WE1E, 87AR19, 87BA38, 87BA39, 87CH26, 87DE37, 87FE1A, 87GR11, 87GU04, 87JA06, 87KI05, 87NA01, 87TA1F, 87TR05, 87VI02, 87VI1B, 87WA09, 87YA16, 88BL09, 88CA06, 88KI05, 88KR11, 88RU01, 88SA19).

Applications: (83FA1B, 83KU1C, 83LI1A, 83NE1A, $83 \mathrm{SH} 1 \mathrm{G}, 83 \mathrm{TU} 1 \mathrm{~A}, 84 \mathrm{BE} 1 \mathrm{~F}, 83 \mathrm{BE} 1 \mathrm{H}$, $84 \mathrm{BO} 1 \mathrm{E}, ~ 84 \mathrm{DO} 1 \mathrm{~B}, 84 \mathrm{EL} 1 \mathrm{~B}, 84 \mathrm{EL} 1 \mathrm{C}, ~ 84 \mathrm{EN} 1 \mathrm{~A}, ~ 84 \mathrm{HE} 1 \mathrm{~B}, 84 \mathrm{HE} 1 \mathrm{C}, ~ 84 \mathrm{HO} 1 \mathrm{E}, ~ 84 \mathrm{IM} 1 \mathrm{~A}$, 84KL1A, 84MA1K, 84MI1D, 84NE1C, 84NE1E, 84PO1C, 84RA1D, 84SE1B 84SE1D, $84 \mathrm{SH} 1 \mathrm{~L}, 84 \mathrm{SO} 1 \mathrm{~A}, 84 \mathrm{SO} 1 \mathrm{~B}, 84 \mathrm{SP} 1 \mathrm{~B}, 84 \mathrm{SU1B}, 84 \mathrm{TU} 1 \mathrm{~A}, 84 \mathrm{TU} 1 \mathrm{C}, 84 \mathrm{VA} 1 \mathrm{D}, 85 \mathrm{BE} 1 \mathrm{D}, 85 \mathrm{RA} 1 \mathrm{~A}$, 85YI1A, 86NI1A, 86SU1H, 86TE1A, 87BE1X, 87BR1Q, 87BR1U, 87DE1P, 87EI1A, 87EL1E, 87GO1W, 87GR1Q, 87IN1A, 87JA1G, 87KU1L, 87LA1G, 87LA1I, 87MO1F, 87NA1M, 87OE1A, 87RA1N, 87RE1H, 87SE1D, 87SE1E, 87SH1N, 87VA1S).

Muon and neutrino capture and reactions: (84KO24).
Reactions involving pions and kaons (See also reactions 3, 10, 15 and 17.): (82BE1D, 84KA1C, 85BE1K, 85TU1B, 86BE1P, 86RA16).

Hypernuclei: (82KA1D, 82WA1A, 83BA1D, 83FE07, 83MI1E, 83PO1D, 84BO1D, 84BO1G, 84CH1G, 84DZ1A, 84ER1A, 84KO1F, 84SH1J, 85AH1A, 85IK1A, 86AN1R, 86BA1W, 86BO1E, 86DA1B, 86MA1C, 86PO1H, 86WA1J, 86ZH1B, 87BO1L, 87BO1O, 87MI1A, 87PO1H, 87WU05, 88GI1B).

Other topics: (84PO11, 85AN28, 85WI1B).
Ground-state properties of ${ }^{10} \mathrm{Be}$: (83ANZQ, 84FR13, 84NI12, 85AN28, 85SA32, 85TA18, 86WI04, 87BL18, 87HA30, 87LE1D, 87SA15, 88JO1C).

The interaction nuclear radius of ${ }^{10} \mathrm{Be}$ is $2.46 \pm 0.03 \mathrm{fm}$ [(85TA18), $E=790 \mathrm{MeV} / A$; see also for derived nuclear matter, charge and neutron matter r.m.s. radii].

$$
B(\mathrm{E} 2) \uparrow \text { for }{ }^{10} \mathrm{Be}^{*}(3.37)=(5.2 \pm 0.6) \times 10^{-3} e^{2} \cdot \mathrm{~b}^{2}\left[Q_{0}=0.229 \pm 0.013 \mathrm{~b}\right](87 \mathrm{RA} 01)
$$

Table 10.1
Energy levels of ${ }^{10} \mathrm{Be}^{\mathrm{a}}$)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
g.s.	$0^{+} ; 1$	$\tau_{1 / 2}=(1.51 \pm 0.06) \times 10^{6} \mathrm{y}$	β^{-}	$1,2,4,5,6,10,11,12$, $13,14,15,17,18,19,20$, $21,22,23,24,26$
3.36803 ± 0.03	$2^{+} ; 1$	$\tau_{\mathrm{m}}=180 \pm 17 \mathrm{fs}$	γ	$2,3,4,5,6,10,11,12$, $13,14,15,16,17,18,19$, $20,21,22,23,24,26$
5.95839 ± 0.05	$2^{+} ; 1$	$\tau_{\mathrm{m}}<80 \mathrm{fs}$	γ	$\begin{aligned} & 4,6,11,12,16,18,19 \\ & 22,24 \end{aligned}$
5.9599 ± 0.6	$1^{-} ; 1$		γ	4, 11, 12, 18, 19, 22, 24
6.1793 ± 0.7	$0^{+} ; 1$	$\tau_{\mathrm{m}}=1.1_{-0.3}^{+0.4} \mathrm{ps}$	π, γ	11, 19
6.2633 ± 5	$2^{-} ; 1$		γ	11, 12
7.371 ± 1	$3^{-} ; 1$	$\Gamma=15.7 \pm 0.5 \mathrm{keV}$	n	5, 7, 11, 12
7.542 ± 1	$2^{+} ; 1$	6.3 ± 0.8	n	$4,5,7,11,12,24$
9.27	$\left(4^{-}\right) ; 1$	150 ± 20	n	5, 7, 11, 12
9.4	$(2)^{+} ; 1$	291 ± 20	n	$5,7,11,12,18,24$
10.57 ± 30	$\geq 1 ; 1$		n	4, 5, 7, 11
11.76 ± 20		121 ± 10		4, 5, 11, 12, 24
17.79		110 ± 35	$\gamma, \mathrm{n}, \mathrm{t}$	2, 4, 5
18.55		≈ 350	n, t	2, 4, 5
(21.22)	$\left(2^{-} ; 2\right)$	sharp	$\mathrm{n}, \mathrm{p}, \mathrm{t}$	2
(24)				25

${ }^{\text {a }}$) See also table 10.4.

1. ${ }^{10} \operatorname{Be}\left(\beta^{-}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=0.5561$

The half-life of ${ }^{10} \mathrm{Be}$ is $(1.51 \pm 0.06) \times 10^{6} \mathrm{y}(87 \mathrm{HO} 1 \mathrm{P}) . \log f t=13.397 \pm 0.017$ (M.J. Martin, private communication). For the earlier work see (74AJ01).
2. (a) ${ }^{7} \mathrm{Li}(\mathrm{t}, \gamma){ }^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=17.2498$
(b) ${ }^{7} \mathrm{Li}(\mathrm{t}, \mathrm{n}){ }^{9} \mathrm{Be}$
$Q_{\mathrm{m}}=10.4378$
$E_{\mathrm{b}}=17.2498$
(c) ${ }^{7} \mathrm{Li}(\mathrm{t}, \mathrm{p}){ }^{9} \mathrm{Li}$
$Q_{\mathrm{m}}=-2.386$
(d) ${ }^{7} \mathrm{Li}(\mathrm{t}, \mathrm{t})^{7} \mathrm{Li}$
(e) ${ }^{7} \mathrm{Li}(\mathrm{t}, \alpha)^{6} \mathrm{He}$

$$
Q_{\mathrm{m}}=9.839
$$

The yield of γ_{0} and γ_{1} has been studied for $E_{\mathrm{t}}=0.4$ to $1.1 \mathrm{MeV}\left[{ }^{10} \mathrm{Be}^{*}(17.79)\right.$ is said to be involved]: see (84AJ01). The neutron yield exhibits a weak structure at $E_{\mathrm{t}}=0.24 \mathrm{MeV}$
and broad resonances at $E_{\mathrm{t}} \approx 0.77 \mathrm{MeV}[\Gamma=160 \pm 50 \mathrm{keV}]$ and 1.74 MeV : see (66LA04) $\left[{ }^{10} \mathrm{Be}^{*}(17.79,18.47)\right]$. The total cross section for reaction (c), the yield of neutrons (reaction (b) to ${ }^{9} \mathrm{Be}^{*}(14.39)$), and the yield of γ-rays from ${ }^{7} \mathrm{Li}^{*}(0.48)$ (reaction (d)) all show a sharp anomaly at $E_{\mathrm{t}}=5.685 \mathrm{MeV}: J^{\pi}=2^{-} ; T=2$ is suggested for a state at $E_{\mathrm{x}}=21.22 \mathrm{MeV}$. The total cross section for α_{0} (reaction (e)) and the all-neutrons yield do not show this structure: see (83AB1A), (84AJ01) and (85DE19; theor.). An additional anomaly in the proton yield is also reported at $E_{\mathrm{t}}=8.5 \mathrm{MeV}\left[{ }^{10} \mathrm{Be}^{*}(23.2)\right][$ see (87 AB 1 M)]. Differential cross sections and S-factors are reported by (83CE1A) for $E_{\mathrm{t}}=70$ to 110 keV for ${ }^{6} \mathrm{He}^{*}(0$, 1.80). The zero-energy S-factor for ${ }^{6} \mathrm{He}^{*}(1.80)$ is $14 \pm 2.5 \mathrm{MeV} \cdot$ b. The relevance to an Liseeded tritium plasma is discussed by (83CE1A). See also (87AB09), (85CA41; astrophys.) and (86AB10; theor.).
3. ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \pi^{+}\right){ }^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=-122.337$

Cross sections have been measured to ${ }^{10} \mathrm{Be}^{*}(3.37,6.2[\mathrm{u}], 7.4[\mathrm{u}][\mathrm{u}=$ unresolved]) at $E\left({ }^{3} \mathrm{He}\right)=235 \mathrm{MeV}$. The ground-state group is not seen: its intensity at $\theta_{\text {lab }}=20^{\circ}$ is ≤ 0.1 that to ${ }^{10} \mathrm{Be}^{*}(3.37)$ (84BI08).
4. ${ }^{7} \mathrm{Li}(\alpha, \mathrm{p}){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-2.5642$

See (87BI1C) and (79AJ01).
5. ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li}, \alpha\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=14.782$

See (74AJ01).
6. ${ }^{9} \mathrm{Be}(\mathrm{n}, \gamma){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=6.8120$

The thermal capture cross section is $8.49 \pm 0.34 \mathrm{mb}$ (86CO14). Reported γ-ray transitions are displayed in Table 10.2 (83KE11). Partial cross sections involving ${ }^{10} \mathrm{Be}^{*}(0$, $3.37,5.96)$ are listed in (87LY01). See also (84SH1P, 84SH1R) and (85MU03, 86MU1B, 86RA1B, 87LY01, 88MU05; theor.).

Table 10.2
Neutron-capture γ-rays in ${ }^{10} \mathrm{Be}^{\mathrm{a}}$)

$\left.E_{\gamma}(\mathrm{keV})^{\mathrm{b}}\right)$	Transition	$\left.E_{\mathrm{x}}(\mathrm{keV})^{\mathrm{b}}\right)$
$6809.585(33)$	capt. \rightarrow g.s.	$6812.038(29)$
$\left.5955.9(5)^{\mathrm{a}}\right)$	$\left.5.96^{\mathrm{c}}\right) \rightarrow$ g.s.	$5958.387(51)$
$3443.374(30)$	capt. $\rightarrow 3.37$	
$3367.415(30)$	$3.37 \rightarrow$ g.s.	$3368.029(29)$
$2589.999(60)$	$\left.5.96^{\mathrm{c}}\right) \rightarrow 3.37$	
$853.605(60)$	capt. $\left.\rightarrow 5.96^{\mathrm{c}}\right)$	

${ }^{\text {a }}$) See also tables 10.2 in (74AJ01, 79AJ01).
${ }^{\text {b }}$) (83 KE 11). 12 eV has been added in quadrature to the uncertainties. I am very grateful to T.J. Kennett for his comments. Some of the work displayed in table 10.2 of (84AJ01) is not shown here because it has not been published. However, those particular transitions are shown in fig. 19 since it is clear that they have been observed although the lack of published uncertainties make their inclusion in this table inadvisable.
${ }^{\text {c }}$) This is the 2^{+}member of the doublet at $E_{\mathrm{x}}=5.96 \mathrm{MeV}$.
7. (a) ${ }^{9} \mathrm{Be}(\mathrm{n}, \mathrm{n})^{9} \mathrm{Be}$
$E_{\mathrm{b}}=6.8120$
(b) ${ }^{9} \mathrm{Be}(\mathrm{n}, 2 \mathrm{n}){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.6654$

The scattering amplitude (bound) $a=7.778 \pm 0.003 \mathrm{fm}, \sigma_{\text {free }}=6.151 \pm 0.005 \mathrm{~b}$ (81MUZQ). The difference in the spin-dependent scattering lengths, $b^{+}-b^{-}$is $+0.24 \pm 0.07$ (87GL06). See also (87LY01). Total cross section measurements have been reported for $E_{\mathrm{n}}=2 \times 10^{-3} \mathrm{eV}$ to $2.6 \mathrm{GeV} / c$ [see (79AJ01, 84AJ01)] and at 24 keV (83AI01), 7 to 15 MeV (83DA22; also reaction cross sections) and $10.96,13.89$ and 16.89 MeV (85TE01; for n_{0} and n_{2}).

Observed resonances are displayed in Table 10.3. Analysis of polarization and differential cross section data leads to the $3^{-}, 2^{+}$assignments for ${ }^{10} \mathrm{Be}^{*}(7.37,7.55)$. Below $E_{\mathrm{n}}=0.5 \mathrm{MeV}$ the scattering cross section reflects the effect of bound 1^{-}and 2^{-}states, presumably ${ }^{10} \mathrm{Be}^{*}(5.960,6.26)$. There is also indication of interference with s-wave background and with a broad $l=1, J^{\pi}=3^{+}$state. The structure at $E_{\mathrm{n}}=2.73 \mathrm{MeV}$ is ascribed to two levels: a broad state at about 2.85 MeV with $J^{\pi}=2^{+}$, and a narrow one, $\Gamma \approx 100 \mathrm{keV}$, at $E_{\mathrm{n}}=2.73 \mathrm{MeV}$ with a probable assignment of $J^{\pi}=4^{-}$. The 4^{-}assignment results from a study of the polarization of the n_{0} group at $E_{\mathrm{n}}=2.60$ to 2.77 MeV . A rapid variation of the polarization over this interval is observed, and the data are consistent with $4^{-}(l=2)$ for ${ }^{10} \mathrm{Be}^{*}(9.27)$. A weak dip at $E_{\mathrm{n}} \approx 4.3 \mathrm{MeV}$ is ascribed to a level with $J \geq 1$. See (74AJ01) for references. The analyzing power has been measured for $E_{\mathrm{n}}=1.6$ to 15 MeV [see (84AJ01)] and at $E_{\overrightarrow{\mathrm{n}}}=9$ to 17 MeV ($84 \mathrm{BY} 03 ; \mathrm{n}_{0}, \mathrm{n}_{2}$).

The non-elastic and the ($\mathrm{n}, 2 \mathrm{n}$) cross sections rise rapidly to $\approx 0.6 \mathrm{~b}(\approx 0.5 \mathrm{~b}$ for $(\mathrm{n}, 2 \mathrm{n}))$ at $E_{\mathrm{n}} \approx 3.5 \mathrm{MeV}$ and then stay approximately constant to $E_{\mathrm{n}}=15 \mathrm{MeV}$: see (79AJ01, 84AJ01). For total γ-ray production cross sections for $E_{\mathrm{n}}=2$ to 25 MeV , see

Table 10.3
Resonances in $\left.{ }^{9} \mathrm{Be}(\mathrm{n}, \mathrm{n}){ }^{9} \mathrm{Be}^{\mathrm{a}}\right)$

$E_{\text {res }}$ $(\mathrm{MeV} \pm \mathrm{keV})$	${ }^{10} \mathrm{Be}^{*}$ (MeV)	$\Gamma_{\text {c.m. }}$ (keV)	J^{π}	l	$\left.\theta^{2}(\%)^{\mathrm{b}}\right)$
0.6220 ± 0.8	7.371	15.7 ± 0.5	3^{-}	2	7.5
0.8118 ± 0.7	7.542	6.3 ± 0.8	2^{+}	1	0.28
2.73	9.27	≈ 100	$\left(4^{-}\right)$	(2)	
(2.85)	9.4	≈ 400	$\left(2^{+}\right)$	(1)	
4.3	10.7		≥ 1		

${ }^{\text {a }}$) For references see table 10.3 in (79AJ01).
$\left.{ }^{\text {b }}\right) R=5.6 \mathrm{fm}$.
(86GO1L). See also (83GO1H, 84SH1P, 84SH1R, 86MU07), (85PE06; applications) and (86DU1G, 87HA1S; theor.).
8. (a) ${ }^{9} \mathrm{Be}(\mathrm{n}, \mathrm{p}){ }^{9} \mathrm{Li}$
$Q_{\mathrm{m}}=-12.824 \quad E_{\mathrm{b}}=6.8120$
(b) ${ }^{9} \mathrm{Be}(\mathrm{n}, \mathrm{d})^{8} \mathrm{Li}$
$Q_{\mathrm{m}}=-14.662$
(c) ${ }^{9} \mathrm{Be}(\mathrm{n}, \mathrm{t}){ }^{7} \mathrm{Li}$
$Q_{\mathrm{m}}=-10.438$

Cross sections have been measured at $E_{\mathrm{n}}=14.1-14.9 \mathrm{MeV}$ for reaction (a), 16.3 to 18.7 MeV for (b) and 13.3 to $15.0\left(\mathrm{t}_{1}\right)$ and 22.5 MeV (reaction (c)): see (79AJ01). A recent measurement (reaction (c)) has been reported at $E_{\mathrm{n}}=14.6 \mathrm{MeV}$ (87ZA01). See (83BO1C) and (84SH1P, 84SH1R, 85BO1D).
9. ${ }^{9} \mathrm{Be}(\mathrm{n}, \alpha){ }^{6} \mathrm{He}$
$Q_{\mathrm{m}}=-0.598$
$E_{\mathrm{b}}=6.8120$

The cross section for production of ${ }^{6} \mathrm{He}$ shows a smooth rise to a broad maximum of $104 \pm 7 \mathrm{mb}$ at 3.0 MeV , followed by a gradual decrease to 70 mb at 4.4 MeV . From $E_{\mathrm{n}}=3.9$ to 8.6 MeV , the cross section decreases smoothly from 100 mb to 32 mb . Excitation functions have been measured for α_{0} and α_{1} for $E_{\mathrm{n}}=12.2$ to 18.0 MeV : see (79AJ01) for references. See also (83 SH 1 J) and ($84 \mathrm{SH} 1 \mathrm{P}, 84 \mathrm{SH} 1 \mathrm{R}$).
10. ${ }^{9} \mathrm{Be}\left(\mathrm{p}, \pi^{+}\right){ }^{10} \mathrm{Be}$

$$
Q_{\mathrm{m}}=-133.539
$$

Angular distributions have been studied at $E_{\mathrm{p}}=185$ to 800 MeV [see (84AJ01)] and at $E_{\overrightarrow{\mathrm{p}}}=650 \mathrm{MeV}\left(86 \mathrm{HO} 23 ;\right.$ to $\left.{ }^{10} \mathrm{Be}^{*}(0,3.37)\right)$. States at $E_{\mathrm{x}}=6.07 \pm 0.13,7.39 \pm 0.13$, $9.31 \pm 0.24,11.76 \mathrm{MeV}$ have also been populated. A_{y} measurements involving ${ }^{10} \mathrm{Be}^{*}(0$, 3.37) are reported at $E_{\overrightarrow{\mathrm{p}}}=200$ to 250 MeV [see (84AJ01)] and at 650 MeV (86HO23).

Table 10.4
Radiative transitions in $\left.{ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{p}){ }^{10} \mathrm{Be}^{\mathrm{a}}\right)$

$E_{\text {x }}(\mathrm{keV})$	Transition	ΔJ^{π}	Mtpl.	Branch (\%)	$\tau_{\mathrm{m}}(\mathrm{ps})$	$\Gamma_{\gamma}(\mathrm{meV})$
3368.0 ± 0.2	$3.37 \rightarrow$ g.s.	$2^{+} \rightarrow 0^{+}$	E2	100	0.189 ± 0.020	3.48 ± 0.37
					0.160 ± 0.030	4.11 ± 0.78
5958.3 ± 0.3	$5.96 \rightarrow 3.37$	$2^{+} \rightarrow 2^{+}$	M1	> 90	< 0.08	
	$5.96 \rightarrow$ g.s.	$2^{+} \rightarrow 0^{+}$	E2	<10		
5959.9 ± 0.6	$5.96 \rightarrow$ g.s.	$1^{-} \rightarrow 0^{+}$	E1	83_{-6}^{+10}		
	$5.96 \rightarrow 3.37$	$1^{-} \rightarrow 2^{+}$	E1	17_{-10}^{+6}		
6179.3 ± 0.7	$6.18 \rightarrow 5.96$	$0^{+} \rightarrow 1^{-}$	E1	24 ± 2	$1.1_{-0.3}^{+0.4}$	0.14 ± 0.05
	$6.18 \rightarrow 3.37$	$0^{+} \rightarrow 2^{+}$	E2	76 ± 2		0.46 ± 0.28
	$6.18 \rightarrow$ g.s.	$0^{+} \rightarrow 0^{+}$	E0			
		1^{-}	M1			
6263.3 ± 5	$6.26 \rightarrow 5.96$	$2^{-} \rightarrow$		$\} \leq 1$		
		2^{+}	E1)		
	$6.26 \rightarrow 3.37$	$2^{-} \rightarrow 2^{+}$	E1	99_{-2}^{+1}		
	$6.26 \rightarrow$ g.s.	$2^{-} \rightarrow 0^{+}$	M2	1 ± 1		

${ }^{\text {a }}$) See table 10.4 in (79AJ01) for references. However, note that there are several typographical errors in the ${ }^{10} \mathrm{Be}^{*}(6.18)$ decay.
11. ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{p}){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=4.5874$

Angular distributions of proton groups have been studied at many energies in the range $E_{\mathrm{d}}=0.15$ to 17.3 MeV and at 698 MeV [see (79AJ01, 84 AJ 01)], as well as at $E_{\overrightarrow{\mathrm{d}}}=2.0$ to $2.8 \mathrm{MeV}\left(84 \mathrm{DE} 46,84 \mathrm{AN} 1 \mathrm{D} ; \mathrm{p}_{0}, \mathrm{p}_{1} ;\right.$ also VAP $)$ and $E_{\mathrm{d}}=12.5 \mathrm{MeV}\left(87 \mathrm{VA} 13 ; \mathrm{p}_{0}, \mathrm{p}_{1}\right)$. At $E_{\mathrm{d}}=15 \mathrm{MeV} S=2.1,0.23\left(j_{\mathrm{n}}=\frac{3}{2}\right)$ and $0.12\left(j_{\mathrm{n}}=\frac{1}{2}\right), \quad \leq 1.0,0.065\left(j_{\mathrm{n}}=\frac{5}{2}\right)$ and $0.132\left(j_{\mathrm{n}}=\frac{1}{2}\right)$, for ${ }^{10} \mathrm{Be}^{*}(0,3.37,5.96,6.26)$. The angular distributions show $l_{\mathrm{n}}=1$ transfer for ${ }^{10} \mathrm{Be}^{*}(0,3.37,5.958,7.54), l_{\mathrm{n}}=0$ transfer for ${ }^{10} \mathrm{Be}^{*}(5.960,6.26), l_{\mathrm{n}}=2$ transfer for ${ }^{10} \mathrm{Be}^{*}(7.37) .{ }^{10} \mathrm{Be}^{*}(6.18,9.27,9.4)$ are also populated, as are two states at $E_{\mathrm{x}}=10.57 \pm 0.03$ and $11.76 \pm 0.02 \mathrm{MeV} .{ }^{10} \mathrm{Be}^{*}(9.27,9.4,11.76)$ have $\Gamma_{\mathrm{c} . \mathrm{m}}=150 \pm 20$, 291 ± 20 and $121 \pm 10 \mathrm{keV}$. See (79AJ01) for references.

Attempts to understand the γ-decay of ${ }^{10} \mathrm{Be}^{*}(5.96)$ and its population in ${ }^{9} \mathrm{Be}(\mathrm{n}, \gamma){ }^{10} \mathrm{Be}$ led to the discovery that it consisted of two states separated by $1.6 \pm 0.5 \mathrm{keV}$. The lower of the two has $J^{\pi}=2^{+}$and decays primarily by a cascade transition via ${ }^{10} \mathrm{Be}^{*}(3.37)$ [it is the state fed directly in the ${ }^{9} \mathrm{Be}(\mathrm{n}, \gamma)$ decay]; the higher state has $J^{\pi}=1^{-}$and goes mainly by a crossover to ${ }^{10} \mathrm{Be}$ (g.s.). Angular correlations measured with the γ-ray detector located normal to the reaction plane (\equiv angular distributions) lead to l_{n} values consistent with the assignments of 2^{+}and 1^{-}for ${ }^{10} \mathrm{Be}^{*}(5.9584,5.9599)$ obtained from the character of the γ-decay. ${ }^{10} \mathrm{Be}^{*}(6.18)$ decays primarily to ${ }^{10} \mathrm{Be}^{*}(3.37): E_{\gamma}=219.4 \pm$ 0.3 keV for the $6.18 \rightarrow 5.96$ transition. See Table 10.4 for a listing of the information on radiative transitions obtained in this reaction and lifetime measurements. For (p, γ) correlations through ${ }^{10} \mathrm{Be}^{*}(3.37)$ see (87 VA 13) and references in (74AJ01). For polarization
measurements see ${ }^{11} \mathrm{~B}$ in (90AJ01).
12. ${ }^{9} \mathrm{Be}\left(\alpha,{ }^{3} \mathrm{He}\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-13.7658$

Angular distributions have been studied at $E_{\alpha}=65 \mathrm{MeV}$ to ${ }^{10} \mathrm{Be}^{*}(0,3.37,5.96,6.26$, $7.37,7.54,9.33,11.88)$ DWBA analyses of these lead to spectroscopic factors which are in poor agreement with those reported in other reactions: see (84AJ01).
13. (a) ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{Li}\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-0.438$
(b) ${ }^{9} \mathrm{Be}\left({ }^{9} \mathrm{Be},{ }^{8} \mathrm{Be}\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=5.1466$

Angular distributions have been measured at $E\left({ }^{7} \mathrm{Li}\right)=34 \mathrm{MeV}$ (reaction (a)) to ${ }^{10} \mathrm{Be}^{*}(0,3.4): S=2.07$ and $0.42\left(\mathrm{p}_{1 / 2}\right), 0.38\left(\mathrm{p}_{3 / 2}\right)$. See (79AJ01). At $E\left({ }^{9} \mathrm{Be}\right)=20 \mathrm{MeV}$ an angular distribution involving ${ }^{8} \mathrm{Be}_{\text {g.s. }}+{ }^{10} \mathrm{Be}_{\text {g.s. }}$ has been measured: transitions to excited states of ${ }^{10} \mathrm{Be}$ are very weak (85JA09).
14. (a) ${ }^{10} \mathrm{Be}(\mathrm{p}, \mathrm{p}){ }^{10} \mathrm{Be}$
(b) ${ }^{10} \mathrm{Be}(\mathrm{d}, \mathrm{d}){ }^{10} \mathrm{Be}$

Angular distributions of the p_{0} and p_{1} groups have been measured at $E_{\mathrm{p}}=12.0$ to 16.0 MeV . The elastically scattered deuterons have been studied at $E_{\mathrm{d}}=12.0$ and 15.0 MeV: see (74AJ01).
15. (a) ${ }^{10} \mathrm{~B}\left(\gamma, \pi^{+}\right)^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-140.125$
(b) ${ }^{10} \mathrm{~B}\left(\mathrm{e}, e^{\prime} \pi^{+}\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-140.125$

Differential cross sections have been measured to ${ }^{10} \mathrm{Be}^{*}(0,3.37)$ at $E_{\gamma}=230$ to 340 MeV [see (84AJ01)] and at $E_{\mathrm{e}}=185 \mathrm{MeV}$ (86YA07) and 200 MeV (84BL1B). See also (84AJ01).
16. ${ }^{10} \mathrm{~B}\left(\mu^{-}, \nu\right){ }^{10} \mathrm{Be}$ $Q_{\mathrm{m}}=105.1031$

Partial capture rates leading to the 2^{+}states ${ }^{10} \mathrm{Be} *(3.37,5.96)$ have been reported: see (84AJ01).
17. ${ }^{10} \mathrm{~B}\left(\pi^{-}, \gamma\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=139.012$

The photon spectrum from stopped pions is dominated by peaks corresponding to ${ }^{10} \mathrm{Be}^{*}(0,3.4,6.0,7.5,9.4)$, and branching ratios have been obtained. Those to ${ }^{10} \mathrm{Be}^{*}(0$, $3.4)$ are $(2.02 \pm 0.17) \%$ and $(4.65 \pm 0.30) \%$, respectively [absolute branching ratio per stopped pion] (86PE05). See (79AJ01) for the earlier work.
18. (a) ${ }^{10} \mathrm{~B}(\mathrm{n}, \mathrm{p})^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=0.2262$
(b) ${ }^{10} \mathrm{~B}(\mathrm{~d}, 2 \mathrm{p}){ }^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.9983$

Angular distributions [reaction (b)] are reported at $E_{\mathrm{d}}=55 \mathrm{MeV}$ to ${ }^{10} \mathrm{Be}^{*}(0,3.37$, $5.96,9.4$): see (84AJ01). See also (87KW01; theor.). For reaction (a) see (74AJ01) and (87LA16) in ${ }^{11}$ B (90AJ01).
19. ${ }^{11} \mathrm{Li}\left(\beta^{-}\right){ }^{11} \mathrm{Be} \rightarrow{ }^{10} \mathrm{Be}+\mathrm{n} \quad Q_{\mathrm{m}}=20.22$
${ }^{11} \mathrm{Li}$ populates several states of ${ }^{10} \mathrm{Be}$, via delayed neutron emission. Gamma rays have been observed for the transitions $6.18 \rightarrow 5.96,6.18 \rightarrow 3.37,5.96$ (unres.) $\rightarrow 3.37$ and $3.37 \rightarrow$ g.s. with $I_{\gamma}=(0.95 \pm 0.35),(1.65 \pm 0.70),(3.5 \pm 1.0)$ and $(21 \pm 6) \%$, respectively: see Table 11.2 in (85AJ01).
20. ${ }^{11} \mathrm{~B}(\gamma, \mathrm{p}){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-11.2279$

See (84AL22) and ${ }^{11}$ B in (90AJ01). See also (79AJ01).
21. ${ }^{11} \mathrm{~B}(\mathrm{p}, 2 \mathrm{p}){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-11.2279$

Structure is observed in the summed proton spectrum corresponding to $Q=-10.9 \pm$ $0.35,-14.7 \pm 0.4,-21.1 \pm 0.4,-35 \pm 1 \mathrm{MeV}$: see (74AJ01). See also (85BE1J, 85DO1B; prelim.).
22. ${ }^{11} \mathrm{~B}\left(\mathrm{~d},{ }^{3} \mathrm{He}\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-5.7343$

Angular distributions have been measured at $E_{\mathrm{d}}=11.8$ and 22 MeV to ${ }^{10} \mathrm{Be}_{\text {g.s. }}$. see (74AJ01)] and at 52 MeV to ${ }^{10} \mathrm{Be}^{*}(0,3.37,5.96,9.60): S=0.65,2.03,0.13,1.19$ (normalized to the theoretical value for the ground state); $\pi=+$ for ${ }^{10} \mathrm{Be}^{*}(9.6)$: see (79AJ01).
23. ${ }^{11} \mathrm{~B}\left({ }^{11} \mathrm{~B},{ }^{12} \mathrm{C}\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=4.7293$

See (85PO02).
24. ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-21.442$

At $E\left({ }^{6} \mathrm{Li}\right)=80 \mathrm{MeV},{ }^{10} \mathrm{Be}^{*}(0,3.37,5.96,7.54,(9.4), 11.8)$ are populated and the angular distribution to ${ }^{10} \mathrm{Be}_{\text {g.s. }}$ has been measured: see (79AJ01). See also (82AL1A, 83AL1D, 85AL1G).
25. ${ }^{13} \mathrm{C}(\mathrm{p}, \mathrm{d} 2 \mathrm{p}){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-29.9069$

See (87GI1F) and ${ }^{12} \mathrm{C}$ in (90AJ01).
26. ${ }^{14} \mathrm{C}\left({ }^{14} \mathrm{C},{ }^{18} \mathrm{O}\right){ }^{10} \mathrm{Be}$

$$
Q_{\mathrm{m}}=-5.785
$$

See (85KO04).

$$
\begin{gathered}
{ }^{{ }^{10} \mathbf{B}} \\
\text { (Figs. } 20 \text { and } 22 \text {) }
\end{gathered}
$$

GENERAL: See also (84AJ01).
Shell and deformed models: (83VA31, 84VA06, 84ZW1A, 87KI1C, 88OR1C, 88WO04).
Cluster and α-particle models: (83SH38, 84NI12, 85KW02).
Special states: (83BI1C, 83FE07, 83VA31, 84NI12, 84VA06, 84ZW1A, 85GO1A, 85HA18, 85HA1J, 86BA1X, 86XU02, 87AB1H, 87BA2J, 87KI1C, 88KW1A).

Electromagnetic transitions and giant resonances: (83GM1A, 84NI12, 85GO1A, 87BA2J, 87KI1C).

Astrophysical questions: (82AU1A, 82CA1A, 84TR1C, 85CA41, 85WA1K, 87AR1C, 87AU1A, 87RO1D, 88KR1G, 88RE1B).

Complex reactions involving ${ }^{10}$ B: (83EN04, 83GU1A, 83NA08, 83OL1A, 84GR08, 84HI1A, 84HO23, 84RE1A, 84TE1A, 85KA1F, 85LI1B, 85MO08, 85WI18, 86AV1A, 86CA30, 86HA1B, 86MA19, 86ME06, 86MO34, 86SA30, 86SH1F, 86UT01, 86XU02, 86XU1B, 87AK1A, 87AR19, 87BA38, 87BA39, 87BU07, 87DE37, 87FE1A, 87GE1B, 87HE1H, 87HI05, 87JA06,

Table 10.5
Energy levels of ${ }^{10} \mathrm{~B}^{\mathrm{a}}$)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ_{m} or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
g.s.	$3^{+} ; 0$	stable		$\begin{aligned} & 1,4,5,10,11,16,17,18,19, \\ & 20,22,23,24,25,26,27,28, \\ & 29,30,31,32,33,34,35,36, \\ & 37,38,39,40,42,43,44,45, \\ & 49,50,51,52,53,54,56,57 \end{aligned}$
0.71835 ± 0.04	$1^{+} ; 0$	$\begin{gathered} \tau_{\mathrm{m}}=1.020 \pm 0.005 \mathrm{~ns} \\ g=+0.63 \pm 0.12 \end{gathered}$	γ	$\begin{aligned} & 1,4,5,10,11,16,17,18,19 \\ & 21,24,25,26,28,29,34,40 \\ & 42,43,44,45,48,49,50,51 \\ & 53,56 \end{aligned}$
1.74015 ± 0.17	$0^{+} ; 1$	$7 \pm 3 \mathrm{fs}$	γ	$\begin{aligned} & 1,4,10,11,16,17,18,19,23 \\ & 24,25,28,40,41,42,43,44, \\ & 45,49,50,54 \end{aligned}$
2.1543 ± 0.5	$1^{+} ; 0$	$2.13 \pm 0.20 \mathrm{ps}$	γ	$\begin{aligned} & 1,4,11,16,17,18,19,24,25 \\ & 26,28,29,34,42,43,44,45, \\ & 48,49,50,51,52,53 \end{aligned}$
3.5871 ± 0.5	$2^{+} ; 0$	$153 \pm 12 \mathrm{fs}$	γ	$\begin{aligned} & 1,4,5,11,16,17,18,24,25 \\ & 26,28,29,41,42,44,49,50 \\ & 51,53,56 \end{aligned}$
4.7740 ± 0.5	$3^{+} ; 0$	$\Gamma=8.4 \pm 1.8 \mathrm{eV}$	γ, α	$\begin{aligned} & 1,4,5,16,17,18,24,25,26, \\ & 29,44,49,50,51,56 \end{aligned}$
5.1103 ± 0.6	$2^{-} ; 0$	$0.98 \pm 0.07 \mathrm{keV}$	γ, α	1, 11, 16, 17, 25, 29, 44, 50
5.1639 ± 0.6	$2^{+} ; 1$	$\tau_{\mathrm{m}}<6 \mathrm{fs}$	γ, α	$\begin{aligned} & 1,11,16,17,23,25,26,41 \\ & 44,49 \end{aligned}$
5.180 ± 10	$1^{+} ; 0$	$\Gamma=110 \pm 10$	γ, α	1, 3, 11, 16, 17, 26, 29, 44
5.9195 ± 0.6	$2^{+} ; 0$	6 ± 1	γ, α	$\begin{aligned} & 1,3,11,16,17,18,25,26,28, \\ & 29,44,49,50,51 \end{aligned}$
6.0250 ± 0.6	4^{+}	0.05 ± 0.03	γ, α	$\begin{aligned} & 1,3,16,17,18,23,24,25,26, \\ & 28,29,42,44,50,51,54,56 \end{aligned}$
6.1272 ± 0.7	3^{-}	2.36 ± 0.03	α	$\begin{aligned} & 3,16,17,18,25,26,28,42 \\ & 44,50 \end{aligned}$
6.560 ± 1.9	$(4)^{-}$	25.1 ± 1.1	α	$\begin{aligned} & 3,16,17,18,25,26,28,29 \\ & 42,44,49,50 \end{aligned}$
6.873 ± 5	$1^{-} ; 0+1$	120 ± 5	$\gamma, \mathrm{p}, \mathrm{d}, \alpha$	1, 11, 13, 15, 16
7.002 ± 6	$(1,2)^{+} ;(0)$	100 ± 10	p, d, α	$\begin{aligned} & 3,15,16,18,25,26,28,44 \\ & 50,56 \end{aligned}$
7.430 ± 10	$2^{(-)} ; 0+1$	100 ± 10	$\gamma, \mathrm{p}, \mathrm{d}, \alpha$	1, 11, 15

Table 10.5 (continued)
Energy levels of ${ }^{10} \mathrm{~B}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
7.467 ± 10	1^{+}	65 ± 10	p	13,44
7.478 ± 2	$2^{+} ; 1$	74 ± 4	γ, p	$11,13,23,44$
7.5599 ± 0.6	$0^{+} ; 1$	2.65 ± 0.18	γ, p	$11,13,16,44$
(7.67 ± 30)	$\left(1^{+} ; 0\right)$	250 ± 20	p, d	13,15
7.819 ± 20	1^{-}	260 ± 30	p	$13,16,18,44$
8.07	2^{+}	800 ± 200	$\gamma, \mathrm{p}, \mathrm{d}$	$15,16,23$
(8.7)	$\left(1^{+}, 2^{+}\right)$	(≈ 200)	p	$13,15,56$
8.889 ± 6	$3^{-} ; 1$	84 ± 7	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	$12,13,15,18,23,49$
8.894 ± 2	$2^{+} ; 1$	40 ± 1	$\gamma, \mathrm{p}, \alpha$	$11,13,15,18,23,49$
(9.7)	$(T=1)$	(≈ 700)	$\mathrm{n}, \mathrm{p}, \alpha$	12,15
10.84 ± 10	$\left(2^{+}, 3^{+}, 4^{+}\right)$	300 ± 100	$\gamma, \mathrm{n}, \mathrm{p}$	$11,12,13,23,44$
11.52 ± 35		500 ± 100	(γ)	$23,42,44$
12.56 ± 30	$\left(0^{+}, 1^{+}, 2^{+}\right)$	100 ± 30	γ, p	$11,13,23,44$
13.49 ± 5	$\left(0^{+}, 1^{+}, 2^{+}\right)$	300 ± 50	γ, p	$11,23,44$
14.4 ± 100		800 ± 200	$\gamma, \mathrm{p}, \alpha$	$3,11,42,44$
(18.2 ± 200)		$2^{-} ; 1$	(1500 ± 300)	$\gamma 40$
18.43	$2^{+}, 1^{+}$	<600	$\gamma,{ }^{3} \mathrm{He}$	5,7
18.80	$2^{-} ; 1$	190 ± 20	$\gamma, \mathrm{n}, \mathrm{p},{ }^{3} \mathrm{He}, \alpha$	$5,6,7,9$
19.29	$1^{-} ; 1$	broad	$\gamma, \mathrm{n}, \mathrm{p}, \mathrm{t},{ }^{3} \mathrm{He}, \alpha$	$5,6,7,8,9,22$
20.1 ± 100		$\gamma,{ }^{3} \mathrm{He}$	5	
(21.1)	γ, n		22	
23.1 ± 100				5,9

${ }^{\text {a }}$) See also tables 10.6, 10.7 and 10.11 .

87KO15, 87LY04, 87MU03, 87NA01, 87PO1I, 87RO10, 87ST01, 87TR05, 87WA09, 87YA16, 88BL09, 88CA06, 88KI05, 88KR11, 88RU01, 88SA19, 88SI01, 88TS03).

Applications: (83AM1A, 83KU1C, 85KO47, 86EN1A, 86WE1E).
Muon and neutrino capture and reactions: (83GM1A, 85MI1D, 87KU23, 87SU06).
Pion and kaon capture and reactions (See also reactions 23 and 48.): (82BE1D, 83AN1F, 83BA71, 83FE07, 83GE12, 83GE13, 83GE1C, 83GM1A, 83MA1H, 83ZI1A, 84BA1U, 84CO1D, 84ER1B, 84KA1C, 84MA1F, 85IM1A, 85RO17, 85TU1B, 85ZI04, 86BE1P, 86GA1F, 86GA1H, 86MA1C, 86PE05, 86RA16, 86RO03, 87AB1E, 87LE1E, 87NA04, 87SI18, 88GIZU, 88GIZT, 88RIZZ).

Hypernuclei: (82KA1D, $83 \mathrm{FE} 07,83 \mathrm{SH} 38,83 \mathrm{SH} 1 \mathrm{E}, 84 \mathrm{BO} 1 \mathrm{H}, 84 \mathrm{CH} 1 \mathrm{H}, 84 \mathrm{ER} 1 \mathrm{~A}, 84 \mathrm{MA} 1 \mathrm{~F}$, 84MI1C, 84MI1E, 84SH1J, 84ZH1B, 85AH1A, 85DE1D, 85GU1J, 86AN1R, 86CH1P, 86DA1B, 86GA1H, 86MA1C, 86MA1W, 87BO1L, 87MI1A, 87PO1H).

Other topics: (83BI1C, 85AN28, 86IS04, 86YA1F, 87BA2J, 88AJ1B, 88KW1A, 88OR1C).
Ground-state properties of ${ }^{10} \mathrm{~B}$: (83ANZQ, 83VA31, 84BR25, 84MI1B, 84NI12, 84VA06, 85AN28, 85GO1A, 85HA18, 85ZI05, 86DO1E, 86GL1A, 86RO03, 87KI1C, 87LE1D, 88VA03, 88WO04).

$$
\begin{gathered}
\mu=+1.80065 \pm 0.00001 \mathrm{~nm}: \text { see }(78 \mathrm{LEZA}) \\
Q=+84.72 \pm 0.56 \mathrm{mb}: \text { see }(78 \mathrm{LEZA}) .
\end{gathered}
$$

Mass of ${ }^{10} \mathrm{~B}$: (88WA18) have re-evaluated the evidence on the mass of ${ }^{10} \mathrm{~B}$: the mass excess is $12050.99 \pm 0.27 \mathrm{keV}$. This readjustment includes the value obtained by (84EL05): $12937.32 \pm 0.57 \mu \mathrm{u}$ [mass spectrometer]. I am indebted to A.H. Wapstra for his comments.

Isotopic abundance: $(19.9 \pm 0.2) \%$ (84 DE 1 A$)$.

$$
\begin{gathered}
{ }^{10} \mathrm{~B}^{*}(0.72): \mu=+0.63 \pm 0.12 \mathrm{~nm}: \text { see (78LEZA) } \\
B(\mathrm{E} 2) \downarrow=4.18 \pm 0.02 e^{2} \cdot \mathrm{fm}^{4}(83 \mathrm{VE} 03) .
\end{gathered}
$$

1. ${ }^{6} \mathrm{Li}(\alpha, \gamma){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=4.4596
$$

Observed resonances are displayed in Table 10.8. For a discussion of isovector parity mixing between ${ }^{10} \mathrm{~B}^{*}(5.16,5.11)\left[2^{+} ; T=1\right.$ and $\left.2^{-} ; T=0\right]$ see (84 NA 07). For a preliminary report involving a target of laser-polarized ${ }^{6} \mathrm{Li}$ atoms see (87MU13). See also (84YA1A, 85CA41; astrophys.).

Table 10.6
Electromagnetic transitions in ${ }^{10} \mathrm{~B}^{\text {a }}$)

Initial	$J^{\pi} ; T$	$\Gamma_{\gamma}($ total $)$	Branching ratios (\%) to final states at:					Γ_{γ} / Γ
state		(eV)	$\begin{gathered} \text { g.s. } \\ 3^{+} ; 0 \end{gathered}$	$\begin{gathered} 0.72 \\ 1^{+} ; 0 \end{gathered}$	$\begin{gathered} 1.74 \\ 0^{+} ; 1 \end{gathered}$	$\begin{gathered} 2.15 \\ 1^{+} ; 0 \end{gathered}$	$\begin{gathered} 3.59 \\ 2^{+} ; 0 \end{gathered}$	
0.72	$1^{+} ; 0$	6.5×10^{-7}	100					
1.74	$0^{+} ; 1$	$0.09 \pm 0.04{ }^{\text {b }}$)	<0.2	100				
2.15	$1^{+} ; 0$	$(3.1 \pm 0.3) \times 10^{-4}$	21.1 ± 1.6	27.3 ± 0.9	51.6 ± 1.6			
3.59	$2^{+} ; 0$	$(4.31 \pm 0.34) \times 10^{-3}$	19 ± 3	67 ± 3	< 0.3	14 ± 2		
4.77	$3^{+} ; 0$	0.020 ± 0.004	0.5 ± 0.1	> 99				$(2.3 \pm 0.3) \times 10^{-3}$
5.11	$2^{-} ; 0$		64 ± 7	31 ± 7	5 ± 5			
5.16	$2^{+} ; 1$	$1.5 \pm 0.1^{\text {c }}$)	4.4 ± 0.4	22.4 ± 0.6	0.7 ± 0.2	64.8 ± 0.9	7.7 ± 0.3	0.87 ± 0.04
5.18	$1^{+} ; 0$	0.06 ± 0.03			~ 100			
5.92	$2^{+} ; 0$	0.15 ± 0.04	82 ± 5	18 ± 5				≤ 0.009
6.03	4^{+}	0.11 ± 0.02	$\simeq 100$	${ }^{\text {d }}$)				≤ 0.009
6.13	3^{-}	≤ 21						≤ 0.009
${ }^{\text {e }}$)								

${ }^{\text {a }}$) For references see table 10.6 in (79AJ01).
${ }^{\text {b }}$) From table 10.7.
$\left.{ }^{c}\right)$ See also table 10.8 here. Branching ratios and Γ_{γ} / Γ from (79KE08). The mixing ratios $\delta=0.12 \pm 0.05,0.03 \pm 0.03$,
0.02 ± 0.03 and 0.00 ± 0.02 for the transitions to ${ }^{10} \mathrm{~B}^{*}(0,0.72,2.15,3.59)$, respectively (79 KE 08).
${ }^{\text {d }}$) Other branches $<3 \%$.
${ }^{\mathrm{e}}$) For γ-decay of higher ${ }^{10} \mathrm{~B}$ states see tables $10.8,10.10$ and 10.11. See also table 10.15.
2. (a) ${ }^{6} \mathrm{Li}(\alpha, \mathrm{n})^{9} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-3.977
$$

$$
E_{\mathrm{b}}=4.4596
$$

(b) ${ }^{6} \mathrm{Li}(\alpha, \mathrm{p})^{9} \mathrm{Be}$
$Q_{\mathrm{m}}=-2.1261$
(c) ${ }^{6} \mathrm{Li}(\alpha, \mathrm{d})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.5669$
The excitation functions for neutrons [from threshold to $E_{\alpha}=15.5 \mathrm{MeV}$] and for deuterons [$E_{\alpha}=9.5$ to 25 MeV ; d_{0}, d_{1} over most of range] do not show resonance structure: see (74AJ01, 79AJ01). See also (85GU1J; theor.).
3. (a) ${ }^{6} \mathrm{Li}(\alpha, \alpha)^{6} \mathrm{Li}$

$$
E_{\mathrm{b}}=4.4596
$$

(b) ${ }^{6} \mathrm{Li}(\alpha, 2 \alpha)^{2} \mathrm{H}$
$Q_{\mathrm{m}}=-1.4750$
Excitation functions of α_{0} and α_{1} have been reported for $E_{\alpha} \leq 18.0 \mathrm{MeV}$ and 9.5 to 12.5 MeV , respectively: see (74AJ01). Reported anomalies are displayed in Table 10.9. Elastic scattering and VAP measurements are reported for $E\left({ }^{6} \overrightarrow{\mathrm{Li}}\right)=15.1$ to 22.7 MeV [see (84AJ01)] and at $E\left({ }^{6} \mathrm{Li}\right)=19.8 \mathrm{MeV}$ (86CA1F; also TAP; prelim.). Small anomalies have been reported in reaction (b) corresponding to ${ }^{10} \mathrm{~B}^{*}(8.67,9.65,10.32,11.65)$: see (84AJ01). See, however, Table 10.5. See also ${ }^{6} \mathrm{Li}$, (87BU1E), (86ST1E; applications) and (86GA1F, 86YA15, 88LE06: theor.).
4. ${ }^{6} \mathrm{Li}\left({ }^{6} \mathrm{Li}, \mathrm{d}\right){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=2.985
$$

Angular distributions of deuteron groups have been determined at $E\left({ }^{6} \mathrm{Li}\right)=2.4$ to $9.0 \mathrm{MeV}\left(\mathrm{d}_{0}, \mathrm{~d}_{1}, \mathrm{~d}_{3}\right)$ and 7.35 and $9.0 \mathrm{MeV}\left(\mathrm{d}_{4}, \mathrm{~d}_{5}\right)$. The d_{2} group is also observed but its intensity is weak: see (74AJ01) and ${ }^{12} \mathrm{C}$ in (80AJ01).

$$
\text { 5. }{ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \gamma\right)^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=17.7873
$$

Capture γ-rays have been observed for $E\left({ }^{3} \mathrm{He}\right)=0.8$ to 6.0 MeV . The γ_{0} and γ_{5} yields [to $\left.{ }^{10} \mathrm{~B}^{*}(0,4.77)\right]$ show resonances at $E\left({ }^{3} \mathrm{He}\right)=1.1$ and $2.2 \mathrm{MeV}\left[E_{\text {res }}=0.92\right.$ and 2.1 MeV$]$, the γ_{1} and γ_{4} yields [to ${ }^{10} \mathrm{~B}^{*}(0.72,3.59)$] at 1.4 MeV and the γ_{4} yield at 3.4 MeV : see Table 10.10 in (79AJ01). Both the 1.1 and 2.2 MeV resonances $\left[{ }^{10} \mathrm{~B}^{*}(18.4,19.3)\right]$ appear to result from s-wave capture; the subsequent decay is to two 3^{+}states $\left[{ }^{10} \mathrm{~B}^{*}(0,4.77)\right]$. Therefore the most likely assignment is $2^{-}, T=1$ for both [there appears to be no decay of these states via α_{2} to ${ }^{6} \mathrm{Li}^{*}(3.56)$ which has $J^{\pi}=0^{+}, T=1$: see reaction 9$]$. The assignment for ${ }^{10} \mathrm{~B}^{*}(18.8)[1.4 \mathrm{MeV}$ resonance $]$ is 1^{+}or 2^{+}but there appears to be α_{2} decay and therefore $J^{\pi}=2^{+} .{ }^{10} \mathrm{~B}^{*}(20.2)$ [3.4 MeV resonance] has an isotropic angular distribution of γ_{4} and therefore $J^{\pi}=0^{+}, 1^{-}, 2^{-}$. The γ_{2} group resonates at this energy which eliminates 2^{-}, and 0^{+}is eliminated on the basis of the strength of the transition which is too large for E2. See (74AJ01) for references.

Table 10.7
Lifetime of ${ }^{10} \mathrm{~B}$ states

${ }^{10} \mathrm{~B}^{*}(\mathrm{MeV})$	τ_{m}	Reactions	Refs.
0.72	$1.020 \pm 0.005 \mathrm{~ns}$	${ }^{10} \mathrm{~B}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$	$\left(83 \mathrm{VE03)}{ }^{\mathrm{a}}\right)$
1.74	$7 \pm 3 \mathrm{fs}$	${ }^{6} \mathrm{Li}(\alpha, \gamma)$	$(79 \mathrm{KE} 08)$
2.15	$2.30 \pm 0.26 \mathrm{ps}$	mean	$\left.(79 \mathrm{AJ} 01)^{\mathrm{b}}\right)$
	$1.9 \pm 0.3 \mathrm{ps}$	${ }^{6} \mathrm{Li}(\alpha, \gamma)$	$(79 \mathrm{KE} 08)$
3.59	$2.13 \pm 0.20 \mathrm{ps}$	mean	all values
	$153 \pm 13 \mathrm{fs}$	mean	$(79 \mathrm{AJ01)}$
	$150 \pm 30 \mathrm{fs}$	${ }^{6} \mathrm{Li}(\alpha, \gamma)$	$(79 \mathrm{KE} 08)$
	$153 \pm 12 \mathrm{fs}$	mean	all values
5.16	$<6 \mathrm{fs}$	${ }^{6} \mathrm{Li}(\alpha, \gamma)$	$(79 \mathrm{KE} 08)$

${ }^{\text {a }}$) See also table 10.20 of (66LA04).
${ }^{\text {b }}$) Table 10.9 in (79AJ01).
6. ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{9} \mathrm{~B}$
$Q_{\mathrm{m}}=9.351$
$E_{\mathrm{b}}=17.7873$

The excitation curve is smooth up to $E\left({ }^{3} \mathrm{He}\right)=1.8 \mathrm{MeV}$ and the n_{0} yield shows resonance behavior at $E\left({ }^{3} \mathrm{He}\right)=2.2$ and $3.25 \mathrm{MeV}, \Gamma_{\text {lab }}=270 \pm 30$ and $500 \pm 100 \mathrm{keV}$. No other resonances are observed up to $E\left({ }^{3} \mathrm{He}\right)=5.5 \mathrm{MeV}$. See Table 10.10 in (79AJ01), (86AB10; theor.) and (74AJ01).
7. ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{9} \mathrm{Be}$

$$
Q_{\mathrm{m}}=11.2016
$$

$$
E_{\mathrm{b}}=17.7873
$$

The yield of protons has been measured for $E\left({ }^{3} \mathrm{He}\right)=0.60$ to 4.8 MeV : there is some indication of weak maxima at 1.1, 2.3 and 3.3 MeV . Measurements of A_{y} for the groundstate group at $E\left({ }^{3} \overrightarrow{\mathrm{He}}\right)=14 \mathrm{MeV}$ (83LE17, 83RO22) and 33 MeV (83LE17) and of the polarization at $E\left({ }^{3} \mathrm{He}\right)=14 \mathrm{MeV}$ (84ME11, 84TR03) have been reported. $P=A$ in this and in the inverse reaction [see reaction 4 in ${ }^{12} \mathrm{C}$ (85AJ01) for some additional comments]. For earlier references see (84AJ01). See also (86AB10; theor.).
8. (a) ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)^{8} \mathrm{Be}$

$$
Q_{\mathrm{m}}=11.7606
$$

$$
E_{\mathrm{b}}=17.7873
$$

(b) ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \mathrm{t}\right)^{7} \mathrm{Be}$
$Q_{\mathrm{m}}=-0.880$
(c) ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right){ }^{7} \mathrm{Li}$

Yields of deuterons have been measured for $E\left({ }^{3} \mathrm{He}\right)=1.0$ to $2.5 \mathrm{MeV}\left(\mathrm{d}_{0}\right)$ and yields of tritons are reported for 2.0 to $4.2 \mathrm{MeV}\left(\mathrm{t}_{0}\right)$: a broad peak is reported at $E\left({ }^{3} \mathrm{He}\right) \approx 3.5 \mathrm{MeV}$ in the t_{0} yield. See (79AJ01) for references. Polarization measurements are reported at

Table 10.8
Levels of ${ }^{10} \mathrm{~B}$ from ${ }^{6} \mathrm{Li}(\alpha, \gamma){ }^{10} \mathrm{~B}{ }^{\text {a }}$)

$E_{\text {res }}(\mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\text {lab }}(\mathrm{keV})$	Decay to E_{t}	Branch (\%)	$\omega \gamma(\mathrm{eV})$	$\Gamma_{\gamma}(\mathrm{eV})$
500 ± 25	4.760	$3^{+} ; 0$	$(1.4 \pm 0.3) \times 10^{-2}$	0	0.5 ± 0.1		
				0.72	> 99	$\left.(4.1 \pm 0.4) \times 10^{-2 \mathrm{c}}\right)$	$0.018 \pm 0.002{ }^{\text {c }}$)
1085	5.112	$2^{-} ; 0$	$1.63 \pm 0.11{ }^{\text {b }}$)	0	64 ± 7	$0.059 \pm 0.012^{\text {d }}$)	
				0.72	31 ± 7	0.028 ± 0.008	
				1.74	5 ± 5	0.005 ± 0.005	
$1175{ }^{\text {e }}$)	5.166	$2^{+} ; 1$	$(2.8 \pm 0.3) \times 10^{-3}$	0	4.4 ± 0.4	0.018 ± 0.002	0.068 ± 0.007
				0.72	22.4 ± 0.6	0.090 ± 0.008	0.33 ± 0.03
				1.74	0.7 ± 0.2	$(2.8 \pm 0.8) \times 10^{-3}$	0.010 ± 0.003
				2.15	64.8 ± 0.9	0.259 ± 0.024	0.942 ± 0.090
				3.59	7.7 ± 0.3	0.031 ± 0.004	0.114 ± 0.015
$\begin{gathered} 1210 \pm 35 \\ \left.2435^{\mathrm{f}}\right) \end{gathered}$	5.186	$1^{+} ; 0$	340 ± 50	1.74	~ 100		0.06 ± 0.03
	5.922	2^{+}	10 ± 1	0	82 ± 5	0.19 ± 0.04	0.13 ± 0.03
				0.72	18 ± 5	0.04 ± 0.01	0.02 ± 0.01
				1.74		< 0.02	
$2605{ }^{\text {f }}$)	6.024	4^{+}	0.08 ± 0.05	0	~ 100	0.34 ± 0.05	0.11 ± 0.02
				0.72		<0.02	
4019 g)	6.873 ± 5	$1^{-} ; 0+1$	200 ± 10	0	6 ± 2		
				0.72	21 ± 4		
				1.74	59 ± 3		
				2.15	14 ± 4		
$4964{ }^{\text {h }}$)	7.440 ± 20	$2^{(-)} ; 0+1$	150 ± 15	${ }^{\text {h }}$)			

${ }^{\text {a }}$) For earlier references see table 10.7 in (79AJ01).
$\left.{ }^{\text {b }}\right) \Gamma_{\alpha}=\Gamma_{\text {c.m. }}=0.98 \pm 0.07 \mathrm{keV}$ (84 NA 07).
$\left.{ }^{\text {c }}\right)(85 \mathrm{NE} 05) . \quad \Gamma_{\gamma} / \Gamma=(2.3 \pm 0.3) \times 10^{-3} ; \Gamma_{\alpha}=8.4 \pm 1.8 \mathrm{eV}(\mathrm{E} . \mathrm{K}$. Warburton and D. E. Alburger, private communication).
${ }^{\text {d }}$) Absolute error only.
${ }^{\mathrm{e}}$) Branching ratios of (79KE08); $\omega \gamma_{\text {c.m. }}=0.40 \pm 0.04 \mathrm{eV}$ (79SP01). Therefore $\Gamma_{\alpha} \Gamma_{\gamma} / \Gamma_{\text {tot }}=0.24 \pm 0.02 \mathrm{eV}$ and since $\Gamma_{\gamma} / \Gamma_{\text {tot }}=0.87 \pm 0.04$, $\Gamma_{\alpha}=0.28 \pm 0.03 \mathrm{eV}$ (84NA07).
${ }^{\mathrm{f}}$) Values of $\omega \gamma$ (66FO05) have been multiplied by 0.6 to convert them to the c.m. system.
${ }^{\mathrm{g}}$) Branching ratios calculated from 0° relative intensities; $\Gamma_{\alpha} / \Gamma_{\mathrm{p}}=1.25 \pm 0.12$.
$\left.{ }^{\text {h }}\right)$ At 0° the branches to ${ }^{10} \mathrm{~B}^{*}(0,0.72)$ are equally strong $((50 \pm 12) \%)$.

Table 10.9
${ }^{10} \mathrm{~B}$ levels from ${ }^{6} \mathrm{Li}(\alpha, \alpha){ }^{6} \mathrm{Li}^{\text {a }}$)

$E_{\alpha}(\mathrm{MeV} \pm \mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV})$	$\Gamma_{\text {lab }}(\mathrm{keV})$	$J^{\pi} ; T$
1.210 ± 30	5.19	175	$1^{+} ; 0$
$\left.2.440^{\mathrm{b}}\right)$	5.92	≈ 30	$2^{+} ; 0$
2.6060 ± 1.5	6.024	0.09 ± 0.04	4^{+}
$\left.2.7855 \pm 1.5^{\mathrm{c}}\right)$	6.132	3.93 ± 0.05	3^{-}
$\left.3.4985 \pm 1.6^{\mathrm{d}}\right)$	6.560	41.8 ± 1.9	$4^{-}, 2^{-}$
$\left.4.250 \pm 15^{\mathrm{d}}\right)$	7.011	183 ± 25	$(2)^{+} ;(0)$
16.000	14.1	broad	

${ }^{\text {a }}$) For references see tables 10.8 in (79AJ01) and 10.9 in (84AJ01).
b) $\Gamma_{\alpha}=9.7 \pm 0.1 \mathrm{keV}$.
${ }^{\text {c }} \Gamma_{\alpha}=2.45 \pm 0.12 \mathrm{keV}$ and $\Gamma_{\mathrm{d}}=0.08 \pm 0.05 \mathrm{keV}$.
${ }^{\mathrm{d}}$) There is evidence of broad structure near these states.
$E\left({ }^{3} \overrightarrow{\mathrm{He}}\right)=33.3 \mathrm{MeV}$ for the deuteron groups to ${ }^{8} \mathrm{Be}^{*}(16.63,17.64,18.15)$ and for the triton and ${ }^{3} \mathrm{He}$ groups to ${ }^{7} \mathrm{Be}^{*}(0,0.43)$ and ${ }^{7} \mathrm{Li}^{*}(0,0.48,4.63)$: see (84 AJ 01).
9. ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{6} \mathrm{Li} \quad Q_{\mathrm{m}}=13.328 \quad E_{\mathrm{b}}=17.7873$

Excitation functions have been measured for $E\left({ }^{3} \mathrm{He}\right)=1.3$ to 18.0 MeV : see (74AJ01). The α_{0} group (at 8°) shows a broad maximum at $\approx 2 \mathrm{MeV}$, a minimum at 3 MeV , followed by a steep rise which flattens off between $E\left({ }^{3} \mathrm{He}\right)=4.5$ and 5.5 MeV . Integrated α_{0} and α_{1} yields rise monotonically to 4 MeV and then tend to decrease. Angular distributions give evidence of the resonances at $E\left({ }^{3} \mathrm{He}\right)=1.4$ and 2.1 MeV seen in ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \gamma\right)^{10} \mathrm{~B}: J^{\pi}=2^{+}$ or $1^{-}, T=(1)$ for both [see, however, reaction 5]: Γ_{α} is small. The α_{2} yield $\left[\right.$ to ${ }^{6} \mathrm{Li}^{*}(3.56)$, $\left.J^{\pi}=0^{+}, T=1\right]$ shows some structure at $E\left({ }^{3} \mathrm{He}\right)=1.4 \mathrm{MeV}$ and a broad maximum at $\approx 3.3 \mathrm{MeV}$: see Table 10.10 in (79AJ01). Polarization measurements are reported at $E\left({ }^{3} \overrightarrow{\mathrm{He}}\right)=33.3 \mathrm{MeV}$ to ${ }^{6} \mathrm{Li}^{*}(0,2.19,3.56)$: see (84AJ01). See also (83AN1D, 84PA1E).
10. ${ }^{7} \operatorname{Li}(\alpha, \mathrm{n})^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-2.7905
$$

Angular distributions are reported at $E_{\alpha}=28$ and 32 MeV for the $\mathrm{n}_{0}, \mathrm{n}_{1}$ and n_{2} groups (85GU1E; prelim.). See (79AJ01, 84AJ01) for the earlier work.

Table 10.10
Resonances in $\left.{ }^{9} \mathrm{Be}(\mathrm{p}, \gamma)^{10} \mathrm{~B}{ }^{\mathrm{a}}\right)$

$E_{\mathrm{p}}(\mathrm{MeV} \pm \mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\mathrm{c} . \mathrm{m} .}(\mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\mathrm{p}} / \Gamma$	$\Gamma_{\gamma}(\mathrm{eV})$
0.319	6.873 ± 5	120 ± 5	$1^{-} ; 0+1$	0.30	4.8
0.938 ± 10	7.430	140 ± 30	$2^{(-)} ; 0+1$	0.7	2.4
(0.98)	(7.47)		$\left(2^{+}\right)$		
0.992 ± 2	7.478	72 ± 4	$\left.2^{-} ; 1^{\mathrm{c}}\right)$	≈ 0.65	25.8
1.0832 ± 0.4	7.5599	2.65 ± 0.18	$0^{+} ; 1$	1.0	8.5
1.29	7.75	210 ± 60	$2^{-} ;(1)$	≈ 0.65	8.5
2.567 ± 2	8.894	36 ± 2	$2^{+} ; 1$		
$\left.4.72^{\mathrm{b}}\right)$	10.83	≈ 500	$2^{+}, 3^{+}, 4^{+}$		
$\left.6.7^{\mathrm{b}}\right)$	12.6	<200	$0^{+}, 1^{+}, 2^{+}$		
$\left.(7.0)^{\mathrm{b}}\right)$	(12.9)	(≈ 100)	$(\pi=+)$		
$\left.7.5^{\mathrm{b}}\right)$	13.3	≈ 300	$0^{+}, 1^{+}, 2^{+}$		
$\left.8.4^{\mathrm{b}}\right)$	14.1	≈ 250	$0^{+}, 1^{+}, 2^{+}$		
$\left.8.9^{\mathrm{b}}\right)$	14.6	≈ 150	$2^{+}, 3^{+}, 4^{+}$		
$\left.10.0^{\mathrm{b}}\right)$	15.6	≈ 400	$2^{+}, 3^{+}, 4^{+}$		
$\left.14.6^{\mathrm{b}}\right)$	19.7	≈ 500	$2^{-}, 3^{-}, 4^{-}$		

[^0]11. ${ }^{9} \mathrm{Be}(\mathrm{p}, \gamma){ }^{10} \mathrm{~B}$
$$
Q_{\mathrm{m}}=6.5857
$$

Parameters of observed resonances are listed in Tables 10.10 and 10.11. Table 10.6 summarizes the γ-transitions from this and other reactions. For references to the discussion below, see (74AJ01, 79AJ01, 84AJ01).

The $E_{\mathrm{p}}=0.32 \mathrm{MeV}$ resonance $\left({ }^{10} \mathrm{~B}^{*}=6.87 \mathrm{MeV}\right)$ is ascribed to s-wave protons because of its comparatively large proton width $\left[\right.$ see $\left.{ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{p})\right]$ and because of the isotropy of the γ-radiation. The strong transition to ${ }^{10} \mathrm{~B}^{*}(1.74)$ requires E1 and hence $J^{\pi}=1^{-}, T=0$. $T=0$ is also indicated by the large deuteron width. On the other hand, the strength of E1 transitions to ${ }^{10} \mathrm{~B}^{*}(0.7,2.1)$ indicates $T=1$. The amplitudes for the $T=0$ and $T=1$ parts of the wave function for ${ }^{10} \mathrm{~B}^{*}(6.87)$ are 0.92 and 0.39 , respectively. For the $5.16 \rightarrow 1.74$ decay see Table 10.6.

The proton capture data near $E_{\mathrm{p}}=1 \mathrm{MeV}$ appears to require at least five resonant states, at $E_{\mathrm{p}}=938$, (980), 992, 1083 and 1290 keV . The narrow $E_{\mathrm{p}}=1083 \mathrm{keV}$ level $\left({ }^{10} \mathrm{~B}^{*}=7.56 \mathrm{MeV}\right)$ is formed by p-wave protons, $J^{\pi}=0^{+}\left[\right.$see $\left.{ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{p}),{ }^{9} \mathrm{Be}(\mathrm{p}, \alpha)\right]$. The isotropy of the γ-rays supports this assignment. The strong M1 transitions to $J^{\pi}=1^{+}$, $T=0$ levels at $0.72,2.15$ and 5.18 MeV (Table 10.11) indicate $T=1$. The width of ${ }^{10} \mathrm{~B}^{*}(5.18)$ observed in the decay is $100 \pm 10 \mathrm{keV}$.

Table 10.11
Radiative transitions in $\left.{ }^{9} \mathrm{Be}(\mathrm{p}, \gamma)^{10} \mathrm{~B}{ }^{\mathrm{a}}\right)$

		$\Gamma_{\gamma}(\mathrm{tot})$	Relative intensities to final states								
$\begin{aligned} & \text { state } \\ & (\mathrm{MeV}) \\ & \hline \end{aligned}$	$J^{\pi} ; T$	(eV)	ground $3^{+} ; 0$	$\begin{gathered} 0.72 \\ 1^{+} ; 0 \end{gathered}$	$\begin{gathered} 1.74 \\ 0^{+} ; 1 \end{gathered}$	$\begin{gathered} 2.15 \\ 1^{+} ; 0 \end{gathered}$	$\begin{gathered} 3.59 \\ 2^{+} ; 0 \end{gathered}$	$\begin{gathered} 5.11 \\ 2^{-} ; 0 \end{gathered}$	$\begin{gathered} 5.16 \\ 2^{+} ; 1 \end{gathered}$	$\begin{gathered} 5.18 \\ 1^{+} ; 0 \end{gathered}$	$\begin{gathered} 5.92 \\ 2^{+} ; 0 \end{gathered}$
$\begin{gathered} 6.87 \\ E_{\mathrm{p}}=0.32 \end{gathered}$ 7.43	$1^{-} ; 0+1$	4.8	< 0.05	0.20 ± 0.02	0.53 ± 0.02	0.13 ± 0.01	<0.01	0.04 ± 0.01	0.03 ± 0.01	<0.01	0.035 ± 0.01
$\begin{gathered} E_{\mathrm{p}}=0.94 \\ 7.48 \end{gathered}$	$2^{(-)} ; 0+1$	[2.4]	<2	1.3	[<0.14]	0.62	0.5			$[<1]$	
$\begin{gathered} E_{\mathrm{p}}=0.99 \\ 7.56 \end{gathered}$	$2^{+} ; 1$	[25.8]	25	0.3	[<0.14]	0.49	0			$[<1]$	
$\begin{gathered} E_{\mathrm{p}}=1.08 \\ \left.7.75^{\mathrm{b}}\right) \end{gathered}$	$0^{+} ; 1$	[8.5]	<0.2	6.7	<0.3	0.8	<0.2			1.0	
$E_{\mathrm{p}}=1.29$	$\left(2^{-} ; 1\right)$	[8.5]	6.6	0.9	<0.08	0.3	0.3			0.4	

${ }^{\text {a }}$) For references and other values see table 10.12 in (79AJ01).
${ }^{\text {b }}$) See, however, table 10.12.

The excitation function for ground-state radiation shows resonance at $E_{\mathrm{p}}=992(\Gamma=$ $80 \mathrm{keV})$ and $1290 \mathrm{keV}(\Gamma=230 \mathrm{keV})$. Elastic scattering studies indicate s-wave formation and $J^{\pi}=2^{-}$for both. For the lower level $\left(E_{\mathrm{x}}=7.48 \mathrm{MeV}\right)$ the intensity of the g.s. capture radiation, $\Gamma_{\gamma}=25 \mathrm{eV}$ indicates E 1 and $T=1$. The angular distribution of γ-rays, $1+0.1 \sin ^{2} \theta$, is consistent with s-wave formation with some d-wave admixture or with some contribution from a nearby p-wave resonance; possibly a $J^{\pi}=2^{+}$level at $E_{\mathrm{p}}=980 \mathrm{keV}$.

The angular distribution of ground-state radiation at $E_{\mathrm{p}}=1330 \mathrm{keV}$ is isotropic and $\Gamma_{\gamma}=8.5 \mathrm{eV}$, supporting E1, $T=1$ for this level ($E_{\mathrm{x}}=7.75 \mathrm{MeV}$).

Transitions to ${ }^{10} \mathrm{~B}^{*}(0.7)\left[\gamma_{1}\right]$ show resonance at $E_{\mathrm{p}}=992,1290$ and $938 \mathrm{keV}, \Gamma=$ 155 keV . The latter is presumably also a resonance for (p, d) and (p, α). An assignment of $J^{\pi}=2^{-}, T=0$ is consistent with the data, although the E1 radiation then seems somewhat too strong for a $\Delta T=0$ transition.

A resonance for capture radiation at $E_{\mathrm{p}}=2.567 \pm 0.003\left(E_{\mathrm{x}}=8.895 \mathrm{MeV}\right)$ has a width of $40 \pm 2 \mathrm{keV}$ and decays mainly via ${ }^{10} \mathrm{~B}^{*}(0.7)$ (unpublished Ph.D. thesis). It appears from the width that this resonance corresponds to that observed in ${ }^{9} \mathrm{Be}(\mathrm{p}, \alpha), J^{\pi}=2^{+}, T=1$ and not to the ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{n})$ resonance at the same energy. A further resonance is reported at $E_{\mathrm{p}}=4.72 \pm 0.01 \mathrm{MeV}, \Gamma \approx 0.5 \mathrm{MeV}$.

In the range $E_{\mathrm{p}}=4$ to 18 MeV , the γ_{0} yield at 90° shows [unpublished Ph.D. thesis] the resonance at $E_{\mathrm{p}}=4.7 \mathrm{MeV}\left(E_{\mathrm{x}}=10.7 \mathrm{MeV}\right)$ and fluctuations suggest states at $E_{\mathrm{x}} \approx 14.6,15.6$ and $19.7 \mathrm{MeV} .{ }^{10} \mathrm{~B}^{*}(19.7)$ possibly decays via E1 and therefore $J^{\pi}=2^{-}$, $3^{-}, 4^{-}$. The other three states presumably decay by M1 and therefore $J^{\pi}=2^{+}, 3^{+}, 4^{+}$. These fluctuations appear on a nearly constant γ_{0} yield with a 90° differential cross section $\approx 1.5 \mu \mathrm{~b} / \mathrm{sr}$. The average yield of γ_{1} is $\approx \frac{2}{3}$ of the γ_{0} yield. The broad giant resonance peak is centered at $E_{\mathrm{x}} \approx 14.5 \mathrm{MeV}$. Fluctuations in the γ_{1} yield are reported at $E_{\mathrm{x}} \approx 12.6,13.3$ and 14.1 MeV . These states presumably decay by M1 to ${ }^{10} \mathrm{~B}^{*}(0.7)\left[J_{\mathrm{f}}^{\pi}=1^{+}\right]$and therefore $J_{\mathrm{i}}^{\pi}=0^{+}, 1^{+}, 2^{+}$. The weak γ_{2} yield (to $^{10} \mathrm{~B}^{*}(1.74)\left[J^{\pi} ; T=0^{+} ; 1\right]$) seems to exhibit a broad peak centered near $E_{\mathrm{x}}=15 \mathrm{MeV}$ (maximum 90° differential cross section $\approx 0.5 \mu \mathrm{~b} / \mathrm{sr}$) and possibly some structure near $E_{\mathrm{x}}=20 \mathrm{MeV}$. The γ_{3} yield (to ${ }^{10} \mathrm{~B}^{*}(2.15)\left[J^{\pi}=1^{+}\right]$) increases to $\approx 0.4 \mu \mathrm{~b} / \mathrm{sr}$ at $E_{\mathrm{x}} \approx 16 \mathrm{MeV}$ and seems to remain constant beyond that energy, with some suggestion of a fluctuation corresponding to $E_{\mathrm{x}} \approx 12.9 \mathrm{MeV} .{ }^{10} \mathrm{~B}^{*}(12.9)$ appears to have positive parity. Angular distributions of $\gamma_{0}, \gamma_{1}, \gamma_{2}$ and γ_{3} are also reported [in an unpublished Ph.D. thesis].

The magnetic moment of ${ }^{10} \mathrm{~B}^{*}(0.72)$ has been studied via $\gamma-\gamma$ correlations from ${ }^{10} \mathrm{~B}^{*}(7.56)$: $g=+0.63 \pm 0.12$. See also (85KI1B, 85NE1C; applications), (84YA1A; astrophysics) and (83GO28, 83GO1K, 86NA15; theor.).
12. ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{n}){ }^{9} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-1.851
$$

$$
E_{\mathrm{b}}=6.5857
$$

Resonances in the neutron yield occur at $E_{\mathrm{p}}=2562 \pm 6,4720 \pm 10$ and, possibly, at 3500 keV with $\Gamma_{\text {c.m. }}=84 \pm 7, \approx 500$ and $\approx 700 \mathrm{keV}$. These three resonances correspond to ${ }^{10} \mathrm{~B}^{*}(8.890,10.83,9.7)$: see Table 10.13 in (74AJ01). Cross section measurements for the (p, n) and $\left(\mathrm{p}, \mathrm{n}_{0}\right)$ reactions have been obtained by ($83 \mathrm{BY} 01 ; E_{\mathrm{p}}=8.15$ to 15.68 MeV) [see also for a review of earlier work]. They indicate possible structure in ${ }^{10} \mathrm{~B}$ near $13-14 \mathrm{MeV}$ (83BY01).

Table 10.12
Resonances in $\left.{ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{p})^{9} \mathrm{Be}^{\mathrm{a}}\right)$

$E_{\text {res }}(\mathrm{keV})$	$E_{\mathrm{x}}(\mathrm{MeV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	J^{π}	$\Gamma_{\mathrm{p}} / \Gamma$
330	6.88	145	1^{-}	0.30
980 ± 10	7.467	65 ± 10	1^{+}	1.0
980 ± 10	7.467	80 ± 8	$\left.2^{-\mathrm{d}}\right)$	0.90 ± 0.05
1084 ± 2	7.561	2.7	0^{+}	1.0
(1200 ± 30)	(7.67)	250 ± 20	$\left(1^{+}\right)$	0.30 ± 0.10
1370 ± 20	7.818	265 ± 30	1^{-}	0.90 ± 0.05
(2070 ± 10)	(8.4)	70 ± 10	$\left(1^{-}, 2^{-}\right)$	0.43
(2300)	(8.65)	≈ 300	$\left(1^{+}, 2^{+}\right)$	
(2480)	(8.82)		$\left(3^{-} ; 1\right)$	
2560	8.89		$\left.2 ;(1)^{\mathrm{c}}\right)$	large
(4600)	(10.7)			
(5100)	(11.2)			
$\left.6700^{\mathrm{b}}\right)$	12.6	broad		

${ }^{\text {a }}$) For references and for a listing of other reported resonances see table 10.13 in (79AJ01). Nine anomalies in the p_{0} yield are reported by (83AL10) at $E_{\mathrm{p}}=2.07,2.30,2.44,2.55,2.56,2.60,3.80,4.20$ and 4.72 MeV .
${ }^{\mathrm{b}}$) Weak resonance near $E_{\mathrm{p}}=6.5 \mathrm{MeV}$ in p_{0}.
${ }^{c}$) Resonance shape shows $l_{\mathrm{p}}=2$ formation with a large $\Gamma_{\mathrm{p}} / \Gamma$: the contribution from the 2^{+}state appears small.
${ }^{\text {d }}$) See, however, table 10.15 and footnote ${ }^{\text {a }}$) in table 10.13 of (79AJ01).

The $E_{\mathrm{p}}=2.56 \mathrm{MeV}$ resonance is considerably broader than that observed at the same energy in ${ }^{9} \mathrm{Be}(\mathrm{p}, \alpha)$ and ${ }^{9} \mathrm{Be}(\mathrm{p}, \gamma)$ and the two resonances are believed to be distinct. The shape of the resonance and the magnitude of the cross section can be accounted for with $J^{\pi}=3^{-}$or 3^{+}; the former assignment is in better accord with ${ }^{10} \mathrm{Be}^{*}(7.37)$. For $J^{\pi}=3^{-}$, $\theta_{\mathrm{n}}^{2}=0.135, \theta_{\mathrm{p}}^{2}=0.115(R=4.47 \mathrm{fm}):$ see (74AJ01).

The analyzing power for n_{0} has been measured for $E_{\mathrm{p}}=2.7$ to 17 MeV (80MA33, 83BY02, 86MU07) as has the polarization in the range $E_{\mathrm{p}}=2.7$ to 10 MeV (83BY02). See (83BY02, 86MU07) for discussions of the $\sigma(\theta), A_{y}(\theta)$ and $P(\theta)$ measurements. Polarization measurements have also been reported at $E_{\overrightarrow{\mathrm{p}}}=3.9$ to 15.1 MeV and 800 MeV : [see (84AJ01)] and at $53.5,53.9$ and 71.0 MeV (88HE08) $\left[K_{y}^{y^{\prime}}, K_{z}^{z^{\prime}}\right]$. See also ${ }^{9} \mathrm{~B}$, (85TE1C), (85CA41; astrophys.), (86AL1J; applications) and (88ZVZZ; theor.).
13. (a) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{p}){ }^{9} \mathrm{Be}$

$$
E_{\mathrm{b}}=6.5857
$$

(b) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{pn})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.6654$
(c) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{p} \alpha){ }^{5} \mathrm{He}$
$Q_{\mathrm{m}}=-2.47$
The elastic scattering has been studied for $E_{\mathrm{p}}=0.2$ to 9.5 MeV [see (74AJ01, 79AJ01, $84 \mathrm{AJ} 01)]$ and at $E_{\mathrm{p}}=2.0$ to 3.8 MeV (83AL10). Below $E_{\mathrm{p}}=0.7 \mathrm{MeV}$ only s-waves are
present exhibiting resonance at $E_{\mathrm{p}}=330 \mathrm{keV}\left[{ }^{10} \mathrm{~B}^{*}(6.88)\right]$, $J^{\pi}=1^{-}$. Between $E_{\mathrm{p}}=0.8$ to 1.6 MeV polarization and cross-section measurements are well fitted by a phase-shift analysis, using only the ${ }^{3} \mathrm{~S}_{1},{ }^{5} \mathrm{~S}_{2},{ }^{5} \mathrm{P}_{1}$ and ${ }^{5} \mathrm{P}_{2}$ phases. Four levels satisfy the data, 1^{+} and 2^{-}states at $E_{\mathrm{x}}=7.48 \mathrm{MeV}$, a sharp 0^{+}state at $E_{\mathrm{x}}=7.56 \mathrm{MeV}$, and a 1^{-}state at 7.82 MeV : see Table 10.12. Pronounced minima at $E_{\mathrm{p}}=2.48$ and 2.55 MeV are observed in the polarization $\left(\mathrm{p}_{0}\right)$: these are ascribed to $T=1$ analogs of the 3^{-}and 2^{+}states ${ }^{10} \mathrm{Be}^{*}(7.37,7.52)$. A strong anomaly is observed at $E_{\mathrm{p}}=6.7 \mathrm{MeV}$: see Table 10.12.

Polarization measurements have been reported at $E_{\mathrm{p}}=0.9$ to 49.8 MeV , at 138.2 and 145 MeV , and at 990 MeV [see (74AJ01, 79AJ01)] as well as at $E_{\overrightarrow{\mathrm{p}}}=780 \mathrm{MeV}$ and at 1 GeV [see (84AJ01)]. Recently, A_{y} measurements have been reported at $E_{\overrightarrow{\mathrm{p}}}=200 \mathrm{MeV}$ (85GL1A; p ${ }_{0}$; prelim.) and 220 MeV ($85 \mathrm{RO} 15 ; \mathrm{p}_{0}, \mathrm{p}_{2}$). For inclusive proton scattering at $E_{\overrightarrow{\mathrm{p}}}=303 \mathrm{MeV}$ see (87 MO 04). See also (85 SE 15). For reaction (b) see ($84 \mathrm{WA} 21,86 \mathrm{ME} 1 \mathrm{E}$, 88 BO 1 H). Reaction (c) at $E_{\overrightarrow{\mathrm{p}}}=150.5 \mathrm{MeV}$ has been studied by ($85 \mathrm{WA} 13 ; A_{y}$). For other high energy studies see (84AJ01). See also ${ }^{9} \mathrm{Be}, ~(82 \mathrm{BA} 78,85 \mathrm{RO} 1 \mathrm{C}, 85 \mathrm{TR} 1 \mathrm{~A}, 86 \mathrm{KO1R})$, (84ZU01, 85SA1G, 86BA1N, 86MU07) and (83KA37, 84SH1K, 85DY03, 86HA1K; theor.).
14. (a) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{t})^{7} \mathrm{Be} \quad Q_{\mathrm{m}}=-12.082 \quad E_{\mathrm{b}}=6.5857$
(b) ${ }^{9} \mathrm{Be}\left(\mathrm{p},{ }^{3} \mathrm{He}\right)^{7} \mathrm{Li} \quad Q_{\mathrm{m}}=-11.2016$

Polarization measurements (reaction (b)) are reported at $E_{\overrightarrow{\mathrm{p}}}=23.06 \mathrm{MeV}$: see (84 AJ 01). For a study at $E_{\mathrm{p}}=190$ and 300 MeV see (87GR11). See also (85SE15).
15. (a) ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{d})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=0.5592$
$E_{\mathrm{b}}=6.5857$
(b) ${ }^{9} \mathrm{Be}(\mathrm{p}, \alpha){ }^{6} \mathrm{Li}$
$Q_{\mathrm{m}}=2.126$

Knowledge of the cross sections of these two reactions at low energies is of importance for power generation and astrophysical considerations. Absolute cross sections for the d_{0} and α_{0} groups have been measured for $E_{\mathrm{p}}=28$ to 697 keV with $\pm 5-6 \%$ uncertainty. The value of $S_{\text {c.m. }}(E=0)$ for the combined cross sections is estimated to be $35_{-15}^{+45} \mathrm{MeV} \cdot \mathrm{b}$. At the 0.33 MeV resonance $\left(J^{\pi}=1^{-}\right), \sigma_{\alpha_{0}}=360 \pm 20 \mathrm{mb}$ and $\sigma_{\mathrm{d}_{0}}=470 \pm 30 \mathrm{mb}$. The data (including angular distributions), analyzed by an R-matrix compound nucleus model, were fitted by assuming three states at $E_{\mathrm{p}}($ c.m. $)=-20 \mathrm{keV}\left(J^{\pi}=2^{+} ; 3^{+}\right.$possible $)$ $\left[E_{\mathrm{x}}=6.57 \mathrm{MeV}\right]\left[\right.$ see, however, Table 10.8], $310 \mathrm{keV}\left(1^{-}\right)$and $410 \mathrm{keV}\left(1^{+} ; 2^{+}\right.$or 3^{+} possible): see (79AJ01). See also (88ABZW).

Measurements of excitation functions for deuterons and α-particles have been reported at a number of energies to $E_{\mathrm{p}}=15 \mathrm{MeV}$: see (74AJ01, 79AJ01). Observed resonances are displayed in Table 10.13.

Polarization measurements have been made in the range $E_{\mathrm{p}}=0.30$ to 15 MeV and at 185 MeV [see (74AJ01, 79AJ01)] and at $E_{\overrightarrow{\mathrm{p}}}=60 \mathrm{MeV}$ (87KA25; A_{y}; inclusive deuteron spectra). For a fragmentation study at $E_{\mathrm{p}}=190$ and 300 MeV see (87GR11). See also (83AN1D, 84BA1L, 85SE15, 86ER1B), (84YA1A, 85CA41; astrophysics), (84PA1E) and (82BR1A; theor.).

Table 10.13
Resonances in ${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{d})^{8} \mathrm{Be}$ and $\left.{ }^{9} \mathrm{Be}(\mathrm{p}, \alpha)^{6} \mathrm{Li}^{\mathrm{a}}\right)$

$E_{\mathrm{p}}(\mathrm{MeV})$	$E_{\mathrm{x}}(\mathrm{MeV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\mathrm{p}} / \Gamma$
0.34	6.89		$1^{-} ; 0$	0.30
0.46	7.00		$\left.1^{+}\left(2^{+}, 3^{+}\right) \mathrm{d}\right)$	
(0.68)	(7.20)			
0.94	7.43	140	$\left(2^{-} ; 0\right)$	0.7
1.15	7.62	225 ± 50	$\left(1^{+} ; 0\right)$	≈ 0.4
1.65	8.07	800 ± 200	$\left(2^{-} ; 0\right)$	≈ 0.07
(2.3)	(8.7)	(≈ 220)		
$\left.2.56^{\mathrm{b}}\right)$	8.89	36 ± 2	$2^{+} ; 1$	
$\left.3.5^{\mathrm{c}}\right)$	9.7		$T=1$	
$\left.4.49^{\mathrm{c}}\right)$	10.62		$T=1$	

${ }^{\text {a }}$) For references and for a listing of other reported resonances and additional information see table 10.14 in (79AJ01).
${ }^{\mathrm{b}}$) (77KI04) have analyzed the $\left(\alpha_{2} \gamma\right)$ and p_{0} yields with an R matrix formalism and find the following parameters

$$
\left.\begin{array}{ll}
2.566 \pm 0.001 & 2^{+} \\
2.561_{-2}^{+10} & 3^{-}
\end{array}\right\} \quad \Gamma_{\text {c.m. }}=\left\{\begin{array}{l}
40 \pm 1 \mathrm{keV} \\
100 \pm 20 \mathrm{keV}
\end{array}\right.
$$

${ }^{\text {c }}$) Resonance for α_{2} to ${ }^{6} \mathrm{Li}^{*}(3.56), J^{\pi}=0^{+}, T=1$.
$\left.{ }^{\mathrm{d}}\right)$ See, however, table 10.8.
16. ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{n}){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=4.3612$

Neutron groups are observed corresponding to the ${ }^{10} \mathrm{~B}$ states listed in Table 10.14. Angular distributions have been measured for $E_{\mathrm{d}}=0.5$ to 16 MeV [see (74AJ01, 79AJ01)], at 8 MeV (86BA40; $\mathrm{n}_{0} \rightarrow \mathrm{n}_{5}, \mathrm{n}_{6+7+8}$; also at 4 MeV to the latter) and at 18 MeV (87KAZL; $\mathrm{n}_{0}, \mathrm{n}_{1}$). Observed γ-transitions are listed in Table 10.16 of (79AJ01). See Tables 10.6 and 10.7 here for the parameters of radiative transitions and for τ_{m}.

From all the various experiments the following picture emerges: the first five states of ${ }^{10} \mathrm{~B}$ have even parity [from l_{p}]. The ground state is known to have $J=3$, by direct measurement, and ${ }^{10} \mathrm{~B}^{*}(1.74)$ has $J^{\pi}=0^{+}$and is the $T=1$ analog of the ${ }^{10} \mathrm{C}_{\text {g.s. [from }}$ the β^{+}decay of $\left.{ }^{10} \mathrm{C}\right]$. Then looking at the branching ratios and lifetimes of the other states, the sequence for ${ }^{10} \mathrm{~B}^{*}(0,0.72,1.74,2.15,3.59)$ is $J^{\pi}=3^{+}, 1^{+}, 0^{+}, 1^{+}, 2^{+}$[see discussion in (66LA04, 66WA10)].

See also ${ }^{11} \mathrm{~B}$ in (85AJ01), (83TA1B, 85 SM 08) and (86OV1A; applications).
17. ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=1.0922
$$

Deuteron groups have been observed to a number of states of ${ }^{10} \mathrm{~B}$: see Table 10.14 . Angular distributions have been reported at $E\left({ }^{3} \mathrm{He}\right)=10$ to 33.3 MeV [see (74AJ01, 79AJ01, 84AJ01)]. Spectroscopic factors obtained in the (d, n) and $\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$ reactions are not in good agreement: see the discussions in (74KE06, 80BL02). See also (86AV1C; theor.).
18. ${ }^{9} \mathrm{Be}(\alpha, \mathrm{t}){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-13.2282
$$

Angular distributions have been studied at $E_{\alpha}=27,28.3$ and 43 MeV [see (79AJ01)], at 30.2 MeV (84VA07; $\mathrm{t}_{0}, \mathrm{t}_{1}, \mathrm{t}_{3}, \mathrm{t}_{4}$) and at 65 MeV (80HA33). In the latter experiment DWBA analyses have been made of the distributions to ${ }^{10} \mathrm{~B}^{*}(0,0.72,1.74,2.15,3.59$, $5.2,5.92,6.13,6.56,7.00,7.5,7.82,8.9)$ and spectroscopic factors were derived. The distributions to ${ }^{10} \mathrm{~B}^{*}(4.77,6.03)$ could not be fitted by either DWBA or coupled channel analyses. In general coupled-channels calculations give a better fit to the 65 MeV data than does DWBA (80HA33; see also for a comparison with the (d, n) and $\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$ results).

$$
\text { 19. }{ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{He}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-3.389
$$

At $E\left({ }^{7} \mathrm{Li}\right)=34 \mathrm{MeV}$ angular distributions have been obtained for the ${ }^{6} \mathrm{He}$ ions to the first four states of ${ }^{10} \mathrm{~B}$. Absolute values of the spectroscopic factors are $S=0.88,1.38\left(\mathrm{p}_{1 / 2}\right.$ or $\left.\mathrm{p}_{3 / 2}\right), 1.40$ and $0.46\left(\mathrm{p}_{1 / 2}\right), 0.54\left(\mathrm{p}_{3 / 2}\right)$ for ${ }^{10} \mathrm{~B}^{*}(0,0.74,1.74,2.15)$ (FRDWBA analysis): see (79AJ01). See also (88AL1G).
20. ${ }^{10} \mathrm{Be}\left(\beta^{-}\right){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=0.5561
$$

See ${ }^{10} \mathrm{Be}$.
21. ${ }^{10} \mathrm{Be}(\mathrm{p}, \mathrm{n}){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-0.2261
$$

The yield of the n_{1} group has been studied for $E_{\mathrm{p}}=0.9$ to 2.0 MeV : see ${ }^{11} \mathrm{~B}$ in (90AJ01) (86TE1A).
22. (a) ${ }^{10} \mathrm{~B}(\gamma, \mathrm{n}){ }^{9} \mathrm{~B} \quad Q_{\mathrm{m}}=-8.436$
(b) ${ }^{10} \mathrm{~B}(\gamma, \mathrm{p}){ }^{9} \mathrm{Be} \quad Q_{\mathrm{m}}=-6.5857$
(c) ${ }^{10} \mathrm{~B}(\gamma, \mathrm{pn})^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-8.2511$
(d) ${ }^{10} \mathrm{~B}\left(\gamma, \pi^{+}\right){ }^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-140.125$

Table 10.14
Levels of ${ }^{10} \mathrm{~B}$ from ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{n})$ and $\left.{ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{\mathrm{a}}\right)$

$E_{\mathrm{x}}(\mathrm{MeV})^{\mathrm{a}}$)	$\left.{ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{n})^{\mathrm{b}}\right)$		$\left.{ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{\text {c }}\right)$		$\left.J^{\pi} ; T^{\text {a }}\right)$
	l_{p}	$S_{\text {rel }}$	l_{p}	$(2 J+1) C^{2} S$	
0	1	1.0	1	3.30	$3^{+} ; 0$
0.72	1	1.97	1	2.76	$1^{+} ; 0$
1.74	1	1.36	1	1.20	$0^{+} ; 1$
2.15	1	0.41	1	0.82	$1^{+} ; 0$
3.59	1	0.10	1	0.29	$2^{+} ; 0$
4.77	(≥ 2)		$\left.1+(3)^{\mathrm{e}}\right)$	0.10	$3^{+} ; 0$
				≤ 0.82	
5.11	0	0.14	$0+2$	0.34, 0.14	$2^{-} ; 0$
5.16 \}					$2^{+} ; 1$
5.18 \}	1	0.43	1	0.86	$1^{+} ; 0$
5.92	1	0.49	1	2.05	$2^{+} ; 0$
6.03			(3) ${ }^{\mathrm{e}}$)	≤ 0.20	4^{+}
6.13	(2)		(2) ${ }^{\text {f }}$)	3.04	3^{-}
6.56	(3)		(2) ${ }^{\text {f }}$)	2.01	(4) ${ }^{-}$
6.89 ± 15	(1)				$1^{-} ; 0+1$
7.00 ± 15	(1)				$(1,2)^{+} ;(0)$
7.48 ± 15	${ }^{\text {d }}$)				$\mathrm{g}^{\text {) }}$
7.56 ± 25	d)				$0^{+} ; 1$
(7.85 ± 50)	d)				1^{-}
(8.07 ± 50)	d)				$\left(2^{-} ; 0\right)$
(8.12 ± 50)	d)				

a) Values without uncertainties are from table 10.5; others are from table 10.15 in (79AJ01). See that table for additional information and for references. See also (84AJ01).
$\left.{ }^{\text {b }}\right) S_{\text {rel }}$ from experiment at $E_{\mathrm{d}}=12.0-16.0 \mathrm{MeV}$.
${ }^{\text {c }} E\left({ }^{3} \mathrm{He}\right)=18 \mathrm{MeV}$; DWBA analysis; values shown are those obtained with one of the two optical-model potentials used in the analysis. For earlier $\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$ results see table 10.17 in (79AJ01).
${ }^{\mathrm{d}}$) State observed in (d, n) reaction; l_{p} not determined.
${ }^{\mathrm{e}}$) Angular distribution poorly fitted by DWBA.
${ }^{\text {f }}$) See (80BL02) for a discussion of these two states, including a comparison with the (d, n) data: $l_{\mathrm{p}}=2$ is slightly preferred to $l_{\mathrm{p}}=1$ on the basis of the observed strengths. Neither $l_{\mathrm{p}}=2$ nor 1 gives a good DWBA fit.
${ }^{\mathrm{g}}$) Group shown corresponds to unresolved states in ${ }^{10} \mathrm{~B}$.

Table 10.15
Radiative widths for $\left.{ }^{10} \mathrm{Be}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)^{\mathrm{a}}\right)$

E_{x} in ${ }^{10} \mathrm{~B}(\mathrm{MeV})$	$J^{\pi} ; T$	Mult.	$\Gamma_{\gamma_{0}}(\mathrm{eV})$
1.74	$0^{+} ; 1$	M3	$(1.05 \pm 0.25) \times 10^{-7}$
$5.16 \pm 0.04{ }^{\text {b }}$)	$2^{+} ; 1$	$\left\{\begin{array}{l}\text { M1 } \\ \text { M3 }\end{array}\right.$	$\begin{aligned} & 0.05 \pm 0.05 \\ & (1.1 \pm 0.1) \times 10^{-6} \end{aligned}$
6.03	4^{+}	$\left\{\begin{array}{l}\mathrm{C} 2 \\ \mathrm{C} 4\end{array}\right.$	$\begin{aligned} & 0.106 \pm 0.005 \\ & \quad(3.3 \pm 0.8) \times 10^{-7} \end{aligned}$
7.48	$2^{+} ; 1$	M1	11.75 ± 0.75
8.07	2^{+c})	C2	0.19 ± 0.02
8.9	$2^{+} ; 1$ $3^{-} ; 1$	$\left\{\begin{array}{l}\text { M1 } \\ \text { M3 } \\ \text { M2 }\end{array}\right.$	$\begin{aligned} & 0.3 \pm 0.1 \\ & (1.0 \pm 0.1) \times 10^{-5} \\ & (1.2 \pm 0.1) \times 10^{-3} \end{aligned}$
10.79		M1 or C2	
11.56		(M1)	$11.4 \pm 2.3^{\text {c }}$)
12.6			
13.3			

${ }^{\text {a }}$) See table 10.16 in (84 AJ 01) for references. See also table 10.18 in (79AJ01).
$\left.{ }^{\text {b }}\right)$ Assumed to correspond to 2^{+}state at $5.16 \mathrm{MeV} . \Gamma_{\gamma_{0}}=(3.5 \pm$ $0.3) \times 10^{-4} \mathrm{eV}$ for M2 if the transition were to the 2^{-}state at 5.11 MeV : see also footnote ${ }^{\mathrm{g}}$) in table 10.18 (79AJ01).
$\left.{ }^{\text {c }}\right) \Gamma \approx 760 \mathrm{keV}$.

Absolute measurements have been made of the ${ }^{10} \mathrm{~B}(\gamma, \mathrm{Tn})$ cross section from threshold to 35 MeV with quasimonoenergetic photons; the integrated cross section is 0.54 in units of the classical dipole sum ($60 \mathrm{NZ} / \mathrm{A} \mathrm{MeV} \cdot \mathrm{mb}$). The $(\gamma, 2 \mathrm{n})+(\gamma, 2 \mathrm{np})$ cross section is zero, within statistics, for $E_{\gamma}=16$ to 35 MeV : see (79AJ01) and (88DI02). The giant resonance is broad with the major structure contained in two peaks at $E_{\mathrm{x}}=20.1 \pm 0.1$ and $23.1 \pm 0.1 \mathrm{MeV}\left(\sigma_{\max } \approx 5.5 \mathrm{mb}\right.$ for each of the two maxima): see (79AJ01). (87AH02) [and H. H. Thies, private communication] [using bs] report two broad [$\Gamma \approx 2 \mathrm{MeV}$] maxima at 20.2 and $23.0 \mathrm{MeV}[\pm 0.05 \mathrm{MeV}](\sigma=5.0$ and 6.0 mb , respectively; $\pm 10 \%)$ and a minor structure at $E_{\mathrm{x}}=17.0 \mathrm{MeV}$. For reactions (b) and (c) see (88 SU 14). For reaction (d) see ${ }^{10} \mathrm{Be}$. See also (74AJ01) and (83GO28, 83GO1K, 85GO1A, 87KI1C; theor.).
23. (a) ${ }^{10} \mathrm{Be}(\mathrm{e}, \mathrm{e})^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}(\mathrm{e}, \text { en })^{9} \mathrm{~B}$
$Q_{\mathrm{m}}=-8.436$
(c) ${ }^{10} \mathrm{~B}(\mathrm{e}, \mathrm{ep})^{9} \mathrm{Be}$
$Q_{\mathrm{m}}=-6.5857$
(d) ${ }^{10} \mathrm{~B}\left(\mathrm{e}, \mathrm{e} \pi^{+}\right){ }^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=-140.125$

$$
\left\langle r^{2}\right\rangle^{1 / 2}=2.49 \pm 0.09 \mathrm{fm}(86 \mathrm{DO} 1 \mathrm{E} ; \text { prelim. })
$$

Inelastic electron groups are displayed in Table 10.15. (86FR1D; prelim.) have measured the form factors for ${ }^{10} \mathrm{~B}^{*}(0,1.74,5.16)$. For reactions (b) and (c) see (84AJ01). For reaction (d) see ${ }^{10}$ Be. See also (84DO1A, 86PE05, 87DE1A, 87HI1F) and (86HA1M; theor.).
24. ${ }^{10} \mathrm{~B}(\mathrm{n}, \mathrm{n}){ }^{10} \mathrm{~B}$

Angular distributions have been studied for $E_{\mathrm{n}}=1.5$ to 14.1 MeV [see (74AJ01, 79AJ01)] and at 3.02 to 12.01 MeV (86SA1U, $87 S A 1 H$; prelim; $\mathrm{n}_{1} \rightarrow \mathrm{n}_{5}$), 8 to 14 MeV (83DA22; n_{0}) and 9.96 to 16.94 MeV (86 MU 1 D ; prelim.; n_{0}). See also ${ }^{11} \mathrm{~B}$ in (85AJ01, 90AJ01), (84TU02) and (83KO1F; theor.).
25. (a) ${ }^{10} \mathrm{~B}(\mathrm{p}, \mathrm{p})^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}(\mathrm{p}, 2 \mathrm{p}){ }^{9} \mathrm{Be} \quad Q_{\mathrm{m}}=-6.5857$

Angular distributions have been measured for a number of energies between $E_{\mathrm{p}}=3.0$ and 800 MeV [see (74AJ01, 79AJ01, 84AJ01)] and at 10 to 17 MeV (86MU1D; p p_{0}; prelim.). Table 10.16 displays the states observed in this reaction. The γ-ray results are shown in Table 10.6. See also (79AJ01). For τ_{m} see Table 10.7 (83VE03).

Axions may cause $\mathrm{e}^{+} \mathrm{e}^{-}$pairs in competition with γ-ray emission in an isoscalar M1 transition: a search for axions was undertaken in the case of the $3.59 \rightarrow$ g.s. $\left[2^{+} \rightarrow 3^{+}\right]$ transition. It was negative (86DE25). A beam dump experiment and other attempts to observe axions are discussed in (87HA1O). For reaction (b) at $E_{\mathrm{p}}=1 \mathrm{GeV}$ see (85BE1J, 85DO1B; prelim.) and (74AJ01). See also (88KRZY), (85KI1B, 88KOZL; applied) and ${ }^{11} \mathrm{C}$ in (85AJ01, 90AJ01).
26. ${ }^{10} \mathrm{~B}(\mathrm{~d}, \mathrm{~d}){ }^{10} \mathrm{~B}$

Angular distributions have been reported at $E_{\mathrm{d}}=4$ to 28 MeV : see (74AJ01, 79AJ01). Observed deuteron groups are displayed in Table 10.16. The very low intensity of the group to ${ }^{10} \mathrm{~B}^{*}(1.74)$ and the absence of the group to ${ }^{10} \mathrm{~B}^{*}(5.16)$ is good evidence of their $T=1$ character: see (74AJ01).
27. ${ }^{10} \mathrm{~B}(\mathrm{t}, \mathrm{t}){ }^{10} \mathrm{~B}$

Angular distributions of elastically scattered tritons have been measured at $E_{\mathrm{t}}=1.5$ to 3.3 MeV : see (74AJ01).

Table 10.16
${ }^{10} \mathrm{~B}$ levels from ${ }^{10} \mathrm{~B}(\mathrm{p}, \mathrm{p}),{ }^{10} \mathrm{~B}(\mathrm{~d}, \mathrm{~d})$ and $\left.{ }^{10} \mathrm{~B}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right){ }^{\mathrm{a}}\right)$

$\left.E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})^{\mathrm{b}}\right)$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	L	$\left.\beta_{L}^{\mathrm{b}, \mathrm{c}}\right)$
$\left.0^{\mathrm{d}}\right)$			
$\left.0.7183 \pm 0.4^{\mathrm{d}, \mathrm{e}, \mathrm{f}}\right)$		2	0.67 ± 0.05
$\left.\equiv 1.7402^{\mathrm{f}, \mathrm{g}}\right)$		(3)	
$\left.2.1541 \pm 0.5^{\mathrm{d}}\right)$		2	0.49 ± 0.04
$\left.3.5870 \pm 0.5^{\mathrm{d}}\right)$		2	0.45 ± 0.04
$\left.4.7740 \pm 0.5^{\mathrm{h}}\right)$			
5.1103 ± 0.6		0.45 ± 0.04	
$\left.5.1639 \pm 0.6^{\mathrm{h}, \mathrm{i}}\right)$	110 ± 10		
$\left.5.18 \pm 10^{\mathrm{d}}\right)$	<5		0.28 ± 0.03
$\left.5.9195 \pm 0.6^{\mathrm{d}}\right)$	<5	2	0.95 ± 0.04
$\left.6.0250 \pm 0.6^{\mathrm{d}}\right)$	<5	3	0.58 ± 0.03
$\left.6.1272 \pm 0.7^{\mathrm{d}}\right)$	25 ± 5	3	$\left.0.46 \pm 0.04{ }^{\mathrm{j}}\right)$
$\left.6.55 \pm 10^{\mathrm{d}}\right)$	95 ± 10		
$\left.7.00 \pm 10^{\mathrm{d}}\right)$	90 ± 15		
7.48 ± 10			

${ }^{\text {a }}$) For references and a more complete presentation see table 10.19 in (79AJ01).
${ }^{\mathrm{b}}$) From (p, p).
${ }^{c}$) See results obtained from $\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right)$ in table 10.19 of (79AJ01).
d) Also observed in (d, d) and $\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right)$.
$\left.{ }^{\text {e }}\right) E_{\mathrm{x}}=718.35 \pm 0.04\left(\right.$ from $\left.E_{\gamma}\right)$.
${ }^{\text {f }}$) $E_{\mathrm{x}}=718.5 \pm 0.2$ and $1740.0 \pm 0.6 \mathrm{keV}\left(\right.$ from $\left.E_{\gamma}\right)$.
${ }^{\text {g }}$) Also observed in $\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right)$.
${ }^{\text {h }}$) Also observed in (d, d).
${ }^{\text {i }}$) Not reported in (p, p) at $E_{\mathrm{p}}=10 \mathrm{MeV}$.
${ }^{\mathrm{j}}$) If $J^{\pi}=4^{-} ; \beta_{L}=0.59 \pm 0.03$ if $J^{\pi}=2^{-}$.
28. ${ }^{10} \mathrm{~B}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right){ }^{10} \mathrm{~B}$

Angular distributions have been measured at $E\left({ }^{3} \mathrm{He}\right)=4$ to 46.1 MeV [see (74AJ01, 79AJ01, 84AJ01)] and at 2.10 and 2.98 MeV (87BA34; elastic). $L=2$ gives a good fit of the distributions of ${ }^{3} \mathrm{He}$ ions to ${ }^{10} \mathrm{~B}^{*}(0.72,2.15,3.59,6.03)$: derived β_{L} are shown in Table 10.19 of (79AJ01). See also Table 10.16 here, ${ }^{13} \mathrm{~N}$ in (86AJ01) and (87RA36; theor.).
29. (a) ${ }^{10} \mathrm{~B}(\alpha, \alpha){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}(\alpha, 2 \alpha)^{6} \mathrm{Li}$

$$
Q_{\mathrm{m}}=-4.4596
$$

Angular distributions have been measured for $E_{\alpha}=5$ to 56 MeV [see (74AJ01, 79AJ01, 84AJ01)] and at 91.8 MeV (85JA12; α_{0}). Reaction (b) has been studied at $E_{\alpha}=24$ and 700 MeV : see (79AJ01, 84AJ01). See also (83GO27, 85SH1D; theor.).
30. (a) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li},{ }^{6} \mathrm{Li}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{7} \mathrm{Li},{ }^{7} \mathrm{Li}\right){ }^{10} \mathrm{~B}$

Elastic-scattering angular distributions have been studied at $E\left({ }^{6} \mathrm{Li}\right)=5.8$ and 30 MeV and at $E\left({ }^{7} \mathrm{Li}\right)=24 \mathrm{MeV}$: see (79AJ01).
31. ${ }^{10} \mathrm{~B}\left({ }^{9} \mathrm{Be},{ }^{9} \mathrm{Be}\right){ }^{10} \mathrm{~B}$

Elastic angular distributions have been measured at $E\left({ }^{10} \mathrm{~B}\right)=20.1$ and 30.0 MeV (83SR01). For yield and cross section measurements see (83SR01, 86CU02). See also (84IN03, 86RO12; theor.).
32. (a) ${ }^{10} \mathrm{~B}\left({ }^{10} \mathrm{~B},{ }^{10} \mathrm{~B}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{11} \mathrm{~B},{ }^{11} \mathrm{~B}\right){ }^{10} \mathrm{~B}$

Elastic angular distributions (reaction (a)) have been studied at $E\left({ }^{10} \mathrm{~B}\right)=8,13$ and 21 MeV . For yields and reaction (b) see (79AJ01). See also (85BE1A, 85CU1A) and (84HA43, 86RO12; theor.).
33. (a) ${ }^{10} \mathrm{~B}\left({ }^{12} \mathrm{C},{ }^{12} \mathrm{C}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{13} \mathrm{C},{ }^{13} \mathrm{C}\right){ }^{10} \mathrm{~B}$

Elastic angular distributions have been measured at $E\left({ }^{10} \mathrm{~B}\right)=18$ and 100 MeV for reaction (a) [see (79AJ01)] and at $18-46 \mathrm{MeV}$ [see (84AJ01)] and $42.5,62.3$ and 80.9 MeV for reaction (b) (85MA10). For yield, cross section and fusion experiments see (83DA20, 83MA53, 85MA10, 88MA07) and (84AJ01). See also (84DE1J, 84HAZK, 87SA1I), (82BA1D, 85BA1T; astrophysics), (83BI1A, 83DU13, 84FR1A, 84HA53, 85BE1A, 85CU1A, 86MA19) and (83HA1E, $84 \mathrm{HA} 43,84 \mathrm{IN} 03,84 \mathrm{MA1J}, 85 \mathrm{KO} 1 \mathrm{~J}, 86 \mathrm{RO} 12$; theor.).
34. ${ }^{10} \mathrm{~B}\left({ }^{14} \mathrm{~N},{ }^{14} \mathrm{~N}\right){ }^{10} \mathrm{~B}$

Angular distributions have been reported at $E\left({ }^{10} \mathrm{~B}\right)=100 \mathrm{MeV}$ and $E\left({ }^{14} \mathrm{~N}\right)=73.9$ and 93.6 MeV : see (79AJ01, 84AJ01). For fusion cross section studies see (79AJ01, 84AJ01) and (83DE26). See also (83BI1A, 83DA10, 84FR1A, 84HA53, 85BE1A, 85CU1A) and (83GO1A, 84HA43, 84IN03, 85KO1J, 86RO12; theor.).
35. (a) ${ }^{10} \mathrm{~B}\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{17} \mathrm{O},{ }^{17} \mathrm{O}\right){ }^{10} \mathrm{~B}$
(c) ${ }^{10} \mathrm{~B}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{O}\right){ }^{10} \mathrm{~B}$

Elastic angular distributions (reaction (a)) have been studied at $E\left({ }^{16} \mathrm{O}\right)=15.0$ to 32.5 MeV and at $E\left({ }^{10} \mathrm{~B}\right)=33.7$ to 100 MeV : see (79AJ01, 84AJ01). The elastic scattering for reaction (c) has been studied at $E\left({ }^{18} \mathrm{O}\right)=20,24$ and 30.5 MeV : see (74AJ01). For yield and fusion cross section measurements see (84AJ01) and (84GO1C). See also (83BI1A, $84 \mathrm{FR} 1 \mathrm{~A}, 84 \mathrm{HA} 53)$ and (83GO1A, 85HU04; theor.).
36. (a) ${ }^{10} \mathrm{~B}\left({ }^{19} \mathrm{~F},{ }^{19} \mathrm{~F}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{Ne}\right){ }^{10} \mathrm{~B}$

The elastic scattering has been investigated for $E\left({ }^{19} \mathrm{~F}\right)=20$ and 24 MeV for reaction (a) and $E\left({ }^{10} \mathrm{~B}\right)=65.9 \mathrm{MeV}$ for reaction (b): see (74AJ01, 84AJ01).
37. (a) ${ }^{10} \mathrm{~B}\left({ }^{24} \mathrm{Mg},{ }^{24} \mathrm{Mg}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{25} \mathrm{Mg},{ }^{25} \mathrm{Mg}\right){ }^{10} \mathrm{~B}$

The elastic scattering for both reactions has been studied at $E\left({ }^{10} \mathrm{~B}\right)=87.4 \mathrm{MeV}$: see (84AJ01). The elastic scattering for reaction (b) has been measured at $E\left({ }^{10} \mathrm{~B}\right)=34 \mathrm{MeV}$ by (85 WI 18).
38. (a) ${ }^{10} \mathrm{~B}\left({ }^{27} \mathrm{Al},{ }^{27} \mathrm{Al}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{28} \mathrm{Si},{ }^{28} \mathrm{Si}\right){ }^{10} \mathrm{~B}$
(c) ${ }^{10} \mathrm{~B}\left({ }^{30} \mathrm{Si},{ }^{30} \mathrm{Si}\right){ }^{10} \mathrm{~B}$

The elastic scattering for all three reactions has been studied at $E\left({ }^{10} \mathrm{~B}\right)=41.6$ and $\approx 50 \mathrm{MeV}$ [and also at 33.7 MeV for reaction (b)]: see (84AJ01). See also (84TE1A).
39. (a) ${ }^{10} \mathrm{~B}\left({ }^{39} \mathrm{~K},{ }^{39} \mathrm{~K}\right){ }^{10} \mathrm{~B}$
(b) ${ }^{10} \mathrm{~B}\left({ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ca}\right){ }^{10} \mathrm{~B}$

The elastic scattering has been studied at $E\left({ }^{10} \mathrm{~B}\right)=44 \mathrm{MeV}$ for reaction (a) (85WI18) and at 46.6 MeV for reaction (b): see (84AJ01).
40. ${ }^{10} \mathrm{C}\left(\beta^{+}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=3.6481$

The half-life of ${ }^{10} \mathrm{C}$ is $19.255 \pm 0.53 \mathrm{~s}$ [see (74AJ01, 79AJ01)]: the decay is to ${ }^{10} \mathrm{~B}^{*}(0.72$, $1.74)$ with branching ratios of $(98.53 \pm 0.02) \%$ and $(1.465 \pm 0.014) \%$ and $\log f t=3.047$ for the transition to ${ }^{10} \mathrm{~B}^{*}(0.72)$ and 3.492 ± 0.005 for that to the analog state, ${ }^{10} \mathrm{~B}^{*}(1.74)$: see Table 10.20 in (79AJ01). The excitation energies of the two states are 718.32 ± 0.09 and $1740.16 \pm 0.17 \mathrm{keV}\left[E_{\gamma}=718.29 \pm 0.09\right.$ and $\left.1021.78 \pm 0.14 \mathrm{keV}\right]$. See (79AJ01) for a further discussion of the decay. See also (88GI02, 88KRZY).

$$
\text { 41. }{ }^{11} \mathrm{~B}(\gamma, \mathrm{n})^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-11.4542
$$

The intensities of the transitions to ${ }^{10} \mathrm{~B}^{*}(3.59,5.16)$ [$T=0$ and 1 , respectively] depend on the region of the giant dipole resonance in ${ }^{11} \mathrm{~B}$ from which the decay takes place: it is suggested that the lower-energy region consists mainly of $T=\frac{1}{2}$ states and the higherenergy region of $T=\frac{3}{2}$ states: see ${ }^{11} \mathrm{~B}$ in (80AJ01). See also ${ }^{11} \mathrm{~B}$ in (85AJ01, 90AJ01) and (84AL22).
42. (a) ${ }^{11} \mathrm{~B}(\mathrm{p}, \mathrm{d}){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-9.2296
$$

(b) ${ }^{11} \mathrm{~B}(\mathrm{p}, \mathrm{pn}){ }^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-11.4542$

Angular distributions of deuteron groups have been measured at several energies in the range $E_{\mathrm{p}}=17.7$ to 154.8 MeV [see (79AJ01)] and at 18.6 MeV ($85 \mathrm{BE} 13 ; \mathrm{d}_{0}, \mathrm{~d}_{1}$). The population of the first five states of ${ }^{10} \mathrm{~B}$ and of ${ }^{10} \mathrm{~B}^{*}(5.2,6.0,6.56,7.5,11.4 \pm 0.2,14.1 \pm 0.2)$ is reported. For reaction (b) see (85BE1J, 85DO1B; 1 GeV ; prelim.). See also (88GU1D) and (88BE1I; theor.).

Table 10.17
${ }^{10} \mathrm{~B}$ levels from $\left.{ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{10} \mathrm{~B}{ }^{\mathrm{a}}\right)$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	l	S_{rel}
0		1	1.0
0.718 ± 7		1	0.22
1.744 ± 7		1	0.73
2.157 ± 6		1	0.44
3.587 ± 6		1	0.09
4.777 ± 5		1	1.81
5.114 ± 5			
5.166 ± 5			
5.923 ± 5			
6.028 ± 5			
6.131 ± 5			
6.570 ± 7			
7.002 ± 10			
7.475 ± 10			
7.567 ± 10			
7.87 ± 40	240 ± 50		
10.85 ± 100	300 ± 100		
11.52 ± 35	500 ± 100		
12.56 ± 30	100 ± 30		
13.49 ± 50	300 ± 50		
14.4 ± 100	800 ± 200		
(18.2 ± 200)	(1500 ± 300)		

${ }^{\text {a }}$) See table 10.21 in (79AJ01) for references.
43. ${ }^{11} \mathrm{~B}(\mathrm{~d}, \mathrm{t}){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-5.1969
$$

Angular distributions have been measured at $E_{\mathrm{d}}=11.8 \mathrm{MeV}\left(\mathrm{t}_{0} \rightarrow \mathrm{t}_{3} ; l=1\right)$ [see (74AJ01)] and at 18 MeV (87GU1F, 88GU1D; prelim.).
44. (a) ${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=9.1236$
(b) ${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He}, 2 \alpha\right){ }^{6} \mathrm{Li}$
$Q_{\mathrm{m}}=4.6640$

Reported levels are displayed in Table 10.17. Angular distributions have been measured at a number of energies between $E\left({ }^{3} \mathrm{He}\right)=1.0$ and 33 MeV [see (74AJ01)] and at 23.4 MeV (87VA1I; $\alpha_{0}, \alpha_{1} ;$ prelim.). For the decay of observed states see Table 10.6.

The $\alpha-\alpha$ angular correlations (reaction (b)) have been measured for the transitions via ${ }^{10} \mathrm{~B}^{*}(5.92,6.03,6.13,6.56,7.00)$. The results are consistent with $J^{\pi}=2^{+}$and 4^{+}
for ${ }^{10} \mathrm{~B}^{*}(5.92,6.03)$ and require $J^{\pi}=3^{-}$for ${ }^{10} \mathrm{~B}^{*}(6.13)$. There is substantial interference between levels of opposite parity for the α-particles due to ${ }^{10} \mathrm{~B}^{*}(6.56,7.00)$: the data are fitted by $J^{\pi}=3^{+}$for ${ }^{10} \mathrm{~B}^{*}(7.00)$ and $(3,4)^{-}$for ${ }^{10} \mathrm{~B}^{*}(6.56)$ [the ${ }^{6} \mathrm{Li}(\alpha, \alpha)$ results then require $J^{\pi}=4^{-}$. See, however, reaction 15 , and see (74AJ01) for the references. See also (88GO1E; theor.).
45. ${ }^{11} \mathrm{~B}\left({ }^{7} \mathrm{Li},{ }^{8} \mathrm{Li}\right){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-9.421
$$

Angular distributions have been measured at $E\left({ }^{7} \mathrm{Li}\right)=34 \mathrm{MeV}$ involving ${ }^{10} \mathrm{~B}^{*}(0,0.72$, $1.74,2.15)$ and ${ }^{8} \mathrm{Li}_{\text {g.s. }}$ (as well as ${ }^{8} \mathrm{Li}^{*}(0.98)$ in the case of the ${ }^{10} \mathrm{~B}_{\mathrm{g} . \text { s. }}$ transition) (87CO16).
46. (a) ${ }^{12} \mathrm{C}(\gamma, \mathrm{d}){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-25.1868
$$

(b) ${ }^{12} \mathrm{C}(\gamma, \mathrm{pn}){ }^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-27.4114$

For reaction (a) see (86 SH 1 M) and ${ }^{12} \mathrm{C}$ in (90AJ01). For reaction (b) see ${ }^{12} \mathrm{C}$ in (85AJ01). See also (84DO1C) and (84CH1A, 86GU1G; theor.).
47. ${ }^{12} \mathrm{C}(\mathrm{n}, \mathrm{t}){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-18.9295$

See (85FR07, 87FR16; $E_{\mathrm{n}}=319$ to 545 MeV$)$. See also (86DO12).
48. ${ }^{12} \mathrm{C}\left(\pi^{ \pm}, \pi^{ \pm} \mathrm{d}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-25.1868$

At $E_{\pi^{+}}=180 \mathrm{MeV}$ and $E_{\pi^{-}}=220 \mathrm{MeV},{ }^{10} \mathrm{~B}^{*}(0.72,2.15)$ are populated: see (84AJ01). At $E_{\pi^{+}}=150 \mathrm{MeV}$ momentum distributions of pions to unresolved states of ${ }^{10} \mathrm{~B}$ are reported by (87HU13).
49. (a) ${ }^{12} \mathrm{C}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{10} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-19.6933
$$

(b) ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{pd}){ }^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-25.1868$

Angular distributions of ${ }^{3} \mathrm{He}$ ions have been measured for $E_{\mathrm{p}}=39.8,51.9$ and 185 MeV : see (79AJ01). ${ }^{10} \mathrm{~B}^{*}(0,0.72,1.74,2.15,3.59,4.77,5.16,5.92,6.56,7.50,8.90)$ are populated. For reaction (b) see ($85 \mathrm{DE17} ; E_{\mathrm{p}}=58 \mathrm{MeV} ;{ }^{10} \mathrm{~B}^{*}(0.72,1.74)$) and (84AJ01). See also (86VD1C) and (86GO28, 86ZH03, 87GA08, 87KW01; theor.).
50. ${ }^{12} \mathrm{C}(\mathrm{d}, \alpha){ }^{10} \mathrm{~B}$

Alpha groups have been observed to most of the known states of ${ }^{10} \mathrm{~B}$ below $E_{\mathrm{x}}=$ 7.1 MeV: see Table 10.23 in (74AJ01). Angular distributions have been measured for $E_{\mathrm{d}}=5.0$ to 40 MeV : see (79AJ01). Single-particle S-values are $1.5,0.5,0.1,0.1$ and 0.3 for ${ }^{10} \mathrm{~B}^{*}(0,0.72,2.15,3.59,4.77)$. A study of the $m_{s}=0$ yield at $E_{\mathrm{d}}=14.5 \mathrm{MeV}\left(\theta=0^{\circ}\right)$ leads to assignments of $3^{+}, 2^{-}$and $\left(3^{+}, 4^{-}\right)$for ${ }^{10} \mathrm{~B}^{*}(4.77,5.11,6.56)$. The population of the isospin-forbidden group to ${ }^{10} \mathrm{~B}^{*}(1.74)\left[\alpha_{2}\right]$ has been studied with E_{d} up to 30 MeV : see ${ }^{14} \mathrm{~N}$ in (86AJ01). See also (84LO1A).
51. ${ }^{12} \mathrm{C}\left(\alpha,{ }^{6} \mathrm{Li}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-23.7118$

Angular distributions have been reported at $E_{\alpha}=42$ and 46 MeV : see (79AJ01). At $E_{\alpha}=65 \mathrm{MeV}$, an investigation of the ${ }^{6} \mathrm{Li}$ breakup shows that ${ }^{10} \mathrm{~B}^{*}(0,0.72,2.16,3.57,4.77$, $5.2,5.9,6.0$) are involved: see (84AJ01). See also (87GA20).
52. ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li},{ }^{9} \mathrm{Be}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-8.492$

At $E\left({ }^{7} \mathrm{Li}\right)=78 \mathrm{MeV}$ angular distributions have been measured to ${ }^{10} \mathrm{~B}^{*}(0,2.15)$ (86GL1C; prelim.).
53. (a) ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{14} \mathrm{~N}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-14.9144$
(b) ${ }^{12} \mathrm{C}\left({ }^{14} \mathrm{~N},{ }^{16} \mathrm{O}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-4.4505$

Angular distributions (reaction (a)) involving ${ }^{10} \mathrm{~B}^{*}(0,0.7)$ have been studied at $E\left({ }^{12} \mathrm{C}\right)=$ 49.0 to 75.5 and 93.8 MeV . Angular distributions (reaction (b)) involving ${ }^{10} \mathrm{~B}^{*}(0,0.72,2.15$, 3.59) have been measured at $E\left({ }^{14} \mathrm{~N}\right)=53 \mathrm{MeV}$ and 78.8 MeV (not to ${ }^{10} \mathrm{~B}^{*}(3.59)$): see (79AJ01, 84AJ01) for references. See also (86AR04, 86CR1A, 86MO1D).
54. ${ }^{13} \mathrm{C}(\mathrm{p}, \alpha){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-4.0618$

Angular distributions have been measured at $E_{\mathrm{p}}=5.8$ to 18 MeV and 43.7 and 50.5 MeV : see (79AJ01). See also ${ }^{14} \mathrm{~N}$ in (86AJ01) and (85MA1F; theor.).
55. ${ }^{14} \mathrm{~N}(\mathrm{p}, \mathrm{p} \alpha)^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-11.6125$

See (86VD1C; $E_{\mathrm{p}}=50 \mathrm{MeV}$; prelim.). See also (86GO28; theor.).
56. ${ }^{14} \mathrm{~N}\left(\mathrm{~d},{ }^{6} \mathrm{Li}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-10.137$

At $E_{\mathrm{d}}=80 \mathrm{MeV}$ angular distributions are reported to ${ }^{10} \mathrm{~B}^{*}(0,0.72,2.15,3.59,4.8$, $6.04,7.05,8.68)$: see (84AJ01).
57. ${ }^{16} \mathrm{O}\left({ }^{9} \mathrm{Be},{ }^{15} \mathrm{~N}\right){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=-5.542$

See (85WI18).

${ }^{10} \mathrm{C}$

(Figs. 21 and 22)

GENERAL: See also (84AJ01).
Model calculations: (84SA37, 87BL18).
Special states: (86AB10).
Astrophysical questions: (87RA1D).
Complex reactions involving ${ }^{10} C$: (83FR1A, 83OL1A, 86HA1B, 87AR19, 87BEYI, 87RI03, 87SN1A, 87TA1F, 88BEYJ, 88CA06, 88KI05, 88SA19).

Reactions involving pions and other mesons (See also reactions 2 and 4.): (85LI1E, 87SI18).

Other topics: (82KA1D, 85AN28, 86YA1F).
Ground-state properties of ${ }^{10} C$: (83ANZQ, 85AN28, 87BL18, 87SA15).
Mass of ${ }^{10} C$: The threshold energy for the ${ }^{10} \mathrm{~B}(\mathrm{p}, \mathrm{n}){ }^{10} \mathrm{C}$ reaction is $4876.90 \pm 0.37 \mathrm{keV}$: then $Q_{0}=-4430.17 \pm 0.34 \mathrm{keV}$ (84BA12). Using the (88WA18) masses for ${ }^{10} \mathrm{~B}$, p and n , the atomic mass excess of ${ }^{10} \mathrm{C}$ is then $15698.8 \pm 0.5 \mathrm{keV}$. This value does not include a contribution from unpublished work on ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{t}){ }^{10} \mathrm{C}$ quoted in (84AJ01). However, we adopt the (88WA18) value: $15699.1 \pm 0.3 \mathrm{keV}$.

$$
\begin{gathered}
B(\mathrm{E} 2) \uparrow \text { for }{ }^{10} \mathrm{C}^{*}(3.35)=(6.2 \pm 1.0) \times 10^{-3} e^{2} \cdot \mathrm{~b}^{2}, \\
{\left[Q_{0}=0.25 \pm 0.02 \mathrm{~b}\right](87 \mathrm{RA} 01)}
\end{gathered}
$$

Table 10.18
Energy levels of ${ }^{10} \mathrm{C}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
g.s.	$0^{+} ; 1$	$\tau_{1 / 2}=19.255 \pm 0.053 \mathrm{~s}$	β^{+}	$1,4,5,6,7,8$
3.3536 ± 0.7	2^{+}	$\tau_{\mathrm{m}}=155 \pm 25 \mathrm{fs}$	γ	$2,4,5,6,7,8$
5.22 ± 40	$\mathrm{a})$	$\Gamma=225 \pm 45 \mathrm{keV}$		$4,5,6,7$
5.38 ± 70	$\mathrm{a})$	300 ± 60		$4,5,6,7$
6.580 ± 20	$\left(2^{+}\right)$	200 ± 40		$4,6,7$

${ }^{\text {a }}$) One of these two states is presumably a 2^{+}state.

1. ${ }^{10} \mathrm{C}\left(\beta^{+}\right){ }^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=3.6481$
${ }^{10} \mathrm{C}$ decays with a half-life of $19.255 \pm 0.053 \mathrm{~s}$ to ${ }^{10} \mathrm{~B}^{*}(0.7,1.7)$: the branching ratios are $(98.53 \pm 0.02) \%$ and $(1.465 \pm 0.014) \%$, respectively: see $(74 \mathrm{AJ} 01)$. See also reaction 40 in ${ }^{10} \mathrm{~B}$ and (86CA1L).
2. ${ }^{7} \mathrm{Li}\left({ }^{3} \mathrm{He}, \pi^{-}\right){ }^{10} \mathrm{C} \quad Q_{\mathrm{m}}=-125.429$

At $E\left({ }^{3} \mathrm{He}\right)=235 \mathrm{MeV}{ }^{10} \mathrm{C}^{*}(3.35)$ is populated $(84 \mathrm{BI} 08) . \pi^{-}$production in this reaction has also been studied by (84BR22) At $E\left({ }^{3} \mathrm{He}\right)=910 \mathrm{MeV}$.

Tetraneutron $\left(\mathrm{n}^{4}\right)$ production has been studied in this and in other reactions involving ${ }^{10} \mathrm{C}$ at $E\left({ }^{7} \mathrm{Li}\right)=82 \mathrm{MeV}$ (87ALZG; prelim.): it is not observed.
4. ${ }^{9} \mathrm{Be}\left(\mathrm{p}, \pi^{-}\right){ }^{10} \mathrm{C}$
$Q_{\mathrm{m}}=-136.631$

Angular distributions of π^{-}groups have been measured at $E_{\mathrm{p}}=185 \mathrm{MeV}$ (to ${ }^{10} \mathrm{C}^{*}(0$, $3.35,5.28,6.63)$), at 200 MeV (g.s.), at $800 \mathrm{MeV}\left(\right.$ to ${ }^{10} \mathrm{C}^{*}(0,3.35,5.3,6.6)$) [see (84AJ01)] and at $E_{\overrightarrow{\mathrm{p}}}=650 \mathrm{MeV}\left(86 \mathrm{HO} 23 ;{ }^{10} \mathrm{C}^{*}(0,3.35)\right.$; also $\left.A_{y}\right)$. A_{y} measurements have also been reported at $E_{\overrightarrow{\mathrm{p}}}=200$ to $250 \mathrm{MeV}:$ see (84 AJ 01).

$$
5 .{ }^{10} \mathrm{~B}(\mathrm{p}, \mathrm{n}){ }^{10} \mathrm{C} \quad \begin{array}{ll}
\mathrm{m} & =-4.4305 \\
& Q_{0}=-4430.17 \pm 0.34 \mathrm{keV}(84 \mathrm{BA} 12)
\end{array}
$$

The E_{x} of ${ }^{10} \mathrm{C}^{*}(3.35)=3352.7 \pm 1.5 \mathrm{keV}, \tau_{\mathrm{m}}=155 \pm 25 \mathrm{fsec}, \Gamma_{\gamma}=4.25 \pm 0.69 \mathrm{meV}$. Angular distributions have been measured for the n_{0} and n_{1} groups and for the neutrons to ${ }^{10} \mathrm{C}^{*}(5.2 \pm 0.3)$ at $E_{\mathrm{p}}=30$ and 50 MeV [see (74AJ01, 79AJ01)] and for the n_{0} and n_{1} groups at $E_{\mathrm{p}}=14.0,14.3$ and 14.6 MeV (85SC08) and 15.8 and 18.6 MeV (85GU1C; prelim.). See also (84BA1R, 88KA2E).
6. ${ }^{10} \mathrm{~B}\left({ }^{3} \mathrm{He}, \mathrm{t}\right){ }^{10} \mathrm{C} \quad Q_{\mathrm{m}}=-3.6667$

Angular distributions have been measured at $E\left({ }^{3} \mathrm{He}\right)=14 \mathrm{MeV}$ and 217 MeV : see (79AJ01). The latter $\left[\right.$ to $\left.{ }^{10} \mathrm{C}^{*}(0,3.35,5.6)\right]$ have been compared with microscopic calculations using a central + tensor interaction $\left[J^{\pi}=0^{+}, 2^{+}, 2^{+}\right]$. Structures have been reported at $E_{\mathrm{x}}=5.22 \pm 0.04[\Gamma=225 \pm 45 \mathrm{keV}], 5.38 \pm 0.07[300 \pm 60 \mathrm{keV}]$ and $6.580 \pm 0.020 \mathrm{MeV}$ $[190 \pm 35 \mathrm{keV}]$.
7. ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{t}){ }^{10} \mathrm{C} \quad Q_{\mathrm{m}}=-23.3600$

Angular distributions have been reported at $E_{\mathrm{p}}=30.0$ to 54.1 MeV and at 80 MeV [see (74AJ01, 79AJ01, 84AJ01)]. $L=0,2$ and 2 to ${ }^{10} \mathrm{C}^{*}(0,3.35,5.28)$ thus leading to 0^{+}, 2^{+}and 2^{+}for these states [but note that the " 5.28 MeV " state is certainly unresolved]: see reaction 6 and table $10.18 .{ }^{10} \mathrm{C}^{*}(6.6)$ is also populated. Two measurements of the excitation energy of ${ }^{10} \mathrm{C}^{*}(3.4)$ are $3353.5 \pm 1.0 \mathrm{keV}, 3354.3 \pm 1.1 \mathrm{keV}$: see (84AJ01) [based on Q_{m}]. See also (87KW01; theor.).

$$
\text { 8. }{ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right){ }^{10} \mathrm{C} \quad Q_{\mathrm{m}}=-15.235
$$

At $E\left({ }^{3} \mathrm{He}\right)=70.3 \mathrm{MeV}$ the angular distributions of the ${ }^{6} \mathrm{He}$ ions corresponding to the population of ${ }^{10} \mathrm{C}^{*}(0,3.35)$ have been measured. The group to ${ }^{10} \mathrm{C}^{*}(3.35)$ is much more intense than the ground-state group: see (79AJ01).

$$
{ }^{10} \mathbf{N},{ }^{10} \mathbf{O},{ }^{10} \mathbf{F},{ }^{10} \mathrm{Ne}
$$

(Not illustrated)

Not observed: see (79AJ01). (85WA02) suggest $39.7 \pm 0.4 \mathrm{MeV}$ for the atomic mass excess of ${ }^{10}$ N. See also (82KA1D, 83ANZQ, 87BL18, 87SA15; theor.).

References

(Closed 1 June 1988)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author's name and then by two additional characters. Most of the references appear in National Nuclear Data Center files (Nuclear Science References database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form $1 \mathrm{~A}, 1 \mathrm{~B}$, etc.

66FO05 Forsyth, Tu and Hornyak, Nuclear Physics 82 (1966) 33
66LA04 Lauritsen and Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1
66WA10 Warburton et al, Phys. Rev. 148 (1966) 1072
74AJ01 Ajzenberg-Selove and Lauritsen, Nucl. Phys. A227 (1974) 1
74KE06 Kemper et al, Nuclear Physics A222 (1974) 173
77KI04 Kiss, Koltay, Szabo and Vegh, Nuclear Physics A282 (1977) 44
78LEZA Lederer and Shirley, Table of Isotopes, John Wiley Pubs. (1978)
79AJ01 Ajzenberg-Selove, Nucl. Phys. A320 (1979) 1
79KE08 Keinonen and Anttila, Nucl. Phys. A330 (1979) 397
79 SP01 Spear, Switkowski, Kennedy and Heggie, Nucl. Phys. A318 (1979) 21
80AJ01 Ajzenberg-Selove and Busch, Nucl. Phys. A336 (1980) 1
80BL02 Bland and Fortune, Phys. Rev. C21 (1980) 11
80HA33 Harakeh, Van Popta, Saha and Siemssen, Nucl. Phys. A344 (1980) 15
80MA33 Mack, Byrd, Lisowski and Walter, Nucl. Phys. A345 (1980) 241
81MUZQ Mughabghab, Divadeenam, and Holden, Neutron Cross Sections, Vol. 1a, Academic Press (1981)
82AL1A Aleksandrov et al, Soviet J. Nucl. Phys. 35 (1982) 158
82AL1C Aleksandrov et al, Soviet J. Nucl. Phys. 36 (1982) 783
82AU1A Audouze and Reeves, Essays in Nucl. Astrophys. (1982) 355
82BA1D Barnes, Essays in Nucl. Astrophys. (1982) 193
82BA78 Baturin et al, Jetp Lett. 36 (1982) 448
82BE1D Bernstein, Proc. Int. School of Intermediate Energy Nuclear Physics, Verona, Italy, July 1981: Edited by R. Bergere, S. Costa, C. Schaerf, World Scientific, Singapore (1982) P. 125

82BR1A Braun and Vechernin, Sov. J. Nucl. Phys. 36 (1982) 357
82CA1A Cameron, Essays in Nucl. Astrophys. (1982) P. 23
82KA1D Kar and Parikh, Pramana 19 (1982) 555
82WA1A Wang, Zhang and Wang, Kexue Tongbao 27 (1982) 711; Phys. Abs. 45481 (1983)
83AB1A Abramovitch et al, in Moscow (1983) 362
83AI01 Aizawa, Matsumoto and Kadotani, J. Nucl. Sci. \& Technol. 20 (1983) 354
83 AL10 Allab, Boucenna and Haddad, J. Phys. 44 (1983) 579
83AL1D Aleksandrov et al, Soviet J. Nucl. Phys. 37 (1983) 474
83AM1A Amsel and Davies, Nucl. Instr. Meth. Phys. Res. 218 (1983) 177

83AN1D Antolkovic et al, in Florence (1983) P. 438
83AN1F Antonuk et al, Sin Newsl. 15 (1983) 40; Phys. Abs. 84984 (1983)
83ANZQ Ando, Uno, and Yamada, Jaeri-M-83-025 (1983)
83BA1D Bando, Prog. Theor. Phys. 69 (1983) 1731
83BA71 Batty, Nucl. Phys. A411 (1983) 399
83BE1H Belyaeva, Zelenskaya and Teplov, Sov. J. Nucl. Phys. 38 (1983) 540
83BI1A Birkelund and Huizenga, Ann. Rev. Nucl. Part. Sci. 33 (1983) 265
83BI1C Bizzeti, Riv. Nuovo Cim. 6 (1983) 1
83BO1C Body et al, Proc. Inter. Conf., Antwerp, Belgium 1982 (Dordrecht, Netherlands: Reidel
1983) 368; Phys. Abs. 37595 (1984)

83BY01 Byrd et al, Nucl. Phys. A399 (1983) 94
83BY02 Byrd et al, Nucl. Phys. A404 (1983) 29
83DA10 Dasmahapatra, Cujec and Lahlou, Can. J. Phys. 61 (1983) 657
83DA20 Dasmahapatra, Cujec and Lahlou, Nucl. Phys. A408 (1983) 192
83DA22 Dave and Gould, Phys. Rev. C28 (1983) 2212
83DE26 De Young, Kolata, Satkowiak and Xapsos, Phys. Rev. C28 (1983) 692
83DU13 Dussel, Gattone and Maqueda, Phys. Rev. Lett. 51 (1983) 2366
83EN04 Engel and Levine, Phys. Rev. C28 (1983) 2321
83FA1B Farwell et al, in Florence (1983) P. 752
83FE07 Fetisov, Majling, Zofka and Eramzhyan, Z. Phys. A314 (1983) 239
83FR1A Friedman and Lynch, Phys. Rev. C28 (1983) 950
83GE12 Gensini, Lett. Nuovo Cim. 38 (1983) 469
83GE13 Gensini, Lett. Nuovo Cim. 38 (1983) 620
83GE1C Gensini, Nuovo Cim. A78 (1983) 471
83GM1A Gmitro, Kissener, Truol and Eramzhyan, Sov. J. Part. \& Nucl. 14 (1983) 323
83GO1A Gomez Del Campo and Satchler, Phys. Rev. C28 (1983) 952
83GO1H Gould, Dave and Walter, Proc. Inter. Conf., Antwerp, Belgium 1982 (Dordrecht, Netherlands: Reidel 1983) P. 766; Phys. Abs. 37620 (1984)
83GO1K Gol'tsov and Goncharova, Sov. J. Nucl. Phys. 38 (1983) 857
83 GO 27 Gonchar and Tokarevskii, Izv. Akad. Nauk Sssr Ser. Fiz. 47 (1983) 2156
83GO28 Goltsov and Goncharova, Sov. J. Nucl. Phys. 38 (1983) 1410
83GU1A Guet, Nucl. Phys. A400 (1983) 191c
83HA1E Haider and Malik, in Florence (1983) P. 548
83KA37 Kadmenskii and Ratis, Izv. Akad. Nauk Sssr Ser. Fiz. 47 (1983) 2254
$83 K E 11$ Kennett, Prestwich, Tervo and Tsai, Nucl. Instr. Meth. Phys. Res. 215 (1983) 159
83KO1F Komoda and Sekiya, Atomkernenerg. Kerntech. 42 (1983) 101; Phys. Abs. 112183 (1983)

83KU1C Kutschera, Radiocarbon 25 (1983) 677
83LE17 Lewis et al, Nucl. Phys. A404 (1983) 205
83LI1A Litherland, in Proc. of the Int. Conf. on Nucl. Phys., Florence, Aug.-Sept. 1983, Vol.
2, Editors: P. Blasi and R.A. Ricci: Tipografia Compositori Bologna (1983) P. 697
83MA1H Maleki, Nucl. Phys. A403 (1983) 607
83MA53 Mateja, Garman and Frawley, Phys. Rev. C28 (1983) 1579
83MI1E Miyahara, Ikeda and Bando, Prog. Theor. Phys. 69 (1983) 1717

83NA08 Namboodiri et al, Phys. Rev. C28 (1983) 460
83NE1A Nelson et al, Radiocarbon 25 (1983) 693
83OL1A Olson et al, Phys. Rev. C28 (1983) 1602
83PO1A Poenaru, Ivascu and Sandulescu, in Florence (1983) P. 662
83PO1D Povh, in Proc. of the Int. Conf. on Nucl. Phys., Florence, Aug.-Sept. 1983, Vol. 2,
Editors: P. Blasi and R. A. Ricci; Tipografia Compositori Bologna (1983) P. 455
83RO22 Roman et al, Phys. Rev. C28 (1983) 2515
83SH1E Shi and Zhuang, Phys. Energ. Fortis \& Phys. Nucl. 7 (1983) 605
83SH1G \quad Sharma et al, Proc. Indian Acad. Sci. 92 (1983) 1
83SH1J Shibata and Shirato, J. Phys. Soc. Jpn. 52 (1983) 3748
83SH38 Shi, Phys. Rev. C28 (1983) 2452
83SR01 Sromicki et al, Nucl. Phys. A406 (1983) 390
83TA1B Tancu et al, Rev. Roum. Phys. 28 (1983) 857
83TU1A Tuniz et al, in Florence (1983) P. 751
83VA31 Van Hees and Glaudemans, Z. Phys. A314 (1983) 323
83VE03 Vermeer, Bhalla and Poletti, Phys. Rev. C28 (1983) 432
83WI1A Wilczynski, in Proc. of the Int. Conf. on Nucl. Phys., Florence, Aug.-Sept. 1983, Vol. 2, Editors: P. Blasi and R.A. Ricci; Tipografia Compositori Bologna (1983) P. 305
83ZI1A Ziock et al, Bull. Amer. Phys. Soc. 28 (1983) 671
84AJ01 Ajzenberg-Selove, Nucl. Phys. A413 (1984) 1
84AL22 Alimov, Mokeev, Omarov and Piskarev, Sov. J. Nucl. Phys. 40 (1984) 190
84AN1D Antuf'ev et al, Sov. J. Nucl. Phys. 40 (1984) 35
84BA12 Barker and White, Phys. Rev. C29 (1984) 1530
84BA1L Bayukov et al, Sov. J. Nucl. Phys. 39 (1984) 938
84BA1R Baturin et al, in Panic (1984) I11
84BA1U Bayukov et al, in Panic (1984) I25
84BE1C Belozerov et al, in Alma Ata (1984) P. 379
84BE1F Beer, Bull. Amer. Phys. Soc. 29 (1984) 1094
84BI08 Bimbot et al, Phys. Rev. C30 (1984) 739
84BL1B Blomqvist et al, Bull. Amer. Phys. Soc. 29 (1984) 708
84BO1D Bodmer, Usmani and Carlson, Nucl. Phys. A422 (1984) 510
84BO1E Bourles et al, Nucl. Instr. Meth. Phys. Res. B233 (1984) 365
84BO1G Bodmer, in Aip Conf. Proc. 123 (1984) 806
84BO1H Bogdanova and Markushin, Sov. J. Part. \& Nucl. 15 (1984) 361
84BR22 Bressani et al, Phys. Rev. C30 (1984) 1745
84BR25 Brown, Bronk and Hodgson, J. Phys. G10 (1984) 1683
84BY03 Byrd et al, Nucl. Phys. A427 (1984) 36
84CH1A Cherkasov, in Alma Ata (1984) P. 371
84CH1G Chen, Zhuang, Shi and Jin, Chin. J. Nucl. Phys. 6 (1984) 303
84CH1H Chrien, in Aip Conf. Proc. 123 (1984) P. 841
84CO1D Couvert, in Aip Conf. Proc. 123 (1984) P. 689
84DE1A De Bievre et al, J. Phys. Chem. Ref. Data 13 (1984) 809
84DE1J Dennis and Hanspal, Bull. Am. Phys. Soc. 29 (1984) 1047, Db3

84DE46 Deineko et al, Izv. Akad. Nauk Sssr Ser. Fiz. 48 (1984) 1000
84DO1A Donnelly and Sick, Revs. Mod. Phys. 56 (1984) 461
84DO1B Donahue, Jull and Zabel, Nucl. Instr. Meth. Phys. Res. B233 (1984) 162
84DO1C Dogyust, Voloshchuk, Kirichenko and Khodyachikh, Sov. J. Nucl. Phys. 40 (1984) 878
84DZ1A Dzhibuti and Tsiklauri, Sov. J. Nucl. Phys. 39 (1984) 704
84EL1B Elmore et al, Nucl. Instr. Meth. Phys. Res. B233 (1984) 109
84EL1C Elmore, Conard, Kubik and Fabryka-Martin, Nucl. Instr. Meth. Phys. Res. B233 (1984) 233
84EN1A Englert et al, Nucl. Instr. Meth. Phys. Res. B233 (1984) 415
84ER1A Eramzhyan, Majling, Zofka and Fetisov, in Panic (1984) M21
84ER1B Eramzhyan et al, Proc. Workshop, Trieste, Italy 1983 (Singapore: World Scientific 1984) P. 195; Phys. Abs. 15609 (1985)

84FR13 Friedrich, Phys. Lett. 146b (1984) 135
84FR1A Frobrich, Phys. Rep. 116 (1984) 337
84GO1C Gomez Del Campo et al, Phys. Rev. C29 (1984) 1722
84GR08 Green, Korteling and Jackson, Phys. Rev. C29 (1984) 1806
84HA43 Haider and Cujec, Nucl. Phys. A429 (1984) 116
84HA53 Haider and Malik, at. Data Nucl. Data Tables 31 (1984) 185
84HAZK Hanspal, Dennis, Frawley and Parker, Bull. Amer. Phys. Soc. 29 (1984) 1047
84HE1B Hedges, Nucl. Instr. Meth. Phys. Res. 220 (1984) 211
84HE1C Henning, Nuovo Cim. A81 (1984) 191
84HI1A Hirsch et al, Phys. Rev. C29 (1984) 508
84HO1E Hofmann et al, Nucl. Instr. Meth. Phys. Res. B233 (1984) 254
84HO23 Homeyer et al, Z. Phys. A319 (1984) 143
84IM1A Imamura et al, Nucl. Instr. Meth. Phys. Res. B233 (1984) 211
84IN03 Inui and Koonin, Phys. Rev. C30 (1984) 175
84KA1C Kaipov and Kamalov, in Alma Ata (1984) P. 405
84KL1A Klein and Middleton, Nucl. Instr. Meth. Phys. Res. B233 (1984) 129
84KO1F Kobayashi and Ikeda, in Panic (1984) M1
84 KO 24 Koshigiri, Ohtsubo and Morita, Prog. Theor. Phys. 71 (1984) 1293
84LO1A Lowry and Kouzes, Bull. Amer. Phys. Soc. 29 (1984) 629
84MA1F May et al, in Panic (1984) M3
84MA1J Malik and Haider, Bull. Amer. Phys. Soc. 29 (1984) 1047
84MA1K Mangini et al, Nucl. Instr. Meth. Phys. Res. B233 (1984) 353
84ME11 Meitzler, Khalil, Robbins and Temmer, Phys. Rev. C30 (1984) 1105
84MI1B Mitropolskii and Khefter, in Alma Ata (1984) P. 241
84MI1C Millener, Gal, Dover and Dalitz, in Panic (1984) M7
84MI1D Middleton, Klein, Brown and Tena, Nucl. Instr. Meth. Phys. Res. B233 (1984) 511
84MI1E Millener, in Aip Conf. Proc. 123 (1984) P. 850
84NA07 Napolitano and Freedman, Nucl. Phys. A417 (1984) 289
84NE1C Nelson et al, Nucl. Instr. Meth. Phys. Res. B233 (1984) 139
84NE1D Newkirk, Nucl. Instr. Meth. Phys. Res. B233 (1984) 404
84NE1E Nessi et al, Nucl. Instr. Meth. Phys. Res. B233 (1984) 238
84NI12 Nishioka, J. Phys. G10 (1984) 1713

```
84PA1E Paic, Antolkovic and Kadija, Fizika 16 (1984) }3
84PO11 Poenaru and Ivascu, J. Physique 45 (1984)}109
84PO1C Possnert, Nucl. Instr. Meth. Phys. Res. B233 (1984) }15
84RA1D Raisbeck et al, Nucl. Instr. Meth. Phys. Res. B233 (1984)}17
84RE1A Read and Viola, at. Data Nucl. Data Tables 31 (1984)}35
84SA1D Sarafin et al, Nucl. Instr. Meth. Phys. Res. B233 (1984) }41
84SA37 Sakai, at. Data Nucl. Data Tables 31 (1984) }39
84SE1B Segl et al, Nature 309 (1984) 540
84SE1D Segl et al, Nucl. Instr. Meth. Phys. Res. B233 (1984)}35
84SH1J Shoeb and Khan, J. Phys. G10 (1984) }104
84SH1K Sherif, in Panic (1984) I35
84SH1L Sharma and Somayajulu, Isot. Geosci. 2 (1984) }8
84SH1P Shibata and Ioki, Jaeri-M-84-165 (1984)
84SH1R Shibata, Jaeri-M-84-226 (1984)
84SO1A Southon, Vogel, Richards and Nelson, Nucl. Instr. Meth. Phys. Res. }219\mathrm{ (1984)}43
84SO1B Somayajulu et al, Nucl. Instr. Meth. Phys. Res. B233 (1984)}39
84SP1B Sparks et al, Nucl. Instr. Meth. Phys. Res. B233 (1984)}15
84ST1B Stokstad, Comments Nucl. Part. Phys. 13 (1984) }23
84SU1B Suter et al, Bull. Amer. Phys. Soc. 29 (1984)}111
84TE1A Teh et al, Bull. Amer. Phys. Soc. 29 (1984) }150
84TR03 Trelle et al, Phys. Lett. 134b (1984) }3
84TR1C Truran, Ann. Rev. Nucl. Part. Sci. }34\mathrm{ (1984) }5
84TU02 Turk and Antolkovic, Nucl. Phys. A431 (1984) }38
84TU1A Tuniz et al, Nuovo Cim. A81 (1984) }20
84TU1C Tuniz et al, Nucl. Instr. Meth. Phys. Res. B233 (1984)}32
84VA06 Van Hees and Glaudemans, Z. Phys. A315 (1984) }22
84VA07 Vasileva et al, Izv. Akad. Nauk Sssr Ser. Fiz. 48 (1984)}15
84VA1D Van Der Borg et al, Nucl. Instr. Meth. Phys. Res. B233 (1984) }15
84WA21 Watson et al, J. Physique 45 (1984) C4-91
84YA1A Yang et al, Astrophys. J. 281 (1984) }49
84ZH1B Zhuang, Chen and Jin, Phys. Energ. Fortis & Phys. Nucl. 8 (1984) }21
84ZU01 Zul'karneev and Kutuev, Sov. J. Nucl. Phys. }39\mathrm{ (1984)495
84ZW1A Zwarts, Unpublished Ph.D. Thesis, Utrecht (1984)
85AH1A Ahmad, Mian and Rahman Khan, Phys. Rev. C31 (1985) }159
85AJ01 Ajzenberg-Selove, Nucl. Phys. A433 (1985) 1
85AL1G Aleksandrov et al, in Questions in Atomic Physics and in Technology, Ussr (1985) 3
85AN28 Antony, Britz, Bueb and Pape, at. Data Nucl. Data Tables 33 (1985)447
85BA1T Barnes, in Lecture Notes in Physics 219, Springer-Verlag (1985) P. }7
85BE13 Begzhanov et al, Izv. Akad. Nauk Sssr Ser. Fiz. }49\mathrm{ (1985) }11
85BE1A Beckerman, Phys. Rep. }129\mathrm{ (1985) }14
85BE1D Beer et al, Nucl. Instr. Meth. Phys. Res. B10-11 (1985) }41
85BE1J Belostotskii et al, Sov. J. Nucl. Phys. 41 (1985) }90
85BE1K Bernstein, Aip Conf. Proc. }133\mathrm{ (1985) P. }27
```

85BO1D Body and Mihaly, Indc (Hun)-22/L (1985)
85CA41 Caughlan, Fowler, Harris and Zimmerman, at. Data Nucl. Data Tables 32 (1985) 197
85CU1A Cujec, in Lecture Notes in Physics 219, Springer-Verlag (1985) P. 108
85 DE17 Descroix et al, Nucl. Phys. A438 (1985) 112
85DE19 Deineko, Hategan and Shliakhov, Rev. Roum. Phys. 30 (1985) 103
85DE1D Derderian et al, Bull. Amer. Phys. Soc. 30 (1985) 793
85DO1B Dotsenko and Starodubskii, Sov. J. Nucl. Phys. 42 (1985) 66
85DY03 Dymarz, Phys. Lett. B155 (1985) 5
85FR07 Franz et al, Phys. Lett. 153b (1985) 382
85GL1A Glover et al, Bull. Amer. Phys. Soc. 30 (1985) 701
85GO1A Goncharova, Kissener, and Eramzhyan, Sov. J. Part. and Nucl. 16 (1985) 337
85GU1C Gulyamov et al, in Leningrad (1985) P. 291
85GU1E Gulyamov et al, in Leningrad (1985) P. 321
85GU1J Gudima and Toneev, Sov. J. Nucl. Phys. 42 (1985) 409
85HA18 Hanna and Hugg, Hyperfine Interactions 21 (1985) 59
85HA1J Hauser et al, in Aip Conf. Proc. 125 (1985) P. 701
85HU04 Hussein, Carlson, Civitarese and Szanto De Toledo, Phys. Rev. Lett. 54 (1985) 2659
85IK1A Ikeda, Bando and Motoba, Suppl. Prog. Theor. Phys. 81 (1985) 147
85IM1A Imanishi et al, Phys. Rev. A32 (1985) 2584
85JA09 Jarczyk et al, J. Phys. G11 (1985) 843
85JA12 Jarczyk et al, Z. Phys. A322 (1985) 221
85JA1B Jacak, Fox and Westfall, Phys. Rev. C31 (1985) 704
85KA1F Kadmenskii, Kurgalin and Chuvilskii, in Leningrad (1985) P. 438
85KI1B Kiss et al, in Aip Conf. Proc. 125 (1985) P. 851
85 KO 04 Konnerth et al, Nucl. Phys. A436 (1985) 538
85KO1J Koonin, in Lecture Notes in Physics 219, Springer-Verlag (1985) P. 129
85 KO 47 Kok, Abrahams, Postma and Huiskamp, Nucl. Instr. Meth. Phys. Res. B12 (1985) 325
85KW02 Kwasniewicz and Jarczyk, Nucl. Phys. A441 (1985) 77
85LI1B Lindstrom et al, Bull. Amer. Phys. Soc. 30 (1985) 747
85LI1E Li and Ma, Phys. Energ. Fortis \& Phys. Nucl. 9 (1985) 291; Phys. Abs. 105323 (1985)
85MA10 Mateja et al, Phys. Rev. C31 (1985) 867
85MA13 Magda, Pop and Sandulescu, J. Phys. G11 (1985) L75
85MA1F Mazitov and Rasulov, in Leningrad (1985) P. 298
85MI1D Missimer and Simons, Phys. Rep. 118 (1985) 179
85MO08 Morjean et al, Nucl. Phys. A438 (1985) 547
85MU03 Mughabghab, Phys. Rev. Lett. 54 (1985) 986
85NE05 Nelson, Napolitano and Freedman, Phys. Rev. C31 (1985) 2295
85NE1C Nemachkalo et al, in Leningrad (1985) P. 370
85PE06 Perkins, Plechaty and Howerton, Nucl. Sci. \& Eng. 90 (1985) 83
85PO02 Potvin and Cujec, Nucl. Phys. A433 (1985) 550
85PO10 Poppelier, Wood, and Glaudemans, Phys. Lett. 157b (1985) 120
85PO11 Poenaru, Ivascu, Sandulescu and Greiner, Phys. Rev. C32 (1985) 572
85RA1A Raisbeck, Yiou and Bourles, Nature 315, No. 6017 (1985) 315

85RO15 Roy et al, Nucl. Phys. A442 (1985) 686
$85 R O 17$ Roig and Navarro, Nucl. Phys. A440 (1985) 659
85RO1C Roche et al, Bull. Amer. Phys. Soc. 30 (1985) 1284
85SA1G Sakai, Mem. Fac. Sci. Kyoto Univ. Ser. Phys. Astrophys. Geophys. Chem. 36 (1985) 401; Phys. Abs. 123551 (1985)
85SA32 Sato and Okuhara, Phys. Lett. 162b (1985) 217
85SC08 Schelin et al, Nucl. Sci. \& Eng. 89 (1985) 87
85SE15 Segel et al, Phys. Rev. C32 (1985) 721
85SH1D Shvedov and Nemets, in Leningrad (1985) P. 317
85SM08 Smith, Meadows and Guenther, Nucl. Instr. Meth. Phys. Res. A241 (1985) 507
85 TA 18 Tanihata et al, Phys. Rev. Lett. 55 (1985) 2676
85 TE01 Templon, Dave, Gould and Singkarat, Nucl. Sci. \& Eng. 91 (1985) 451
85TE1C Ter-Akopian et al, in Dubna P15-85-775 (1985)
85TR1A Trentalange et al, Bull. Amer. Phys. Soc. 30 (1985) 727
85TR1B Trockel et al, in Visby (1985) P. 148
85TU1B Turchinetz, Nucl. Phys. A446 (1985) 23c
85WA02 Wapstra and Audi, Nucl. Phys. A432 (1985) 1
85WA13 Wang et al, Phys. Rev. C31 (1985) 1662
85WA1K Walker, Mathews and Viola, Astrophys. J. 299 (1985) 745
85WE1A Wefel, Guzik, Garcia-Munoz and Simpson, Bull. Amer. Phys. Soc. 30 (1985) 764
85WI18 Winfield, Jelley, Rae and Woods, Nucl. Phys. A437 (1985) 65
85WI1B Wilkinson, Nucl. Phys. A434 (1985) 573c
85YI1A Yiou et al, Nature 316, No. 6029 (1985) 616
85ZI04 Ziegler et al, Phys. Rev. C32 (1985) 301
85ZI05 Zickendraht, Ann. Phys. 42 (1985) 113
86AB10 Abramovich, Guzhovskii, Ershov and Lazarev, Izv. Akad. Nauk Sssr Ser. Fiz. 50 (1986) 2021
86AJ01 Ajzenberg-Selove, Nucl. Phys. A449 (1986) 1
86AL1J Allab, in Santa Fe (1985) 825
86AN1F Andersson et al, Phys. Scripta 34 (1986) 451
86AN1R Ansari, Shoeb and Rahman Khan, J. Phys. G12 (1986) 1369
86AR04 Artemov et al, Sov. J. Nucl. Phys. 43 (1986) 335
86AV1A Avdeichikov et al, Sov. J. Nucl. Phys. 44 (1986) 282
86AV1B Avdeichikov, in Dubna (1986) P. 122
86AV1C Avakov, Blokhintsev, Mukhamedzhanov and Yarmukhamedov, Sov. J. Nucl. Phys. 43 (1986) 524

86BA1N Bauhoff, at. Data Nucl. Data Tables 35 (1986) 429
86BA1W Bando, Nucl. Phys. A450 (1986) 217c
86BA1X Barker, 11th Ainse Nucl. Phys. Conf., Melbourne 1986 (Lucas Heights, Nsw, Australia:
Australian Inst. Nucl. Sci. \& Eng. 1986) P. 89; Phys. Abs. 79205 (1986)
86BA40 Baumann et al, Nucl. Instr. Meth. Phys. Res. A247 (1986) 359
86BA69 Baye, Nucl. Phys. A460 (1986) 581
86BE1P Bernstein, Private Communication (1986)
86BO1E Bodmer and Usmani, Nucl. Phys. A450 (1986) 257c

86CA1F Casavant and Knutson, Bull. Amer. Phys. Soc. 31 (1986) 1224
86CA1L Carnoy, Deutsch, Girard and Prieels, Proc. Inter. Symp., Heidelberg, Germany (Berlin, Germany: Springer-Verlag 1986) P. 534; Phys. Abs. 56646 (1987)
86CA30 Carlen et al, Phys. Scripta 34 (1986) 475
86CH1P Chrien, Czech. J. Phys. 36 (1986) 410
86CO14 Conneely, Prestwich and Kennett, Nucl. Instr. Meth. Phys. Res. A248 (1986) 416
86CR1A Crawford et al, Bull. Amer. Phys. Soc. 31 (1986) 888
86CS1A Csernai and Kapusta, Phys. Rep. 131 (1986) 223
86CU02 Cujec et al, Nucl. Phys. A453 (1986) 505
86DA1B Davis and Pniewski, Contemp. Phys. 27 (1986) 91
86DE25 De Boer et al, Phys. Lett. B180 (1986) 4
86DO12 Doll et al, Nucl. Instr. Meth. Phys. Res. A250 (1986) 526
86DO1E Dolbilskii et al, in Kharkov (1986) P. 352
86DU1G Du and Zhang, Proc. 4th Inter. Symp., Smolenice, Czechoslovakia 1985 (Dordrecht, Netherlands: Reidel 1986) P. 108; Phys. Abs. 42018 (1987)
86EN1A Engelmann and Bardy, Report Cea-R-5340 (1986)
86ER1B Ergakov et al, Czech. J. Phys. 36 (1986) 985
86FR1D Frodyma et al, Bull. Amer. Phys. Soc. 31 (1986) 877
86GA1F Gazdzicki et al, Z. Phys. C31 (1986) 549
86GA1H Gal, in Aip Conf. Proc. 150 (1986) P. 127
86GI10 Gillibert et al, Phys. Lett. B176 (1986) 317
86GL1A Glaudemans, Aip Conf. Proc. 142 (1986) 316
86GL1C Glukhov et al, in Kharkov (1986) P. 370
86GO1L Gould et al, in Santa Fe (1985) 139
86GO28 Golovanova and Kurovskii, Izv. Akad. Nauk Sssr Ser. Fiz. 50 (1986) 963
86GU1G Gur'ev and Zolenko, in Harrogate (1986) C260
86HA1B Harvey, J. Physique 47 (1986) C4-29
86HA1K Haneishi and Fujita, Phys. Rev. C33 (1986) 260
86HA1M Han, Jeong, Park and Cheon, New Phys. 26 (1986) 16; Phys. Abs. 24935 (1987)
86HO23 Hoistad et al, Phys. Lett. 177b (1986) 299
86IS04 Iseri and Kawai, Phys. Rev. C34 (1986) 38
86KO1R Korteling et al, Inter. Conf. on Nucl. \& Radiochem. (Beijing, China: Chinese Nucl.
Soc. 1986) P. 37; Phys. Abs. 19259 (1987)
86MA19 Mateja et al, Phys. Rev. C33 (1986) 1649
86MA1C Majling et al, Nucl. Phys. A450 (1986) 189c
86MA1W May, Nucl. Phys. A450 (1986) 179c
86ME06 Mermaz et al, Nucl. Phys. A456 (1986) 186
86ME1E Meier et al, Bull. Amer. Phys. Soc. 31 (1986) 1111
86MO1D Morrissey, Bloch, Benenson and Kashy, Bull. Amer. Phys. Soc. 31 (1986) 840
86MO34 Morrissey et al, Phys. Rev. C34 (1986) 761
86MU07 Murphy et al, Nucl. Phys. A455 (1986) 525
86MU1B Mughabghab, Phys. Rev. Lett. 56 (1986) 399
86MU1D Murphy, Byrd, Howell and Walter, in Santa Fe (1985) 219
86NA15 Nakayama and Bertsch, Phys. Rev. C34 (1987) 2190

86NI1A Nishiizumi et al, Nature 319, No. 6049 (1986) 134
86OV1A Overley, Bull. Amer. Phys. Soc. 31 (1986) 1309
86PE05 Perroud et al, Nucl. Phys. A453 (1986) 542
86PO06 Poenaru et al, at. Data Nucl. Data Tables 34 (1986) 423
86PO1H Povh, Nucl. Phys. A450 (1986) 573c
86RA16 Ramachandran and Ravishankar, J. Phys. G12 (1986) 1221
86RA1B Raman and Lynn, Phys. Rev. Lett. 56 (1986) 398
86RO03 Rockmore and Saghai, Phys. Rev. C33 (1986) 576
86RO12 Royer, J. Phys. G12 (1986) 623
86SA1U Sadowski et al, Bull. Amer. Phys. Soc. 31 (1986) 1209
86SA30 Sato and Okuhara, Phys. Rev. C34 (1986) 2171
86SH1F Shen et al, Chin. Phys. 6 (1986) 80
86SH1M Shardanov and Yur'ev, Vestn. Mosk. Univ. Ser. 3, 41 (1986) 66
86SI1B Simmonds et al, in Harrogate (1986) C128
86SO10 Sobotka et al, Phys. Rev. C34 (1986) 917
86ST1E Steffens, J. Phys. Soc. Jpn. Suppl. 55 (1986) 459
86SU1H Suter, Bull. Amer. Phys. Soc. 31 (1986) 1267
86TE1A Ter-Akopian et al, Nucl. Instr. Meth. Phys. Res. B17 (1986) 393, and Private Communication
86UT01 Utsunomiya et al, Phys. Rev. C33 (1986) 185
86VD1C Vdovin et al, in Kharkov (1986) 290
86WA1J Wang, Takaki and Bando, Prog. Theor. Phys. 76 (1986) 865
86WE1E Wei et al, Bull. Amer. Phys. Soc. 31 (1986) 1294
86WI04 Wilkinson, Nucl. Phys. A452 (1986) 296
86XU02 Xu et al, Phys. Lett. 182b (1986) 155
86XU1B Xu and Lynch, Inter. Conf. on Nucl. \& Radiochem. (Beijing, China: Chinese Nucl. Soc. 1986) P. 54; Phys. Abs. 19305 (1987)
86YA07 Yamazaki et al, Phys. Rev. C34 (1986) 1123
86YA15 Yabana and Horiuchi, Prog. Theor. Phys. 76 (1986) 1071
86YA1F Yamamoto, Prog. Theor. Phys. 75 (1986) 639
86ZH03 Zhusupov, Imambekov and Uzikov, Izv. Akad. Nauk Sssr Ser. Fiz. 50 (1986) 178
86ZH1B Zhuang and Chen, Chin. J. Nucl. Phys. 8 (1986) 325; Phys. Abs 96008 (1987)
87AB09 Abramovich, Morkin, Serov and Strelnikov, Izv. Akad. Nauk. Sssr Ser. Fiz. 51 (1987) 930
87AB1E Abaev et al, in Panic (1987) P. 204
87AB1H Abramovich, Guzhovskii, Ershov and Lazarev, in Yurmala (1987) 521
87AB1M Abramovich, Guzhovskii, Ershov and Lazarev, Sov. J. Nucl. Phys. 46 (1987) 269
87AH02 Ahsan, Siddiqui and Thies, Nucl. Phys. A469 (1987) 381
87AK1A Akhverdyan et al, in Panic (1987) P. 708
87ALZG Aleksandrov et al, in Yurmala (1987) P. 393
87AR19 Arnell et al, Phys. Scripta 36 (1987) 214
87AR1C Arnould, Phil. Trans. Roy. Soc. London 323 (1987) 251
87AU1A Audouze, J. Astrophys. Astron. 8 (1987) 147
87BA2J Bardeen, Peccei and Yanagida, Nucl. Phys. B279 (1987) 401

87BA34	Barhoumi et al, Nucl. Instr. Meth. Phys. Res. B24-25 (1987) 47
87BA38	Balster et al, Nucl. Phys. A468 (1987) 93
87BA39	Balster et al, Nucl. Phys. A468 (1987) 131
87BE1X	Beer et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 203
87BEYI	Belozyorov et al, E15-87-733 (Submitted To Nucl. Phys. A 1987)
87BI1C	Bimbot et al, in Panic (1987) P. 370
87BL18	Blumel and Dietrich, Nucl. Phys. A471 (1987) 453
87BO1L	Bodmer and Usmani, Nucl. Phys. A463 (1987) C221
$87 \mathrm{BO1O}$	Bodmer and Usmani, Nucl. Phys. A468 (1987) 653
87BR1Q	Brown, Phil. Trans. Roy. Soc. London A323 (1987) 75
87BR1U	Brown, Nelson, Southon and Vogel, Nucl. Instr. Meth. Phys. Res. B29 (1987) 232
87BU07	Burgel et al, Phys. Rev. C36 (1987) 90
87BU1E	Burtebaev, Duisebaev, Sadkovskii and Feofilov, Izv. Akad. Nauk Sssr Ser. Fiz. 51 (1987)
	615
87CH26	Chen et al, Nucl. Phys. A473 (1987) 564
87 CO 16	Cook, Stephens and Kemper, Nucl. Phys. A466 (1987) 168
87DE1A	De Vries, De Jager and De Vries, at. Data Nucl. Data Tables 36 (1987) 495
87DE1P	De Boer et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 322
87DE37	Deak et al, Nucl. Instr. Meth. Phys. Res. A258 (1987) 67
87EI1A	Eisenhauer et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 326
87EL1E	Elmore et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 207
87FE1A	Feng et al, Chin. Phys. 7 (1987) 121
87FL1A	Flerov, Dubna (1987) P. 9
87FR16	Franz et al, Nucl. Phys. A472 (1987) 733
87GA08	Gadioli and Gadioli Erba, Z. Phys. A327 (1987) 81
87GA20	Ganguly, Chaudhuri and Baliga, Nuovo Cim. A97 (1987) 639
87GE1B	Gelbke and Boal, Prog. Part. Nucl. Phys. 19 (1987) 33
87GI1F	Giannelli et al, Bull. Amer. Phys. Soc. 32 (1987) 1120
87GL06	Glattli, Coustham, Malinovski and Pinot, Z. Phys. A327 (1987) 149
87GO1W	Gove, Litherland and Purser, Nucl. Instr. Meth. Phys. Res. B29 (1987) 437
87GR11	Green et al, Phys. Rev. C35 (1987) 1341
87GR1Q	Graf et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 262
87GU04	Gupta, Gulati, Malik and Sultana, J. Phys. G13 (1987) L27
87GU1F	Gulamov et al, in Yurmala (1987) P. 344
87HA1O	Hallin et al, Nucl. Instr. Meth. Phys. Res. B24-25 (1987) 276
87HA1R	Hansen, Nature 328 (1987) 476
87HA1S	Hansen, Dietrich and Walter, Bull. Amer. Phys. Soc. 32 (1987) 1567
87HA30	Hansen and Jonson, Europhys. Lett. 4 (1987) 409
87HE1H	Hemmick et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 389
87HI05	Hilscher et al, Phys. Rev. C36 (1987) 208
87HI1F	Hicks et al, in Panic (1987) P. 632
87HO1P	Hofmann et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 32
87HU13	Hurd et al, Nucl. Phys. A475 (1987) 743

87IN1A	Inn et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 27
87JA06	Jacak et al, Phys. Rev. C35 (1987) 1751
87JA1G	Jansen et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 311
87KA25	Kadija et al, Nucl. Phys. A469 (1987) 183
87KAZL	Kadirov et al, in Yurmala (1987) P. 343
87KI05	Kiss et al, Phys. Lett. B184 (1987) 149
87K11C	Kissener, Rotter and Goncharova, Fortschr. Phys. 35 (1987) 277
87KO15	Kozik et al, Z. Phys. A326 (1987) 421
87KO1Y	Kobayashi et al, in Panic (1987) P. 476
87KU1L	Kusakabe et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 306
87KU23	Kuno, Nagamine and Yamazaki, Nucl. Phys. A475 (1987) 615
87KW01	Kwasniewicz and Kisiel, J. Phys. G13 (1987) 121
87LA16	Lal et al, Nucl. Phys. A468 (1987) 189
87LA1G	Lal et al, Nature 328, No. 6126 (1987) 139
87LA1I	Lal, Nucl. Instr. Meth. Phys. Res. B29 (1987) 238
87LE1D	Levin, Nucl. Phys. A463 (1987) C487
87LE1E	Leisi et al, Helv. Phys. Acta. 60 (1987) 316
87LY01	Lynn, Kahane and Raman, Phys. Rev. C35 (1987) 26
87LY04	Lynch, Nucl. Phys. A471 (1987) 309c
87MI1A	Mian, Phys. Rev. C35 (1987) 1463
87MO04	Moalem et al, Phys. Lett. B183 (1987) 269
87MO1F	Morinaga, Proc. Beijing Inter. Symp. on Phys. at Tandem 1986 (World Scientific, 1987)
583	
87MU03	Muzychka and Pustilnik, Sov. J. Nucl. Phys. 45 (1987) 57
87MU13	Murnick et al, Phys. Rev. Lett. 59 (1987) 1088
87NA01	Namboodiri et al, Phys. Rev. C35 (1987) 149
87NA04	Navarro and Roig, Nucl. Phys. A465 (1987) 628
87NA1M	Nagai et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 266
87OE1A	Oeschger, Beer and Andree, Phil. Trans. Roy. Soc. London A323 (1987) 45
87PE1C	Penionshkevich, Dubna (1987) 364
87PO1H	Povh, Prog. Part. Nucl. Phys. (Gb) 18 (1987) 183
87PO1I	Pochodzalla, Nucl. Phys. A471 (1987) C289
87RA01	Raman et al, at. Data Nucl. Data Tables 36 (1987) 1
87RA1D	Ramaty and Murphy, Space Sci. Rev. 45 (1987) 213
87RA1N	Raisbeck et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 22
87RA36	Rahman et al, Nuovo Cim. A98 (1987) 513
87RE1H	Reedy, Nucl. Instr. Meth. Phys. Res. B29 (1987) 251
87RI03	Richert and Wagner, Nucl. Phys. A466 (1987) 132
87RO10	Royer et al, Nucl. Phys. A466 (1987) 139
87RO1D	Rolfs, Trautvetter and Rodney, Rep. Prog. Phys. 50 (1987) 233
87SA15	Sagawa and Toki, J. Phys. G13 (1987) 453
87SA1H	Sadowski et al, Bull. Amer. Phys. Soc. 32 (1987) 1061, Eg2
87SA1I	Sartor, Dennis and Aslanoglou, Bull. Am. Phys. Soc. 32 (1987) 1061, Eg5
87	

87SE05 Seth et al, Phys. Rev. Lett. 58 (1987) 1930
87SE1D Sellschop, Nucl. Instr. Meth. Phys. Res. B29 (1987) 439
87SE1E Segl et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 332
87SH1N Sharma et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 335
87 SI18 Siegel and Gibbs, Phys. Rev. C36 (1987) 2473
87SN1A Sneppen, Nucl. Phys. A470 (1987) 213
87SO1E Sonett, Morfill and Jokipii, Nature 330, No. 6147 (1987) 458
87ST01 Stephans et al, Phys. Rev. C35 (1987) 614
87SU06 Suzuki, Measday, and Roalsvig, Phys. Rev. C35 (1987) 2212
87TA1F Tanihata et al, in Panic (1987) 474
87 TR05 Trautmann et al, Nucl. Phys. A471 (1987) 191c
87 VA13 Vasil'eva et al, Sov. J. Nucl. Phys. 45 (1987) 195
87VA1I Valiev et al, in Yurmala (1987) 346
87VA1S Van Der Borg et al, Nucl. Instr. Meth. Phys. Res. B29 (1987) 143
87VI02 Videback et al, Phys. Rev. C35 (1987) 2333
87VI1B Viola, Nucl. Phys. A471 (1987) 53c
$87 W A 09$ Wada et al, Phys. Rev. Lett. 58 (1987) 1829
87WU05 Wunsch and Zofka, Phys. Lett. B193 (1987) 7
$87 Y A 16$ Yakovlev, Sov. J. Nucl. Phys. 46 (1987) 244
87ZA01 Zadro et al, Nucl. Sci. \& Eng. 95 (1987) 79
88ABZW Abramovich, Guzhovsky and Protopopov, Baku (1988) 299
88AJ1B Ajzenberg- Selove, in Interactions and Structures in Nuclei, Proc. in Honor of D.H.Wilkinson, Sussex, September 7-9 (1987); Adam Hilger Pub. (1988) P. 181

88AL1G Aleksandrov et al, Baku (1988) 377
88BE1B Beer et al, Nature 331, No. 6158 (1988) 675
88BE1I Bekbaev et al, Baku (1988) 442
88BEYJ Belozerov et al, Baku (1988) 380
88BL09 Bloch et al, Phys. Rev. C37 (1988) 2469
88BO1H Bodek et al, Few- Body Syst. 3 (1988) 135
88BRZZ Brown, Julies and Richter, Bull. Amer. Phys. Soc. 33 (1988) 931
88CA06 Caskey et al, Phys. Rev. C37 (1988) 969
88DI02 Dietrich and Berman, at. Data Nucl. Data Tables 38 (1988) 199
88FE1A Ferrando et al, Phys. Rev. C37 (1988) 1490
88GI02 Girard et al, Z. Phys. A330 (1988) 51
88GI1B Gibson, Nucl. Phys. A479 (1988) 115c
88GIZT Gismatullin et al, in Baku (1988) 294
88GIZU Gismatullin et al, Baku, (1988) 293
88GO1E Goncharov, Romanovsky and Timofeyok, Baku (1988) 349
88GU1D Gulyamov, Mukhamedzhanov and Ni, Baku (1988) 300
88HA1M Haxton and Johnson, Nature 333 (1988) 325
88HE08 Henneck et al, Phys. Rev. C37 (1988) 2224
88JO1C Jonson et al, in Aip Conf. Proc. 164 (1988) P. 223

88KA2E Kayomov et al, Baku (1988) 301
88KI05 Kidd et al, Phys. Rev. C37 (1988) 2613
88KOZL Korda et al, Baku (1988) 586
88 KR11 Kraus et al, Phys. Rev. C37 (1988) 2529
88KR1G Krombel and Wiedenbeck, Astrophys. J. 328 (1988) 940
88KRZY Kroupa et al, Bull. Am. Phys. Soc. 33 (1988) 902
88KW1A Kwasniewicz and Kisiel, Acta Phys. Pol. B19 (1988) 141
88MA07 Mateja et al, Phys. Rev. C37 (1988) 1004
88MU05 Mughabghab, J. Phys. G14 (1988) S231
88OR1C Ormand and Brown, Nbi-87-63 (1988)
88PO1E Poppelier et al, Aip Conf. Proc. 164 (1988) 334
88RE1B Rebolo et al, Astron. Astrophys. 193 (1988) 193
88RU01 Rubchenya and Yavshits, Z. Phys. A329 (1988) 217
88SA19 Sato, Phys. Rev. C37 (1988) 2902
88 SI01 Silk et al, Phys. Rev. C37 (1988) 158
88ST06 Stevenson et al, Phys. Rev. C37 (1988) 2220
88SU14 Suda et al, J. Phys. Soc. Jpn. 57 (1988) 5
88TS03 Tsang et al, Phys. Rev. Lett. 60 (1988) 1479
88VA03 Van Hees, Wolters and Glaudemans, Nucl. Phys. A476 (1988) 61
88WA18 Wapstra, Audi and Hoekstra, at. Data Nucl. Data Tables 39 (1988) 281
88WO04 Wolters, Van Hees and Glaudemans, Europhys. Lett. 5 (1988) 7
88ZVZZ Zvenigordsky et al, Baku (1988) 297
90AJ01 Ajzenberg-Selove, Nucl. Phys. A506 (1990) 1

[^0]: ${ }^{\text {a }}$) For references and for additional comments see table 10.11 in (79AJ01). See table 10.11 for decay schemes.
 ${ }^{\text {b }}$) Unpublished Ph.D. thesis.
 ${ }^{\text {c }}$) See (74AJ01). This state is assigned $J^{\pi}=2^{+}$on the basis of the (e, e^{\prime}) work (see table 10.15). I am indebted to Dr. D. Kurath for his comments.

