$\mathrm{A}=16$ Theoretical

Because of the very large body of theoretical work that has been carried out for the $A=16$ nuclei, and the importance of the spherical shell model in this work, a general discussion of the shell model description of $A=16$ nuclei is provided here. ${ }^{1}$

The spherical shell-model provides a complete basis for the description of nuclear states. It is convenient to use harmonic oscillator single-particle wave functions since the coordinate transformations necessary to separate spurious center of mass states, to relate shell-model to cluster-model wave functions, and so on, can be made exactly. Configurations are classified by the number of oscillator quanta that they carry beyond the minimum allowed by the Pauli principle as $0 \hbar \omega, 1 \hbar \omega, 2 \hbar \omega, \ldots$ excitations. Nonspurious states of $A=16$ in general involve admixtures of npnh configurations but the lowest excitations of each isospin can, with the exception of the $K^{\pi}=0^{-}$band with the ${ }^{16} \mathrm{O} 9.58 \mathrm{MeV} 1^{-}$state as band head, be thought of as dominantly $p^{-n}(s d)^{n}$ excitations. In fact, the lowest eigenstates of an $n \hbar \omega$ calculation can usually be written economically in terms of product states of low-lying p^{-n} and $(s d)^{n}$ eigenstates. In the simplest version of this weak-coupling model, one identifies the p^{-n} and $(s d)^{n}$ eigenstates with the physical states of the relevant nuclei and takes the diagonal expectation value of $H_{p}+H_{s d}$ from the known masses. The contribution from the cross-shell, or particle-hole, interaction can often be quite reliably estimated by using $p h$ matrix elements extracted from the nominal $1 p 1 h$ states of ${ }^{16} \mathrm{O}$ or ${ }^{16} \mathrm{~N}$.

The $2 p 2 h$ states with $T=0$ and 1 cannot, in general, be described in terms of the simple weak-coupling model, although there are examples to which such a description can be applied. Shell-model calculations which use empirical interactions fitted to data on $1 \hbar \omega$ excitations in the mass region do, however, produce $2 p 2 h T=1$ states in one-to-one correspondence with the lowest positive-parity states of ${ }^{16} \mathrm{~N}$ (see Table 16.5). They also produce $T=02 p 2 h$ states starting at around 12 MeV in ${ }^{16} \mathrm{O}$. In this case, the $2 p 2 h$ states are interleaved with $4 p 4 h$ states which begin at lower energies. The lowest $2 p 2 h T=0$ states can be related in energy to the 14.82 MeV 6^{+}state which is strongly populated by the addition of a stretched $d_{5 / 2}^{2}$ pair in the ${ }^{14} \mathrm{~N}(\alpha, \mathrm{~d}){ }^{16} \mathrm{O}$ reaction. The lowest six $2 p 2 h T=2$ states can be very well described in this way.

Weak-coupling ideas can be extended to the lowest $3 p 3 h$ and $4 p 4 h$ states. Since the 3 and 4 particle (or hole) configurations are strongly configuration mixed in the $j j$-coupling scheme, the $p h$ interaction is usually represented in the simple monopole form $E_{p h}=a+b t_{p} \cdot t_{h}$ plus a small attractive Coulomb contribution. The $p h$ interaction then gives a repulsive contribution of $9 a$ and $16 a$ to $3 p 3 h$ and $4 p 4 h$ configurations and separates the $T=0$ and $T=13 p 3 h$ states by $b \mathrm{MeV}$. The empirical values of a and b are $a \sim 0.4 \mathrm{MeV}$ and $b \sim 5 \mathrm{MeV}$, which put the $4 p 4 h 0^{+}$state and the $3 p 3 h$ 1^{-}states close to experimental candidates at $6.05,12.44$ and 17.28 MeV respectively, each of which is the lowest member of a band.

The weak-coupling states can be used as a basis for shell-model calculations, but the elimination of spurious center-of-mass motion is approximate even within an

[^0]oscillator framework; orbits outside the $p(s d)$ space are needed and can be important components of states of physical interest. If complete $n \hbar \omega$ spaces are used, the choice of basis can be one of computational convenience. A more physical LS-coupled basis is obtained by classifying the states according to the Wigner supermultiplet scheme $(S U 4 \supset S U 2 \times S U 2$ symmetry $[\tilde{f}]$ in spin-isospin space) and the SU3 symmetry $(\lambda \mu)$ of the harmonic oscillator. States with the highest spatial symmetry $[f]$ maximize the number of spatially symmetric interacting pairs to take advantage of the fact that the NN interaction is most strongly attractive in the relative $0 s$ state and weak or repulsive in relative p states. These symmetries are broken mainly by the one-body spin-orbit interaction. In $n p$ and $n h$ calculations, the lowest states are dominated by the $[f](\lambda \mu)$ configurations $[n](2 n 0)$ and $\left[4^{2} 4-n\right](0 n)$ respectively (these symmetries are very good if the one-body spin-orbit interaction is turned off). In npnh calculations, the lowest states are dominated by the highest spatial symmetry allowed for given isospin T and (2nn) SU3 symmetry. These states are identical to harmonic oscillator clustermodel states with $2 n$ quanta on the relative motion coordinate between the $n h$ core and the $n p$ cluster. States with a large parentage to the ground state of the core should be seen strongly in the appropriate transfer reaction.

In the above, a basic $n \hbar \omega$ (mainly $n p n h$) shell-model structure has been matched, through characteristic level properties and band structures, with experimental candidates. The mixing between shell-model configurations of different $n \hbar \omega$ is of several distinct types.

First, there is direct mixing between low-lying states with different npnh structure; the $p^{2} \rightarrow(s d)^{2}$ mixing matrix elements (SU3 tensor character mainly (42)) are not large (up to a few MeV) although the mixing can be large in cases of near degeneracy.

A second type of mixing is more easily understood by reference to cluster models in which an oscillator basis is used to expand the relative motion wave function. To get a realistic representation of the relative motion wave function for a loosely-bound state or an unbound resonance requires many oscillators up to high $n \hbar \omega$ excitation. A related problem, which also involves the radial structure of the nucleus, occurs for the expansion of deformed states (of which cluster states are an example) in a spherical oscillator (shell-model) basis; e.g., deformed Hartree-Fock orbits may require an expansion in terms of many oscillator shells. It is difficult to accomodate this type of radial mixing in conventional shell-model calculations, but symplectic $\operatorname{Sp}(6, \mathrm{R})$ shell-models, in which the SU3 algebra is extended to include $1 p 1 h 2 \hbar \omega$ monopole and quadrupole excitations, do include such mixing up to high $n \hbar \omega$.

A third type of mixing involves the coupling of npnh excitations to high-lying $(n+2) \hbar \omega$ configurations via the strong $(\lambda \mu)=(20)$ component of the $p^{2} \rightarrow(s d)^{2}$ interaction. In the full $(0+2+4) \hbar \omega$ calculations, the large ($30-45 \%$) $2 p 2 h$ admixtures in the ground state are mainly of the (20) type, which are intimately related to the ground-state correlations of RPA theory, and lead to enhancement (quenching) of excitations at low momentum transfer $\Delta T=0, \Delta S=0$ and to quenching otherwise.

For most detailed structure questions, a shell-model calculation is required to include the relevant degrees of freedom. For example, (90HA35) address two important problems with complete $(0+2+4) \hbar \omega$ and $(1+3) \hbar \omega$ model spaces. One is the rank-zero ${ }^{16} \mathrm{~N}\left(0^{-}\right) \rightarrow{ }^{16} \mathrm{O}(g s) \beta$ decay and the inverse μ capture which receive
large two-body meson-exchange current contributions. The other is the distribution of M1 and Gamow-Teller strength based on the ${ }^{16} \mathrm{O}$ ground state; this is a complicated problem which involves $2 p 2 h \ldots$ admixtures in the ground state which break SU4 symmetry.

Many interesting structure problems remain. A detailed understanding of the shapes and magnitudes of inelastic form factors is lacking, particularly the shapes at momentum transfers beyond $2 \mathrm{fm}^{-1}$. Even in the relatively simple case of M4 excitations, much studied via (e, e^{\prime}), ($\mathrm{p}, \mathrm{p}^{\prime}$) and $\left(\pi, \pi^{\prime}\right)$ reactions, a rather low value of the oscillator parameter b is required to describe the form factor. Also, the configuration mixing which splits the $4^{-} ; T=0$ strength into two major components and causes isospin mixing has not been satisfactorily described by a shell-model calculation. Similar interesting problems occur for isospin-mixed negative-parity states near 13 MeV excitation energy. It is worth noting that, to avoid some serious consistency problems, the large shell-model calculations have omitted orbits outside the $p(s d)$ space except to the degree needed to cleanly separate spurious center-of-mass states. A consistent treatment of $1 p 1 h$ and $2 p 2 h$ correlations in multi- $\hbar \omega$ shell-model spaces remains a challenging question.

$$
\begin{gathered}
{ }^{16} \mathbf{H e} \\
\text { (Not illustrated) }
\end{gathered}
$$

This nucleus has not been observed. See (82AV1A, 83ANZQ, 86AJ04)
${ }^{16} \mathrm{Li}$
(Not illustrated)

This nucleus has not been observed. Shell model studies (88PO1E) are used to predict J^{π} and the magnetic dipole moment.
${ }^{16} \mathbf{B e}$
(Not illustrated)

This nucleus has not been observed. Its atomic mass is calculated to be 59.22 MeV . It is then unstable with respect to breakup into ${ }^{14} \mathrm{Be}+2 \mathrm{n}$ by 2.98 MeV . See (74 TH 01 , 86AJ04, 87SA15). The first three excited states with $J^{\pi}=2^{+}, 4^{+}, 4^{+}$are calculated to be at $1.90,5.08$, and 6.51 MeV using a $(0+1) \hbar \omega$ space shell model (85PO10).

This nucleus has not been observed in the 4.8 GeV proton bombardment of a uranium target. It is particle unstable. Its mass excess is predicted to be 37.97 MeV ; it would then be unstable with respect to decay into ${ }^{15} \mathrm{~B}+\mathrm{n}$ by 0.93 MeV . See (85WA02, 86AJ04). The ground state is predicted to have $J^{\pi}=0^{-}$and the first three excited states are predicted to lie at $0.95,1.10$, and $1.55 \mathrm{MeV}\left[J^{\pi}=2^{-}, 3^{-}\right.$, 4^{-}] in a $(0+1) \hbar \omega$ space shell model calculation. See (83ANZQ, 85PO10 86AJ04). Predicted masses and excitation energies for higher isospin multiplets for $9 \leq A \leq 60$ are included in the compilation (86AN07) An experiment (85LA1A) involving inflight identification of fragments from $44 \mathrm{MeV} / \mathrm{u}{ }^{40} \mathrm{Ar}$ found no trace of ${ }^{18} \mathrm{~B}$ or ${ }^{16} \mathrm{~B}$ and provides strong evidence that ${ }^{16} \mathrm{~B}$ is particle-unstable.

${ }^{16} \mathrm{C}$

(Figs. 1 and 5)

GENERAL:
See Table 16.1.

$$
\text { 1. }{ }^{16} \mathrm{C}\left(\beta^{-}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=8.012
$$

The half life of ${ }^{16} \mathrm{C}$ is $0.747 \pm 0.008 \mathrm{~s}$. It decays to ${ }^{16} \mathrm{~N}^{*}(0.12,3.35,4.32)\left[\mathrm{J}^{\pi}=0^{-}\right.$, $1^{+}, 1^{+}$: see Table 16.3 and 93CH1A. See also (86AJ04) and see (86KI05, 88WA1E, 92WA1L) for theoretical discussions of extended shell-model calculations of $0^{+} \rightarrow$ 0^{-}transitions and determination of the mesonic enhancements $\varepsilon_{\text {mec }}$ of the time-like component of the axial current. See also (92TO04) and see ${ }^{16}$ N, Reaction 1.
$2 .{ }^{14} \mathrm{C}(\mathrm{t}, \mathrm{p}){ }^{16} \mathrm{C} \quad Q_{\mathrm{m}}=-3.013$

States of ${ }^{16} \mathrm{C}$ observed in this reaction are displayed in Table 16.2. See also Table 16.3 of (82AJ01), and see (77BA59).
3. ${ }^{16} \mathrm{O}\left(\mathrm{K}^{-}, \pi^{+}\right){ }_{\Sigma}^{16} \mathrm{C}$
(85BE31) used negative kaons of $450 \mathrm{MeV} / \mathrm{c}$ to produce Σ hypernuclear states, which they interpreted as Σ^{-}particles in the $\mathrm{p}_{3 / 2}$ and $\mathrm{p}_{1 / 2}$ orbits of the ${ }_{\Sigma}^{16} \mathrm{C}$ hypernucleus. Their energy splitting was used to constrain the Σ^{-}spin-orbit coupling.
(86HA26) performed a systematic shell-model analysis of Σ-hypernuclear states, in which they deduced a $\Sigma \mathrm{N}$-spin-orbit interaction about twice as strong as the one for the nucleon. (86MA1J) reached a similar conclusion after extracting the one-particle spin-orbit splitting $\varepsilon_{\Sigma}=\varepsilon^{\Sigma} \mathrm{p}_{1 / 2}-\varepsilon^{\Sigma} \mathrm{p}_{3 / 2}$. (87WU05) used the continuum shell-model to study competition between resonant and quasi-free Σ-hypernuclear production. The observed structures in the excitation spectra are essentially accounted for by the quasi-free mechanism alone. (89DO1I) perform a series of shell model calculations of energy spectra of p-shell Σ hypernuclei, starting with several different parametrizations of the $\Sigma \mathrm{N}$ effective interaction. Production cross sections are estimated using DWBA. They suggest experiments to resolve open questions regarding the $\Sigma \mathrm{N}$ and Σ-nucleus interactions. (89HA32) uses the recoil continuum shell model to calculate in-flight Σ hypernuclei production of this reaction (and others). They needed to modify the $\Sigma \mathrm{N}$ central interaction to fit data.

Coupled channels (CC) calculations for Σ-hypernuclear spectra give an energy integrated cross section which is about 1.7 times the experimental value (87 HA 40). (88HA1I) report CC calculations emphasizing the proper treatment of the Σ continuum states. They find that a weak Σ central potential and a comparable $\Sigma \Lambda$ conversion potential are required to describe experimental results.

$$
\left(\begin{array}{c}
{ }^{16} \mathbf{N} \\
\text { (Figs. } 2 \text { and } 5 \text {) }
\end{array}\right.
$$

GENERAL:
See Table 16.4.
For a comparison of analog states in ${ }^{16} \mathrm{~N}$ and ${ }^{16} \mathrm{O}$, see (83KE06, 83SN03).

$$
\text { 1. }{ }^{16} \mathrm{~N}\left(\beta^{-}\right)^{16} \mathrm{O} \quad Q_{\mathrm{m}}=10.419
$$

The half-life of ${ }^{16} \mathrm{~N}$ is $7.13 \pm 0.02 \mathrm{~s}$: see Table 16.3 in (71AJ02). From the unique first-forbidden character of the β decay [see Table 16.25 and (84 WA 07)], ${ }^{16} \mathrm{~N}$ must have $J^{\pi}=2^{-}$: see ${ }^{16} \mathrm{O}$, reaction 39. See also (85HE08, 88BA15).

The β-decay of ${ }^{16} \mathrm{~N}^{*}(0.12)\left[J^{\pi}=0^{-}\right]$has been measured (83GA18, 85HA22); adopted value: $\lambda_{\beta}=0.489 \pm 0.020 \mathrm{~s}^{-1}$ (85HE08). The relationship of this rate to that for ${ }^{16} \mathrm{O}\left(\mu^{-}, \nu\right)^{16} \mathrm{~N}\left(0^{-}\right)$[see reaction 18] and the fact that the large values of these rates support the prediction (78KU1A, 78GU05, 78GU07) of a large ($\sim 60 \%$) enhancement over the impulse approximation (e.g., $\varepsilon_{\text {mec }}=1.60$) has been the subject of a great deal of theoretical study, see, e.g. (81TO16, 86KI05, 86TO1A, 88WA1E, 90HA35). The work of ($90 \mathrm{HA} 35,92 \mathrm{WA} 1 \mathrm{~L})$ is a culmination of present knowledge on the determination and interpretation of $\varepsilon_{\text {mec }}$. See also (92TO04). A branching ratio $R\left(0^{-} \rightarrow 1^{-}\right) /\left(0^{-} \rightarrow 0^{+}\right)=0.09 \pm 0.02$ has been reported (88 CH 30), implying $\log f t=4.25 \pm 0.10$ for the $0^{-} \rightarrow 1^{-}$transition to the ${ }^{16} \mathrm{O} 7.12-\mathrm{MeV}$ level.
2. ${ }^{7} \mathrm{Li}\left({ }^{11} \mathrm{~B}, \mathrm{pn}\right)^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=2.533$

Gamma rays with $E_{\gamma}=120.42 \pm 0.12,298.22 \pm 0.08$ and $276.85 \pm 0.10 \mathrm{keV}$ from the ground-state decays of ${ }^{16} \mathrm{~N}^{*}(0.12,0.30)$ and the decay of the state at $397.27 \pm 0.10 \mathrm{keV}$ to the first excited state have been studied. τ_{m} for ${ }^{16} \mathrm{~N}^{*}(0.30,0.40)$ are, respectively, 133 ± 4 and 6.60 ± 0.48 psec. See (86AJ04). Cross section measurements for ${ }^{7} \mathrm{Li}+{ }^{11} \mathrm{~B}$ at $E($ c.m. $)=1.45-6.10 \mathrm{MeV}$ have been reported (90DA03).
3. (a) ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li}, \mathrm{n}\right)^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=18.082 \quad E_{\mathrm{b}}=20.572$
(b) ${ }^{9} \operatorname{Be}\left({ }^{7} \mathrm{Li}, 2 \mathrm{n}\right){ }^{14} \mathrm{~N} \quad Q_{\mathrm{m}}=7.249$
(c) ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right){ }^{13} \mathrm{C} \quad Q_{\mathrm{m}}=8.179$
(d) ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li}, \alpha\right)^{12} \mathrm{~B} \quad Q_{\mathrm{m}}=10.461$
(e) ${ }^{9} \mathrm{Be}\left({ }^{7} \mathrm{Li},{ }^{8} \mathrm{Li}\right)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=0.368$

At incident ${ }^{7} \mathrm{Li}$ energies of 40 MeV , neutron yields at 0° for reactions (a) and (b) are 50 to 70 times smaller than for 40 MeV deuteron-induced reactions on ${ }^{9} \mathrm{Be}$ (87SC11). For reactions (c, d, e) see (82AJ01).
4. ${ }^{9} \mathrm{Be}\left({ }^{9} \mathrm{Be}, \mathrm{np}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=1.652$

Cross sections were measured for characteristic ${ }^{16} \mathrm{~N}$ gamma rays for incident ${ }^{9} \mathrm{Be}$ energies $E_{\text {c.m. }}=1.4-3.4 \mathrm{MeV}$. The n , p and all other two-particle emission channels are enhanced by a factor of $2-3$ relative to predictions of DWBA calculations (88LA25).
5. ${ }^{10} \mathrm{~B}\left({ }^{7} \mathrm{Li}, \mathrm{p}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=13.986$

See Table 16.6 and (82AJ01)
6. ${ }^{12} \mathrm{C}\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{~N}\right){ }^{12} \mathrm{~N} \quad Q_{\mathrm{m}}=-27.757$
${ }^{16} \mathrm{~N}$ spectra were measured for incident ${ }^{16} \mathrm{O}$ energies of $900 \mathrm{MeV} /$ nucleon. Transitions to the low-lying GDR, the quasi-elastic, and the Δ-regions were observed (87EL14).
7. ${ }^{13} \mathrm{C}(\alpha, p){ }^{16} \mathrm{~N}$

$$
Q_{\mathrm{m}}=-7.422
$$

Differential cross sections measured (86AN30) at $E_{\alpha}=118 \mathrm{MeV}$ were analyzed using DWBA calculations with microscopic form factors to obtain J^{π} and to locate multiparticle-multihole strength in ${ }^{16} \mathrm{~N}$: see Table 16.7. Measurements at $E_{\alpha}=$ 34.9 MeV are summarized in Table 16.5 of (86AJ04). See also (88BRZY, 88MIZY).
8. (a) ${ }^{14} \mathrm{C}(\mathrm{d}, \gamma){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=10.474 \quad E_{\mathrm{b}}=10.474$
(b) ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{n}){ }^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=7.984$
(c) ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{p}){ }^{15} \mathrm{C} \quad Q_{\mathrm{m}}=-1.006$
(d) ${ }^{14} \mathrm{C}(\mathrm{d}, \mathrm{d}){ }^{14} \mathrm{C}$

For reaction (a) see (71AJ02). Resonances observed in reactions (b, c, d) are displayed in Table 16.5 of (82AJ01). Total cross sections for reaction (b) have been measured for $0.2 \leq E_{\mathrm{c} . \mathrm{m} .} \leq 2.1 \mathrm{MeV}$ (92BR05)

$$
\text { 9. }{ }^{14} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=4.980
$$

Proton groups have been observed to ${ }^{16} \mathrm{~N}$ states with $E_{\mathrm{x}}<12 \mathrm{MeV}$ and angular distributions [with $E\left({ }^{3} \mathrm{He}\right) \leq 15 \mathrm{MeV}$] lead to the J^{π} assignments shown in Table 16.8.
10. ${ }^{14} \mathrm{C}(\alpha, \mathrm{d}){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-13.374$

At $E_{\alpha}=46 \mathrm{MeV}$ the angular distributions of the groups to ${ }^{16} \mathrm{~N}^{*}(0.30,3.96,5.73$, 7.60) have been determined: the most strongly populated state is the $\left(5^{+}\right)$state ${ }^{16} N^{*}(5.73)$. See (71AJ02).
11. ${ }^{14} \mathrm{~N}(\mathrm{t}, \mathrm{p}){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=4.842$

Observed proton groups are displayed in Table 16.9. See also (86AJ04).
12. ${ }^{15} \mathrm{~N}(\mathrm{n}, \gamma){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=2.490$

The thermal cross section is $24 \pm 8 \mu \mathrm{~b}$: see (81MUZQ).
13. ${ }^{15} \mathrm{~N}(\mathrm{n}, \mathrm{n}){ }^{15} \mathrm{~N}$

$$
E_{\mathrm{b}}=2.490
$$

The scattering amplitude (bound) $a=6.44 \pm 0.03 \mathrm{fm}$, $\sigma_{\text {free }}=4.59 \pm 0.05 \mathrm{~b}$, $\sigma_{\text {inc }}^{\text {spin }}$ (bound nucleus) $<1 \mathrm{mb}$ (79 KO 26). The total cross section has been measured for $E_{\mathrm{n}}=0.4$ to 32 MeV : see (77AJ02. 81 MUZQ). Observed resonances are displayed in Table 16.10. See also (86AJ04, 88MCZT, 89FU1J).
14. ${ }^{15} \mathrm{~N}(\mathrm{n}, \mathrm{p})^{15} \mathrm{C} \quad Q_{\mathrm{m}}=-8.990$

The activation cross section was measured for neutron energies between 14.6 and 15.0 MeV (86RO1C).
15. ${ }^{15} \mathrm{~N}\left(\mathrm{p}, \pi^{+}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-137.860$

This reaction was studied with 200 MeV protons for $E_{\mathrm{x}} \leq 30 \mathrm{MeV}$ (87AZZZ). A strong transition to a state with $J^{\pi}=5^{+}$was observed at $E_{\mathrm{x}}=5.7 \mathrm{MeV}$. Strong states were also observed at $E_{\mathrm{x}}=14.2$ and 16.1 MeV with cross sections falling sharply with angle.
16. ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{p}){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=0.266$

Levels derived from observed proton groups and γ-rays are shown in Table 16.11. Gamma transitions are shown in the inset of fig. 2. The very strong evidence for $J^{\pi}=2^{-}, 0^{-}, 3^{-}$and 1^{-}, respectively for ${ }^{16} \mathrm{~N}^{*}(0,0.12,0.30,0.40)$ is reviewed in (71AJ02). These states provide a probe of the residual interaction relating the 1 p and 2 s 1 d shells. See (84BI03) for a comparison of experiment and theory for M1 observables. See also (86AJ04 86ME1A, 88VI1A).
17. ${ }^{16} \mathrm{C}\left(\beta^{-}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=8.012$

See ${ }^{16} \mathrm{C}$.

Partial μ^{-}-capture rates have been observed to ${ }^{16} \mathrm{~N}^{*}(0.12,0.40)\left[J^{\pi}=0^{-}, 1^{-}\right]$ (79GU06). The rate for capture by the $J^{\pi}=0^{-}$state ["best" value: $\lambda_{\mu}=1560 \pm 94 \mathrm{~s}^{-1}$ (85HE08)] and the "reverse" reaction ${ }^{16} \mathrm{~N}^{*}\left(0^{-}\right) \xrightarrow{\beta}{ }^{16} \mathrm{O}\left(0^{+}\right)$[see reaction 1] were the first reactions which verify the prediction (78KU1A, $78 \mathrm{GU} 05,78 \mathrm{GU} 07$) of a large meson-exchange contribution to the weak, rank-zero axial charge. See ${ }^{16}$ N, reaction 1 and (81TO16, 86NO04, 90HA35, 92WA1L). See also the measurement reported in (90 BL 1 H) and the calculation of (90 CH 13).
19. ${ }^{16} \mathrm{O}\left(\gamma, \pi^{+}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-149.986$

Pion spectra have been obtained with virtual photons in the energy range $E_{\gamma}=$ $200-350 \mathrm{MeV}$ (87JE02). Cross sections corresponding to the population of the four lowest states of ${ }^{16} \mathrm{~N}$ (unresolved) were measured. Angular distributions were measured (87YA02, 87YA1D) at a photon energy of 320 MeV and the results compared to DWIA calculations. Measurements at $E_{\mathrm{e}}=200 \mathrm{MeV}$ and $E_{\pi^{+}}=30 \mathrm{MeV}$ are cited in (86AJ04).
20. ${ }^{16} \mathrm{O}(\mathrm{n}, \mathrm{p}){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-9.637$

At $E_{\mathrm{n}}=59.6 \mathrm{MeV}$ differential cross sections for the protons to the first four states of ${ }^{16} \mathrm{~N}$ (unresolved) and to ${ }^{16} \mathrm{~N}^{*}(6.2,7.8)$ have been analyzed by DWBA. Comparisons are made with results from the ${ }^{16} \mathrm{O}(\gamma, n)$ and ${ }^{16} \mathrm{~N}\left(\mathrm{p}, \gamma_{0}\right)$ reactions in the GDR region of ${ }^{16} \mathrm{O}$ ($82 \mathrm{NE} 04,84 \mathrm{BR} 03$). See also (83SC1A, 89BOYU, 88NO1B). Other (n, p)like charge exchange reactions are reviewed in (89GA26), and data on $\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{~N}\right)$ is presented in (88HE1I).
21. ${ }^{16} \mathrm{O}\left(\mathrm{t},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-10.400$

At $E_{\mathrm{t}}=23.5 \mathrm{MeV}{ }^{16} \mathrm{~N}^{*}(0,0.30)\left[J^{\pi}=2^{-}, 3^{-}\right]$are strongly populated relative to ${ }^{16} \mathrm{~N}^{*}(0.12,0.40)\left[J^{\pi}=0^{-}, 1^{-}\right]$: see (82AJ01). See also (88CL04).
22. ${ }^{16} \mathrm{O}\left({ }^{7} \mathrm{Li},{ }^{7} \mathrm{Be}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-11.280$

Measurements at $E\left({ }^{7} \mathrm{Li}\right)=50 \mathrm{MeV}$ to ${ }^{16} \mathrm{~N}^{*}(0,0.12,0.30,0.40,3.35,3.52,3.96$, $5.52,5.73,6.17)$ are reviewed in (86AJ04). A microscopic DWBA Coupled-Channels analysis of data at $E\left({ }^{7} \mathrm{Li}\right)=50 \mathrm{MeV}$ is reported in (86CL03). See also the review of charge-exchange reactions with ${ }^{7} \mathrm{Li}$ ions in (89GA26).

Bremsstrahlung-weighted integrated cross sections have been measured (89OR07). About 90% of the photoproton emission populates the ground state $\left(2^{-}\right)$and the $0.298 \mathrm{MeV}\left(3^{-}\right)$levels. The $0.120 \mathrm{MeV}\left(0^{-}\right)$and $0.397 \mathrm{MeV}\left(1^{-}\right)$levels are also populated. See also (86OR1A). Measurements with quasimonoenergetic photons at $E_{\gamma}=13.50-43.15 \mathrm{MeV}$ were carried out by (92ZU01) to study the GDR in ${ }^{17} \mathrm{O}$.
24. ${ }^{17} \mathrm{O}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-8.286$

See Table 16.10 in (82AJ01).
25. ${ }^{18} \mathrm{O}\left(\pi^{+}, 2 \mathrm{p}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=118.526$

Coincidence measurements for $E_{\pi}=116 \mathrm{MeV}, \theta_{\mathrm{p}_{1}}=50^{\circ}, \theta_{\mathrm{p}_{2}}$ variable have been reported by ($86 \mathrm{SCZX}, 86 \mathrm{SC} 28$). Transitions to the unresolved cluster of 4 states below 0.4 MeV excitation were observed to account for $6.1 \pm 0.6 \%$ of the estimated two-nucleon absorption cross section below 20 MeV excitation. The results were compared with a model of pion absorption on quasi-deuteron pairs.
26. ${ }^{18} \mathrm{O}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-14.106$

At $E_{\mathrm{p}}=43 \mathrm{MeV}$, the angular distribution of the ${ }^{3} \mathrm{He}$ nuclei corresponding to a state at $E_{\mathrm{x}}=9.9 \mathrm{MeV}$ fixes $L=0$ and therefore $J^{\pi}=0^{+}$for ${ }^{16} \mathrm{~N}^{*}(9.9)$: it is presumably the $T=2$ analog of the ground state of ${ }^{16} \mathrm{C}$. See (82AJ01. 86AJ04). See also (85BLZZ).
27. ${ }^{18} \mathrm{O}(\mathrm{d}, \alpha){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=4.248$

Alpha particle groups observed in this reaction are displayed in Table 16.11. For polarization studies see (82AJ01) and ${ }^{20} \mathrm{~F}$ in (83AJ01. 88AJ01). τ_{m} for ${ }^{16} \mathrm{~N}^{*}(0.40)=$ $6.5 \pm 0.5 \mathrm{ps}$ and $|g|=1.83 \pm 0.13$: see (82AJ01).
28. ${ }^{19} \mathrm{~F}(\mathrm{n}, \alpha){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-1.522$

$$
\text { See (82AJ01) and }{ }^{20} \mathrm{~F} \text { in (83AJ01). }
$$

$$
\overbrace{(\text { Figs. } 3 \text { and } 5)}^{{ }^{\mathbf{1 6}} \mathrm{O}}
$$

GENERAL:
See Table 16.12.

$$
\begin{gathered}
\left\langle r^{2}\right\rangle^{1 / 2}=2.710 \pm 0.015 \mathrm{fm}(78 \mathrm{KI} 01) \\
\text { Abundance }=(99.762 \pm 0.015) \%(84 \mathrm{DE} 1 \mathrm{~A}) \\
\mathrm{g}= \pm(0.556 \pm 0.004) \text { for }{ }^{16} \mathrm{O}^{*}(6.13)(84 \mathrm{AS} 03)
\end{gathered}
$$

1. ${ }^{9} \operatorname{Be}\left({ }^{9} \mathrm{Be}, 2 \mathrm{n}\right)^{16} \mathrm{O} \quad Q_{\mathrm{m}}=11.289$

Total reaction cross sections and characteristic γ-ray cross sections for ${ }^{9} \mathrm{Be}+{ }^{9} \mathrm{Be}$ were measured for $E_{\text {c.m. }}=1.4-3.4 \mathrm{MeV}$ (88LA25). Gamma rays were observed from levels at $6.13\left(3^{-}\right), 6.917\left(2^{+}\right)$, and $7.1117\left(1^{-}\right) \mathrm{MeV}$ populated by the ${ }^{9} \mathrm{Be}\left({ }^{9} \mathrm{Be}, 2 \mathrm{n}\right)^{16} \mathrm{O}$ reaction. Cross sections calculated with optical models agreed with elastic scattering data, but the total reaction cross section was underpredicted by a factor of 2 to 3 .
2. ${ }^{9} \operatorname{Be}\left({ }^{11} \mathrm{~B},{ }^{16} \mathrm{O}\right){ }^{4} \mathrm{H} \quad Q_{\mathrm{m}}=1.088$

Energy spectra of the ${ }^{16} \mathrm{O}$ nuclei were measured (86BE1A) for incident ${ }^{11} \mathrm{~B}$ energies of 88 MeV to obtain information on the ${ }^{4} \mathrm{H}$ system.
3. ${ }^{9} \mathrm{Be}\left({ }^{14} \mathrm{C},{ }^{7} \mathrm{He}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-7.006$

This reaction was studied by (88BEYJ).
4. (a) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li}, \gamma\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=30.872$
(b) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li} \mathrm{p}\right){ }^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=18.745$

$$
E_{\mathrm{b}}=30.872
$$

(c) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li}, \mathrm{d}\right){ }^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=10.136$
(d) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li}, \mathrm{t}\right){ }^{13} \mathrm{~N}$
$Q_{\mathrm{m}}=5.840$
(e) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li},{ }^{3} \mathrm{He}\right){ }^{13} \mathrm{C}$
$Q_{\mathrm{m}}=8.079$
(f) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li}, \alpha\right){ }^{12} \mathrm{C}$
$Q_{\mathrm{m}}=23.711$
(g) ${ }^{10} \mathrm{~B}\left({ }^{6} \mathrm{Li},{ }^{6} \mathrm{Li}\right){ }^{10} \mathrm{~B}$

At $E\left({ }^{6} \mathrm{Li}\right)=4.9 \mathrm{MeV}$, the cross sections for reactions (b) to (f) leading to lowlying states in the residual nuclei are proportional to $2 J_{\mathrm{f}}+1$: this is interpreted as indicating that the reactions proceed via a statistical compound nucleus mechanism. For highly excited states, the cross section is higher than would be predicted by a $2 J_{\mathrm{f}}+1$ dependence: see (82AJ01, 86AJ04).
5. ${ }^{10} \mathrm{~B}\left({ }^{10} \mathrm{~B}, \alpha\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=26.413$

States of ${ }^{16} \mathrm{O}$ observed at $E\left({ }^{10} \mathrm{~B}\right)=20 \mathrm{MeV}$ are displayed in Table 16.10 of (77AJ02). At the higher excitation energies, states are reported at $E_{\mathrm{x}}=17.200 \pm$ $0.020,17.825 \pm 0.025,18.531 \pm 0.025,18.69 \pm 0.03,18.90 \pm 0.035,19.55 \pm 0.035,19.91 \pm$ $0.02,20.538 \pm 0.015,21.175 \pm 0.015,21.84 \pm 0.025,22.65 \pm 0.03$ and $23.51 \pm 0.03 \mathrm{MeV}$. The reaction excites known $T=0$ states: σ_{t} follows $2 J_{\mathrm{f}}+1$ for 11 of 12 groups leading to states of known J. The angular distributions show little structure: see (77AJ02).
6. ${ }^{11} \mathrm{~B}\left({ }^{7} \mathrm{Li}, \mathrm{nn}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=12.170$

Cross section measurements at $E_{\text {c.m. }}=1.46-6.10 \mathrm{MeV}$ were reported in (90DA03).
7. ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=7.161$

The yield of capture γ-rays has been studied for E_{α} up to 42 MeV [see Table 16.11 in (77AJ02) and (82AJ01)]. See also (86AJ04). Observed resonances are displayed in Table 16.15 here.

This reaction plays an important role in astrophysical processes. The cross sections at astrophysical energies have been obtained by fitting measured cross sections and extrapolating them to low energies utilizing standard R-matrix, Hybrid R-matrix and K-matrix procedures. A list of recent values of the E2 and E1 astrophysical factors for $E_{0}=300 \mathrm{keV}$ obtained from fits to the data is given in Table 16.16.

The influence of vacuum polarization effects on subbarrier fusion is evaluated in (88AS03), and the relevance of Coulomb dissociation of ${ }^{16} \mathrm{O}$ into ${ }^{12} \mathrm{C}+\alpha$ is studied
in (86BA50, 89BA2S, 92SH11). Calculations to test the sensitivity of stellar nucleosynthesis to the level in ${ }^{12} \mathrm{C}$ at 7.74 MeV are described in (89LI29). For other astrophysical studies see (82AJ01, 86AJ04) and (85TA1A, 86FI1B. 86MA1E, 86WO1A, 87AR1C, 87BO1B 87DE32, 87RO1D, 88CA1N, 88PA1H 88TRZZ, 90BL1K. 90BR1Q, 90JI02).

At higher energies the E2 cross section shows resonances at $E_{\mathrm{x}}=13.2,15.9,16.5$, 18.3, 20.0, and 26.5 MeV (see Table 16.16). Some E2 strength is also observed for $E_{\mathrm{x}}=14$ to 15.5 and 20.5 to 23 MeV . In the range $E_{\alpha}=7$ to 27.5 MeV the $T=0 \mathrm{E} 2$ strength is $\sim 17 \%$ of the sum-rule value. It appears from this and other experiments that the E 2 centroid is at $E_{\mathrm{x}} \sim 15 \mathrm{MeV}$, with a 15 MeV spread. Structures are observed in the yield of γ-rays from the decay to ${ }^{16} \mathrm{O}^{*}(14.8 \pm 0.1)$ for $E_{\mathrm{x}}=34$ 39 MeV . It is suggested that these correspond to a giant quadrupole excitation with $J^{\pi}=8^{+}$built on the 6_{1}^{+}state at $E_{\mathrm{x}}=14.815 \mathrm{MeV}$: see (82AJ01, 86AJ04).

For reaction (a) cross section measurements from threshold to $E_{\alpha}=24.7 \mathrm{MeV}$ [see (86AJ04)], and at $E_{\alpha}=10.5$ to 20 MeV (see Table 16.16 here). For excitation functions from $E_{\alpha}=21.8$ to 27.2 MeV , see (86AJ04). Thick-target neutron yields have been measured for $E_{\alpha}=1.0$ to 9.8 MeV (89HE04) and for $4-7 \mathrm{MeV}$ (82WE16). For reaction (b) cross section measurements from threshold to 33 MeV , see (86AJ04). The excitation curve for p_{3} (to ${ }^{15} \mathrm{~N}^{*}(6.32)$, measured for $E_{\alpha}=24$ to 33 MeV , shows a large peak at $E_{\mathrm{x}} \approx 29 \mathrm{MeV}, \Gamma \approx 4 \mathrm{MeV}$. It is suggested that it is related to the GQR in ${ }^{16} \mathrm{O}$: see (82AJ01). For reaction (c) deuteron spectra have been measured for $E_{\alpha}=200,400,600,800 \mathrm{MeV} /$ nucleon (91MO1B). For the observed resonances see Table 16.16 here.
9. ${ }^{12} \mathrm{C}(\alpha, \alpha){ }^{12} \mathrm{C}$

$$
E_{\mathrm{b}}=7.161
$$

The yield of α-particles leading to ${ }^{12} \mathrm{C}^{*}(0,4.4,7.7)$ and $4.4,12.7$ and 15.1 MeV γ-rays has been studied at many energies in the range $E_{\alpha}=2.5$ to 42 MeV [see 86AJ04], and at $E_{\alpha}=0.4-1.8 \mathrm{MeV}$ (90TO09). Observed resonances are displayed in Table 16.16. Attempts have been made to observe narrow states near ${ }^{16} \mathrm{O}^{*}(8.87$, 9.85). No evidence has been found for a narrow (100 eV) 0^{+}state in the vicinity of the 2^{-}state at 8.87 MeV [see (82AJ01)] nor for a 3^{-}state near the 2^{+}state at 9.84 MeV (86AJ04).

For total cross section measurements see (86AJ04) and for $E_{\alpha}=100 \mathrm{MeV}$ (86DU15). For integral cross sections for inelastic scattering at 50.5 MeV , see (87BU1E). For elastic scattering differential cross sections at $E_{\alpha}=96.6 \mathrm{MeV}$ see (90KO2C), at 90 MeV
(90GL02), at 90 and 98 MeV (91GO1J). For diffraction scattering at momentum $17.9 \mathrm{GeV} / \mathrm{c}$, see (91AB1F). For inelastic scattering and polarization of ${ }^{12} \mathrm{C}(9.64 \mathrm{MeV}$, 3^{-}) see ($89 \mathrm{KO} 55,91 \mathrm{KO} 1 \mathrm{~F}$), who report that the reaction at $E_{\alpha}=27.2 \mathrm{MeV}$ proceeds mostly via an 8^{+}state in the compound system. For pion production at momenta $4.5 \mathrm{GeV} / \mathrm{c}$ per nucleon see (90AB1D), at $4.2 \mathrm{GeV} / \mathrm{c}$ per nucleon (87AG1A), at energies of 3.6 GeV per nucleon (87AN1B), and at 200 to 800 MeV per nucleon (87LH01), at $E_{\alpha}=0.8,1.6 \mathrm{GeV}$ (91LE06). Differential cross sections at $E_{\alpha}=1-6.6 \mathrm{MeV}$ measured to obtain information on ${ }^{12} \mathrm{C}(\alpha, \gamma)$ stellar reaction rates are reported by (87PL03).

Calculations of total cross sections for $E_{\alpha}=96.6-172.5 \mathrm{MeV}$ are presented in (89KU1U) and distributions of α-particle strengths in (88LE05). Energy dependence at high energies ($\sim 1 \mathrm{GeV} /$ nucleon) is studied in (88MO18). The iterativeperturbative method for S-matrix to potential inversion was applied to $\alpha+{ }^{12} \mathrm{C}$ phase shifts at $E_{\text {lab }}=1.0-6.6 \mathrm{MeV}$ in (90CO29). See also (91LI25). Nucleus-nucleus scattering and interaction radii were studied in (86SA30). Core-plus alpha particle states in ${ }^{16} \mathrm{O}$ populated in $\alpha+{ }^{12} \mathrm{C}$ scattering are studied in terms of vibron models in (88CS01). See also (91AB10, 91DE15, 91ES1B. 91RU1B, 92SA1F). The effects of electron screening on low energy fusion reactions of astrophysical interest are explored in (87AS05. 90TO09). The nature of the $\alpha+{ }^{12} \mathrm{C}$ potential at low energy is explored in (90AL05). For other theoretical work see (86MI24, 86SU06, 87BA1P, 89BA2N, 90DA1Q).
10. (a) ${ }^{12} \mathrm{C}\left(\alpha,{ }^{8} \mathrm{Be}\right)^{8} \mathrm{Be} ~\left(\begin{array}{ll}\mathrm{m} & =-7.458 \\ \text { (b) }{ }^{12} \mathrm{C}(\alpha, 2 \alpha){ }^{8} \mathrm{Be} & Q_{\mathrm{m}}=-7.365\end{array} \quad E_{\mathrm{b}}=7.16195\right.$
(b) ${ }^{12} \mathrm{C}(\alpha, 2 \alpha)^{8} \mathrm{Be} \quad Q_{\mathrm{m}}=-7.365$

The yield of ${ }^{8} \mathrm{Be}$ from reaction (a) shows a number of resonances: see Table 16.16. There is no evidence below $E_{\mathrm{x}} \sim 24 \mathrm{MeV}$ for $J^{\pi}=8^{+}$states although the existence of such states below this energy cannot be ruled out since it is possible that the L of the entrance channel inhibits the formation of such states. Above $26 \mathrm{MeV} L=8$ becomes dominant: see (82AJ01, 86AJ04). See also the angular distribution measurements of (91GL03) at $E_{\alpha}=90 \mathrm{MeV}$. For differential cross sections for reaction (b) at $E_{\alpha}=27.2 \mathrm{MeV}$ see (87KO1E). See also (77AJ02).

$$
\text { 11. }{ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li}, \mathrm{~d}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=5.686
$$

This reaction has been studied at many energies: see (77AJ02) and Table 16.17 here. At higher energies the spectra are dominated by states with $J \geq 4$ and natural parity (86AJ04). A kinematic coincidence technique was applied in (86CA19) to study the unresolved doublet at $E_{\mathrm{x}}=11.09 \mathrm{MeV}$ enabling clear observation of the γ-decaying 3^{+}member at 11.080 MeV although it contributes only $\sim 15 \%$ of the singles yield of the doublet which is dominated by the 4^{+}member at 11.096 MeV . Angular correlation measurements (80CU08) suggested that the 11.0964^{+}state is populated via a two-step process, and this interpretation was confirmed in calculations
by (88SE1E). See also (86AJ04). An interference effect was observed in the angular correlation function for the 7^{-}level at $E_{\mathrm{x}}=20.9 \mathrm{MeV}$ in measurements by (87AR28). See also (86AR1A, 88ARZU. 87BE1C, 87GO1C).

Inclusive deuteron spectra from the break-up of ${ }^{6} \mathrm{Li}$ ions at 156 MeV are described in (89JE07). See also (86AJ04).

A numerical method for evaluation of $\left({ }^{6} \mathrm{Li}, \mathrm{d}\right)$ stripping into the $5^{-}(15.6 \mathrm{MeV})$ and $6^{+}(16.3 \mathrm{MeV})$ states is presented in (89SE06). See also (91SE12). An extensive discussion of alpha clustering in nuclei is presented in (90HO1Q). Cluster stripping and heavy-group substitution in the reaction is discussed in (88BE49), and the effect of including Coulomb forces in the Faddeev formalism is studied in (880S05).
12. ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=4.694$

This reaction has been studied extensively: see (77AJ02, 82AJ01) and Table 16.17 here. Measurements of α-t angular correlations for the process ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right){ }^{16} \mathrm{O}(\alpha){ }^{12} \mathrm{C}$ are reported in (88AR22) for the $7^{-}(20.9 \mathrm{MeV}), 6^{+}(16.3 \mathrm{MeV})$, and $5^{-}(14.6 \mathrm{MeV})$ levels in ${ }^{16} \mathrm{O}$. Analyses of the $\left({ }^{7} \mathrm{Li}, \mathrm{t}\right)$ reaction for cluster states in ${ }^{16} \mathrm{O}$ are reported in (86CO15, 88BE49). See also (87BE1C. 88BE1D. 88BE1J, 89AL1D. 90HO1Q) and the sections on ${ }^{19} \mathrm{~F}$ in (83AJ01, 88AJ01).
13. ${ }^{12} \mathrm{C}\left({ }^{10} \mathrm{~B},{ }^{6} \mathrm{Li}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=2.702$

Angular distributions at $E\left({ }^{10} \mathrm{~B}\right)=18$ and 45 MeV have been studied involving ${ }^{16} \mathrm{O}^{*}(0,6.1,7.1,8.9,9.9,10.4)$. At $E\left({ }^{10} \mathrm{~B}\right)=68 \mathrm{MeV}$ angular distributions to ${ }^{16} \mathrm{O}^{*}(0$, $6.1,6.9,10.4,11.1,14.7,16.2,20.9)$ are forward peaked and fairly structureless. ${ }^{16} \mathrm{O}^{*}(0,6.9,11.1)$ are weakly excited: see (82AJ01, 86AJ04, 90HO1Q).
14. ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{8} \mathrm{Be}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-0.204$

Angular distributions have been reported at $E\left({ }^{12} \mathrm{C}\right)$ to 63 MeV [see (77AJ02)] and at 4.9 to 10.5 MeV , and 11.2 to 12.6 MeV [see (86AJ04)]. Angular correlations at $E\left({ }^{12} \mathrm{C}\right)=78 \mathrm{MeV}$ confirm $J^{\pi}=4^{+}, 5^{-}, 6^{+}$and 7^{-}for ${ }^{16} \mathrm{O}^{*}(10.36,14.59,16.3$, 20.9). $\Gamma_{\gamma_{0}} / \Gamma=0.90 \pm 0.10,0.75 \pm 0.15$ and 0.90 ± 0.10, respectively, for the first three of these states. In addition a state is reported at $E_{\mathrm{x}}=22.5 \pm 0.5 \mathrm{MeV}$ which may be the 8^{+}member of the $K^{\pi}=0^{+}, 4 \mathrm{p}-4 \mathrm{~h}$ rotational band (79SA29). For further work at $E\left({ }^{12} \mathrm{C}\right)=90,110$ and 140 MeV see $(86 \mathrm{SH} 10)$. At $E\left({ }^{12} \mathrm{C}\right)=120 \mathrm{MeV} \alpha_{0}$ decays of ${ }^{16} \mathrm{O}^{*}(16.3,20.9)\left[J^{\pi}=6^{+}, 7^{-}\right]$and α_{1} decays of ${ }^{16} \mathrm{O}^{*}(19.1,22.1,23.5)$ are observed as is a broad structure in both channels corresponding to ${ }^{16} \mathrm{O}^{*}(30.0)$ with $J^{\pi}=9^{-}+8^{+}$. A gross structure ${ }^{12} \mathrm{C}^{12} \mathrm{C}$ resonance at $E_{\text {c.m. }}=25 \mathrm{MeV}$ in the reaction leading to the ${ }^{16} \mathrm{O} 11.09 \mathrm{MeV} 4^{+}$state is reported in (87RA22). For other work on
alpha cluster resonances see (86ALZN, 86RAZI, 87RA02, 90HO1Q). Measurements of differential cross sections at sub-barrier energies $2.43 \leq E_{\text {c.m. }} \leq 5.24 \mathrm{MeV}$ are reported in (89CU03) and a statistical model calculation is discussed in (90KH05). See also (91CE09). For the decay of ${ }^{20}$ Ne states see (83AJ01, 86AJ04, 88AJ01), and for excitation functions see (86AJ04).
15. (a) ${ }^{12} \mathrm{C}\left({ }^{14} \mathrm{~N},{ }^{10} \mathrm{~B}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-4.450$
(b) ${ }^{12} \mathrm{C}\left({ }^{17} \mathrm{O},{ }^{13} \mathrm{C}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=0.803$

Angular distributions are reported at $E\left({ }^{14} \mathrm{~N}\right)=53 \mathrm{MeV}$ involving ${ }^{16} \mathrm{O}^{*}(0,6.05$, $6.13,6.92$) and various states of ${ }^{10} \mathrm{~B}$, and at 78.8 MeV involving ${ }^{16} \mathrm{O}_{\text {g.s. }}$: see (82AJ01). Angular distributions have been measured for the g.s. in reaction (b) for $E\left({ }^{17} \mathrm{O}\right)=$ 40 to 70 MeV (86AJ04). See also (86AR04, 89WUZZ, 90HO1Q), the two-center shell model basis calculations of (91TH04) and the review of Landau-Zener effect investigations in (90TH1D).
16. ${ }^{12} \mathrm{C}\left({ }^{20} \mathrm{Ne},{ }^{16} \mathrm{O}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=2.427$

Angular distributions have been measured to $E\left({ }^{20} \mathrm{Ne}\right)=147 \mathrm{MeV}$: see (77AJ02). For yield measurements see (86AJ04). Studies of projectile-breakup and transfer reemission in the ${ }^{12} \mathrm{C}+{ }^{20}$ Ne system at an incident ${ }^{20}$ Ne energy of 157 MeV are described in (87SI06). See also (90HO1Q).
17. (a) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \gamma\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=22.793$
(b) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{n}\right)^{15} \mathrm{O} \quad Q_{\mathrm{m}}=7.130$
$E_{\mathrm{b}}=22.793$
(c) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{15} \mathrm{~N}$
$Q_{\mathrm{m}}=10.666$
(d) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{14} \mathrm{~N}$
$Q_{\mathrm{m}}=2.507$
(e) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right){ }^{13} \mathrm{C}$
(f) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{12} \mathrm{C} \quad Q_{\mathrm{m}}=15.632$
(g) ${ }^{13} \mathrm{C}\left({ }^{3} \mathrm{He},{ }^{8} \mathrm{Be}\right){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=8.174$

The yield of capture γ-rays (reaction a) has been studied for $E\left({ }^{3} \mathrm{He}\right)$ up to 16 MeV [see (77AJ02)], as have angular distributions. Observed resonances are displayed in Table 16.18. It is suggested that the structures at $E_{\mathrm{x}} \approx 26-29 \mathrm{MeV}$ are related to the giant resonances built on the first few excited states of ${ }^{16} \mathrm{O}$ (79VE02). See also (86AJ04).

The excitation functions (reaction b) up to $E\left({ }^{3} \mathrm{He}\right)=11 \mathrm{MeV}$ are marked at low energies by complex structures and possibly by two resonances at $E\left({ }^{3} \mathrm{He}\right)=1.55$ and 2.0 MeV : see Table 16.18. See also (77AJ02) for polarization measurements.

Excitation functions (reaction c) for $E\left({ }^{3} \mathrm{He}\right)=3.6$ to 6.6 MeV have been measured for $\mathrm{p}_{0}, \mathrm{p}_{1+2}, \mathrm{p}_{3}$: a resonance is reported at $E\left({ }^{3} \mathrm{He}\right)=4.6 \mathrm{MeV}$. A resonance at 6 MeV has also been observed: see Table 16.18. A comparison of polarization measured in this reaction and of analyzing powers measured in ${ }^{15} \mathrm{~N}\left(\mathrm{p},{ }^{3} \mathrm{He}\right)$ has been made [see (86AJ04)]. Analyzing powers have been measured at $E\left({ }^{3} \mathrm{He}\right)=33 \mathrm{MeV}$ for the elastic scattering (reaction d) and the deuteron groups to ${ }^{14} \mathrm{~N}^{*}(0,2.31,3.95,9.51)$ (86DR03).

Yields of $\alpha_{0}, \alpha_{1}, \alpha_{2}$, and γ-rays from the decay of ${ }^{12} \mathrm{C}^{*}(12.71,15.11)$ (reaction f) have been studied up to $E\left({ }^{3} \mathrm{He}\right)=12 \mathrm{MeV}$. Observed resonances are displayed in Table 16.18. Those seen in the yield of $\gamma_{15.1}$ are assumed to correspond to ${ }^{16} \mathrm{O}$ states which have primarily a $T=1$ character. Analyzing power measurements are reported at $E\left({ }^{3} \mathrm{He}\right)=33 \mathrm{MeV}$ to ${ }^{12} \mathrm{C}^{*}(4.4)$. Excitation functions for α_{0} and α_{1} are also reported for $E\left({ }^{3} \mathrm{He}\right)=16$ to 23 MeV (86AJ04). DWBA analyses for data at $E\left({ }^{3} \mathrm{He}\right)=50,60 \mathrm{MeV}$ are described in (90ADZU). See also (86ZE1B). The excitation function for ${ }^{8} \mathrm{Be}$ (g.s.) (reaction g) has been studied for $E\left({ }^{3} \mathrm{He}\right)=2$ to 6 MeV . It shows a strong resonance at $E\left({ }^{3} \mathrm{He}\right)=5.6 \mathrm{MeV}$ corresponding to a state in ${ }^{16} \mathrm{O}$ at $E_{\mathrm{x}}=27.3 \mathrm{MeV} . J^{\pi}$ appears to be 2^{+}from angular distribution measurements. A search for anomalous deuterons at 10.8 GeV has been reported (86AJ04).
18. ${ }^{13} \mathrm{C}(\alpha, \mathrm{n}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=2.215$

Angular distributions for the n_{0} group have been measured for $E_{\alpha}=12.8$ to 22.5 MeV : see (71AJ02). Polarization measurements for n_{0} at $\theta=0-70^{\circ}$ at $E_{\alpha}=$ 2.406 and 3.308 MeV are reported in (90WE10). The energy of the γ-ray from the decay of ${ }^{16} \mathrm{O}^{*}(6.13)$ is $6129.266 \pm 0.054 \mathrm{keV}$ (86AJ04) [based on the ${ }^{198} \mathrm{Au}$ standard $\left.E_{\gamma}=411804.4 \pm 1.1 \mathrm{eV}\right]$. See also (82AJ01). In (88CA1N), analytical expressions for reaction rates for ${ }^{13} \mathrm{C}(\alpha, \mathrm{n})^{16} \mathrm{O}$ and other astrophysically important low-mass reactions are given. See also the related work of (86SM1A, 87HA1E, 89KA24, 90HO1I).
19. ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li}, \mathrm{t}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=6.997$

See Table 16.19. See also (82AJ01) and ${ }^{19} \mathrm{~F}$ in (83AJ01).
20. ${ }^{13} \mathrm{C}\left({ }^{9} \mathrm{Be},{ }^{6} \mathrm{He}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=1.617$

See (86AJ04).
21. ${ }^{13} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{9} \mathrm{Be}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-3.485$

At $E\left({ }^{13} \mathrm{C}\right)=105 \mathrm{MeV},{ }^{16} \mathrm{O}^{*}(6.05,6.13,10.35,16.3,20.7)$ are strongly populated: see (86AJ04, 82AJ01, 77AJ02). Excitation functions ($E_{\text {c.m. }}=13.4-16.8 \mathrm{MeV}$) and angular distributions ($E_{\text {c.m. }}=13.4,16.38 \mathrm{MeV}$) have been measured (88JA1B).
22. ${ }^{13} \mathrm{C}\left({ }^{17} \mathrm{O},{ }^{14} \mathrm{C}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=4.033$

See (82AJ01).
23. ${ }^{14} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=14.617$

At $E\left({ }^{3} \mathrm{He}\right)=11$ to 16 MeV , neutron groups are observed to $T=2$ states at $E_{\mathrm{x}}=22.717 \pm 0.008$ and $24.522 \pm 0.011 \mathrm{MeV}(\Gamma<30 \mathrm{keV}$ and $<50 \mathrm{keV}$, respectively $)$. These two states are presumably the first two $T=2$ states in ${ }^{16} \mathrm{O}$, the analog states to ${ }^{16} \mathrm{C}^{*}(0,1.75)$. J^{π} for ${ }^{16} \mathrm{O}^{*}(24.52)$ is found to be 2^{+}from angular distribution measurements (70AD1A). At $E\left({ }^{3} \mathrm{He}\right)=25.4 \mathrm{MeV}$ forward angle differential cross sections have been determined to the 0^{+}states of ${ }^{16} \mathrm{O}^{*}(0,6.05,12.05)$ (86AJ04).
24. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \gamma){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=20.736$

The γ_{0} yield has been studied for $E_{\mathrm{d}}=0.5$ to 5.5 MeV . Observed resonances are displayed in Table 16.20. Radiative capture in the region of the GDR $\left[E_{\mathrm{d}}=1.5\right.$ to $4.8 \mathrm{MeV}]$ has been measured with polarized deuterons. See (86AJ04).
25. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{n}){ }^{15} \mathrm{O} \quad Q_{\mathrm{m}}=5.073 \quad E_{\mathrm{b}}=20.736$

For $E_{\mathrm{d}}=0.66$ to 5.62 MeV , there is a great deal of resonance structure in the excitation curves with the anomalies appearing at different energies at different angles: the more prominent structures in the yield curves are displayed in Table 16.20. For polarization measurements see (77AJ02) and (81LI23) in ${ }^{15} \mathrm{O}$ (86AJ01).

$$
\text { 26. }{ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{p})^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=8.609 \quad E_{\mathrm{b}}=20.736
$$

The yield of various proton groups for $E_{\mathrm{d}}<5.0 \mathrm{MeV}$ shows some fluctuations and two resonances: see Table 16.20 and (82AJ01). For polarization measurements see (86AJ04, 82AJ01). Analyzing power measurements at $E_{\mathrm{d}}=70 \mathrm{MeV}$ are reported in (86MO27).

The yield of elastically scattered deuterons has been studied for $E_{\mathrm{d}}=0.65$ to 5.5 MeV and for 14.0 to 15.5 MeV : see (71AJ02, 77AJ02). There is indication of broad structure at $E_{\mathrm{d}}=5.9 \mathrm{MeV}$ and of sharp structure at $E_{\mathrm{d}}=7.7 \mathrm{MeV}$ in the total cross section of the d_{1} group to the $T=1$ (isospin-forbidden), $J^{\pi}=0^{+}$state at $E_{\mathrm{d}}=2.31 \mathrm{MeV}$ in ${ }^{14} \mathrm{~N}$. The yield of deuterons $\left(\mathrm{d}_{2}\right)$ to ${ }^{14} \mathrm{~N}^{*}(3.95)\left[J^{\pi}=1^{+}, T=0\right]$ shows gross structures at $E_{\mathrm{d}}=7.4$ and 10.2 MeV (70DU04): see Table 16.20 The yield of d_{1} has also been studied for $E_{\mathrm{d}}=10.0$ to 17.9 MeV : see (82AJ01). For polarization measurements see (86AJ04, 82AJ01).
28.
(a) ${ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{t}){ }^{13} \mathrm{~N}$
$Q_{\mathrm{m}}=-4.296$
$E_{\mathrm{b}}=20.736$
(b) ${ }^{14} \mathrm{~N}\left(\mathrm{~d},{ }^{3} \mathrm{He}\right){ }^{13} \mathrm{C}$
$Q_{\mathrm{m}}=-2.057$

See (82AJ01).
29. ${ }^{14} \mathrm{~N}(\mathrm{~d}, \alpha){ }^{12} \mathrm{C} \quad Q_{\mathrm{m}}=13.575 \quad E_{\mathrm{b}}=20.736$

There is a great deal of structure in the yields of various α-particle groups for $E_{\mathrm{d}}=0.5$ to 12 MeV . Broad oscillations $(\Gamma \sim 0.5 \mathrm{MeV})$ are reported in the α_{0} and α_{1} yields for $E_{\mathrm{d}}=2.0$ to 5.0 MeV . In addition, ${ }^{16} \mathrm{O}^{*}(23.54)$ is reflected in the α_{3} yield (see Table 16.20). The yield of $15.11 \mathrm{MeV} \gamma$-rays, [from the decay of ${ }^{12} \mathrm{C}^{*}(15.11)$, $\left.J^{\pi}=1^{+}, T=1\right]$ which is isospin-forbidden, has been studied for $E_{\mathrm{d}}=2.8$ to 12 MeV . Pronounced resonances are observed at $E_{\mathrm{d}}=4.2,4.58$ and 5.95 MeV and broader peaks occur at $E_{\mathrm{d}}=7.1$ and, possibly, at 8.5 MeV : see (82 AJ 01). For polarization measurements see (82AJ01, 86AJ04).
30. (a) ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{p}\right)^{16} \mathrm{O} \quad Q_{\mathrm{m}}=15.242$
(b) ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{p} \alpha\right){ }^{12} \mathrm{C}$
$Q_{\mathrm{m}}=8.081$

Observed proton groups are displayed in Table 16.21. Angular distributions have been measured at $E\left({ }^{3} \mathrm{He}\right)=2.5$ to 24.7 MeV : see (82AJ01). Branching ratios and τ_{m} measurements are shown in Tables 16.13 and 16.14.
31. ${ }^{14} \mathrm{~N}(\alpha, \mathrm{~d}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-3.112$

Angular distributions to states of ${ }^{16} \mathrm{O}$ have been reported at many energies to $E_{\alpha}=48 \mathrm{MeV}:$ see (71AJ02, 77AJ02). Among the states which have been reported [see Table 16.7 in (77AJ02)] are ${ }^{16} \mathrm{O}^{*}(11.094 \pm 3,13.98 \pm 50,14.32 \pm 20,14.400 \pm 3$, $14.815 \pm 2,15.17 \pm 50,15.44 \pm 50,15.78 \pm 50,16.214 \pm 15,17.18 \pm 50)[\mathrm{MeV} \pm \mathrm{keV}]:$ the results are consistent with $J^{\pi}=5^{+}, 6^{+}, 4^{+}$for ${ }^{16} \mathrm{O}^{*}(14.40,14.82,16.29)$ [2p-2h] and with 6^{+}for ${ }^{16} \mathrm{O}^{*}(16.30)[4 \mathrm{p}-4 \mathrm{~h}]$. [See references in (77AJ02).] Work reported in (79CL10) and reviewed in (82AJ01) determined $\Gamma_{\text {c.m. }}=34 \pm 12,27 \pm 5$ and $70 \pm 8 \mathrm{keV}$, respectively for ${ }^{16} \mathrm{O}^{*}(14.31 \pm 10,14.40 \pm 10,14.81)$.
32. ${ }^{14} \mathrm{~N}\left({ }^{6} \mathrm{Li}, \alpha\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=19.261$

See (77AJ02).
33. (a) ${ }^{14} \mathrm{~N}\left({ }^{11} \mathrm{~B},{ }^{9} \mathrm{Be}\right)^{16} \mathrm{O} \quad Q_{\mathrm{m}}=4.921$
(b) ${ }^{14} \mathrm{~N}\left({ }^{12} \mathrm{C},{ }^{10} \mathrm{~B}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-4.450$
(c) ${ }^{14} \mathrm{~N}\left({ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}\right)^{16} \mathrm{O} \quad Q_{\mathrm{m}}=2.057$
(d) ${ }^{14} \mathrm{~N}\left({ }^{14} \mathrm{~N},{ }^{12} \mathrm{C}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=10.463$

For reactions (a) and (c) see (82AJ01). For reactions (b), (c), and (d) see (86AJ04).
34. ${ }^{15} \mathrm{~N}(\mathrm{p}, \gamma){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=12.127$

The yield of γ-rays has been measured for $E_{\mathrm{p}}=0.15$ to 27.4 MeV [see (86AJ04)] and for $E_{\mathrm{p}}=6.25-13.75 \mathrm{MeV}$ (88WI16), $20-100 \mathrm{MeV}^{\prime}(88 \mathrm{HA} 04), 20-90 \mathrm{MeV}$ (89KA02), and $10-17 \mathrm{MeV}$ (87BA71): observed resonances are displayed in Table 16.22. The γ_{0} cross section shows a great deal of structure up to $E_{\mathrm{p}}=17 \mathrm{MeV}$. Above that energy the γ_{0} yield decreases monotonically. Besides the GDR which peaks at ${ }^{16} \mathrm{O}^{*}(22.15)$ there is evidence for the emergence of a giant structure (E2) with $E_{\mathrm{x}}=24-29 \mathrm{MeV}$ in the $\gamma_{1+2+3+4}$ yield (78OC01). Measurements for (p, γ_{0}) cross sections and analyzing powers for $E_{\mathrm{p}}=6.25-13.75 \mathrm{MeV}$ indicated a clear enhancement of the E2 cross section above $E_{\mathrm{x}}=22 \mathrm{MeV}$. Differential cross sections for γ_{0} and several other (unresolved) γ-rays at $E_{\mathrm{p}} \approx 28$ to 48 MeV generally show a broad bump at $E_{\mathrm{x}} \approx 34 \pm 2 \mathrm{MeV}$. The angular distributions show a dominant E1 character (86AJ04). See also (88HA04, $88 \mathrm{KI1C}, 89 \mathrm{BOYU}$) and the review of (88HA12). For comparisons with measurements of the inverse reaction see (91FI08).

Measurements of (p, γ_{1}) yields (87BA71) indicated a pronounced concentration of dipole strength which was interpreted as an E1 giant resonance built on the ${ }^{16} \mathrm{O}$ first
excited state. Other measurements of proton capture to excited states for $E_{\mathrm{p}}=20-$ 90 MeV are reported in (89KA02).

Cross sections and analyzing powers for capture into the 3^{-}state at $E_{\mathrm{x}}=6.13 \mathrm{MeV}$ were studied by (88RA15). Studies of quadrupole and octupole radiation from ${ }^{16} \mathrm{O}$ at $E_{\mathrm{x}}=39 \mathrm{MeV}$ determine $\sigma_{\mathrm{E} 2} / \sigma_{\mathrm{E} 1}=0.124 \pm 0.015$, and $\sigma_{\mathrm{E} 3} / \sigma_{\mathrm{E} 1}=0.0051 \pm 0.0026$ (89KO29).

A study of the M1 decays of ${ }^{16} \mathrm{O}^{*}(16.21,17.14)$ [both $\left.J^{\pi} ; T=1^{+} ; 1\right]$ to ${ }^{16} \mathrm{O}^{*}(6.05)$ finds $\mathrm{B}\left(\mathrm{M} 1,1^{+} \rightarrow 0_{2}^{+}\right) / \mathrm{B}\left(\mathrm{M} 1,1^{+} \rightarrow 0_{1}^{+}\right)=0.48 \pm 0.03$ and 0.55 ± 0.04, respectively. ${ }^{16} \mathrm{O}^{*}(18.03)$ is a $3^{-} ; 1$ state with a strength $\Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma=1.96 \pm 0.27 \mathrm{eV}$ and ${ }^{16} \mathrm{O}^{*}(18.98)$ is the $4^{-} ; 1$ stretched particle-hole state with a strength of $(0.85 \pm 0.10) \mathrm{eV}$ (83SN03). See also (83SN03) for the identification of analog states in ${ }^{16} \mathrm{~N}$ and in ${ }^{16} \mathrm{O}$, and for a discussion of Gamow-Teller matrix elements in $A=14-18$ nuclei. See also the review of (87BE1G). A study of the strong M2 transitions $E_{\mathrm{x}}=12.53 \rightarrow 0 \mathrm{MeV}$ and $E_{\mathrm{x}}=12.97 \rightarrow 0 \mathrm{MeV}$ is reported in (86ZI08).

For astrophysical considerations see (86AJ04) and (85CA41, 88CA1N, 89BA2P). See also Table 16.14 here. An application of this reaction for thin film analysis is described in (92EN02).

Calculations of the decay of the GDR and GQR by (90BU27) have included 1p1 h and $2 \mathrm{p}-2 \mathrm{~h}$ configurations, but the fine structure of the GDR remains unexplained. RPA calculations overestimate p_{0} decay but the use of a non-local mean field partially corrects this. The ISGQR is misplaced by RPA calculations, but is lowered by coupling to $\alpha-{ }^{12} \mathrm{C}$ channels. Data from (e, é α) experiments are needed. RPA spectra have been examined (88BL10) using a relativistic Hartree-Fock model for the ground state. Hartree-Fock based calculations appear to be insensitive to short-range repulsion. 1^{-}and $T=1$ strength distributions for ${ }^{16} \mathrm{O}$ have been calculated using Hartree and Hartree-Fock methods. Shell-model plus R-matrix and continuum shell-model results for 1 p shell nuclei have been considered (87KI1C), but underestimate groundstate $\left(\gamma, \mathrm{N}_{0}\right)$ decay branches. Ground state shell-model plus R-matrix calculations describe the GDR region reasonably well.
35. ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{n}){ }^{15} \mathrm{O} \quad Q_{\mathrm{m}}=-3.536 \quad E_{\mathrm{b}}=12.127$

Excitation functions and cross sections have been measured for $E_{\mathrm{p}}=3.8$ to $19.0 \mathrm{MeV}:$ see (82AJ01). For a listing of observed resonances see Table 16.23. (83BY03) have measured the polarization and analyzing power for the n_{0} group for $E_{\mathrm{p}}=4.5$ to 11.3 MeV and have deduced integrated cross sections. Differential cross sections and analyzing powers at $E_{\mathrm{p}}=200$ and 494 MeV have been measured (88CIZZ). See also (86AJ04).

The theoretical work of (87BE1D) has shown the sensitivity of the (p, n) reaction to spin dynamics and pionic fields for $E_{\mathrm{p}}=150-500 \mathrm{MeV}$ and isovector density below 50 MeV . The importance of configuration mixing in Gamow-Teller quenching is also considered. The authors of (89RA15) discuss the failure of the DWIA to explain the analyzing power for (p, n) at 500 MeV , focusing on transverse and longitudinal
spin-flip cross sections and projectile non-spin-flip cross sections as the sensitive terms primarily responsible for the inadequacies of this method.
36. (a) ${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{p}){ }^{15} \mathrm{~N}$

$$
E_{\mathrm{b}}=12.127
$$

(b) ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha)^{12} \mathrm{C} \quad Q_{\mathrm{m}}=4.966$
(c) ${ }^{15} \mathrm{~N}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{13} \mathrm{C} \quad Q_{\mathrm{m}}=-10.666$

Elastic scattering studies have been reported for $E_{\mathrm{p}}=0.6$ to 15 MeV and angular distributions and excitation functions have been measured for $E_{\mathrm{p}}=2.5$ to 9.5 MeV for the $\left(\mathrm{p}_{1+2} \gamma\right)$ and ($\mathrm{p}_{3} \gamma$) transitions [see (86AJ04)]. Measurements of the depolarization parameter $K_{\mathrm{y}}{ }^{\mathrm{y}^{\prime}}$ at $E_{\mathrm{p}}=65 \mathrm{MeV}$ are reported in (90NA15). Excitation functions for α_{0} and α_{1} particles [corresponding to ${ }^{12} \mathrm{C}^{*}(0,4.43)$] and of $4.43 \mathrm{MeV} \gamma$-rays have been measured for $E_{\mathrm{p}}=93 \mathrm{keV}$ to 45 MeV [see (82AJ01)] and at $E_{\mathrm{p}}=77.6 \mathrm{keV}$ to 9.5 MeV (86AJ04). The yield of $15.1 \mathrm{MeV} \gamma$-rays has been measured for $E_{\mathrm{p}}=12.5$ to 17.7 MeV (78OC01). Measurements of the 430 keV resonance in ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha \gamma){ }^{12} \mathrm{C}$ were carried out by (87OS01, 87EV01). Observed anomalies and resonances are displayed in Table 16.22. The resonance at $E\left({ }^{15} \mathrm{~N}\right)=6.4 \mathrm{MeV}$ observed in the reaction ${ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}, \alpha \gamma\right){ }^{12} \mathrm{C}$ has been used extensively to determine the hydrogen concentration in thin films. See (87EV01, 87OS01, 90FU06, 90HJ02, 92FA04).

A phase shift analysis of angular distributions of cross section and analyzing power for elastic scattering has yielded information on many ${ }^{16} \mathrm{O}$ states in the range $E_{\mathrm{x}}=$ 14.8 to 18.6 MeV . In particular a broad $J^{\pi}=2^{-}, T=1$ state at 17.8 MeV appears to be the analog of the $1 \mathrm{p}-1 \mathrm{~h}\left(\mathrm{~d}_{3 / 2}, \mathrm{p}_{1 / 2}^{-1}\right){ }^{16} \mathrm{~N}$ state at $E_{\mathrm{x}} \approx 5.0 \mathrm{MeV}$ (86AJ04). The isospin mixing of the 2^{-}states ${ }^{16} \mathrm{O}^{*}(12.53,12.97)$ has been studied by (83LE25): the charge-dependent matrix element responsible for the mixing is deduced to be $181 \pm 10 \mathrm{keV}$. The α_{0} yield and angular distribution study by (82RE06) leads to a zero-energy intercept of the astrophysical $S(E)$ factor, $S(0)=65 \pm 4 \mathrm{MeV} \cdot \mathrm{b}$. See (86AJ04, 82AJ01) for the earlier work. See also (87RO1D), and see the tables of thermonuclear reaction rates in (85CA1A).

Among recent theoretical developments related to these reactions, electron screening effects for ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha)^{12} \mathrm{C}$ at very low energies ($<50 \mathrm{keV}$) have been evaluated (87AS05). Expressions for longitudinal and irregular transverse PNC analyzing powers in cases of parity-mixed resonances such as ${ }^{15} \mathrm{~N}(\overrightarrow{\mathrm{p}}, p){ }^{15} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}(\overrightarrow{\mathrm{p}}, \alpha){ }^{12} \mathrm{C}$ are derived in (89CA1L). Recent theoretical studies of the parity- and isospin-forbidden α-decay of the 12.97 MeV state to the ${ }^{12} \mathrm{C}$ ground state are reported in (91KN03, 91DU04). See also the theoretical study of single particle resonances in (91TE03).

An investigation into the separation of the strength of the giant resonance for underlying levels neglecting statistical assumptions (86KL06) has shown deviations from statistical behavior at the tops of resonances, leading to missing spectroscopic strength. A calibration method for heavy-ion accelerators has been described by (87EV01), who have also determined the energy of the $E_{\mathrm{p}}=430 \mathrm{keV}$ resonance in the ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha \gamma){ }^{12} \mathrm{C}$ reaction. Quantum fluctuations are shown to cause structures having collective properties (86RO26). These new collective states are dissipative.
${ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{p}){ }^{15} \mathrm{~N}$ is considered for $25<E_{\mathrm{p}}<40 \mathrm{MeV}$. (88RO09) consider the transition from resonance to direct reactions as well as the significance of quantum fluctuations.
37. ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{n}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=9.9030$

Observed neutron groups, l-values and spectroscopic factors are displayed in Table 16.24. See also (86AJ04).
38. ${ }^{15} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=6.633$

See Table 16.24.
39. ${ }^{16} \mathrm{~N}\left(\beta^{-}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=10.419$

The ground state of ${ }^{16} \mathrm{~N}$ decays to seven states of ${ }^{16} \mathrm{O}$: reported branching ratios are listed in Table 16.25. The ground state transition has the unique first-forbidden shape corresponding to $\Delta J=2$, fixing J^{π} of ${ }^{16} \mathrm{~N}$ as 2^{-}: see (59AJ76). The unique firstforbidden decay rates to the 0^{+}ground state and $6.06-\mathrm{MeV}$ level are well reproduced by a large-basis $(0+2+4) \hbar \omega$ shell-model calculation (92WA25). The decays to oddparity states (see Table 16.25) are well reproduced by recent calculations of GamowTeller matrix elements (93CH1A). For the β-decay of ${ }^{16} \mathrm{~N}^{*}(0.12)$, see Reaction 1 in ${ }^{16} \mathrm{~N}$.

The β-delayed α-decays of ${ }^{16} \mathrm{O}^{*}(8.87,9.59,9.84)$ have been observed: see (71AJ02). The parity-forbidden α-decay from the 2^{-}state ${ }^{16} \mathrm{O}^{*}(8.87)$ has been reported: $\Gamma_{\alpha}=$ $(1.03 \pm 0.28) \times 10^{-10} \mathrm{eV}\left[E_{\alpha}=1282 \pm 5 \mathrm{keV}\right]:$ see (77AJ02).

Transition energies derived from γ-ray measurements are: $E_{\mathrm{x}}=6130.40 \pm 0.04 \mathrm{keV}$ $\left[E_{\gamma}=6129.142 \pm 0.032 \mathrm{keV}(82 \mathrm{SH} 23)\right], E_{\mathrm{x}}=6130.379 \pm 0.04\left[E_{\gamma}=6129.119 \pm 0.04 \mathrm{keV}\right.$ (86KE15)] and $E_{\mathrm{x}}=7116.85 \pm 0.14 \mathrm{keV}\left[E_{\gamma}=7115.15 \pm 0.14 \mathrm{keV}\right]$. See (77AJ02). See also p. 16 in (82OL01).

See (90JI02) for an R-matrix analysis for the $9.59-\mathrm{MeV}$ level and discussion of its astrophysical significance and see astrophysical related work of (91BA1K, 91HU10).
40. (a) ${ }^{16} \mathrm{O}(\gamma, \mathrm{n})^{15} \mathrm{O} \quad Q_{\mathrm{m}}=-15.663$
(b) ${ }^{16} \mathrm{O}(\gamma, 2 \mathrm{n})^{14} \mathrm{O} \quad Q_{\mathrm{m}}=-28.885$
(c) ${ }^{16} \mathrm{O}(\gamma, \mathrm{pn}){ }^{14} \mathrm{~N} \quad Q_{\mathrm{m}}=-22.960$
(d) ${ }^{16} \mathrm{O}(\gamma, 2 \mathrm{p})^{14} \mathrm{C} \quad Q_{\mathrm{m}}=-22.335$
(e) ${ }^{16} \mathrm{O}(\gamma, 2 \mathrm{~d}){ }^{12} \mathrm{C} \quad Q_{\mathrm{m}}=-31.009$

The absorption cross section and the (γ, n) cross section are marked by a number of resonances. On the basis of monoenergetic photon data, excited states of ${ }^{16} \mathrm{O}$ are observed at $E_{\mathrm{x}}=17.3[\mathrm{u}], 19.3[\mathrm{u}]$ and $21.0 \mathrm{MeV}[\mathrm{u}=$ unresolved], followed by the giant resonance with its principal structures at 22.1 and 24.1 MeV , and with additional structures at 23 and 25 MeV : see (86AJ04, 88DI02). The integrated nuclear absorption cross section for $E_{\gamma}=10$ to 30 MeV is $182 \pm 16 \mathrm{MeV} \cdot \mathrm{mb}$ (86AJ04). See also Reaction 42. The (γ, n) cross section has been measured for $E_{\gamma}=17$ to 33 MeV : in that energy interval the ($\gamma, 2 \mathrm{n}$) cross section is negligible. The cross section for formation of the GDR at 22.1 MeV is $10.0 \pm 0.4 \mathrm{mb}$ and the integrated cross section to 30 MeV is $54.8 \pm 5 \mathrm{MeV} \cdot \mathrm{mb}$. There is apparently significant single particle-hole excitation of ${ }^{16} \mathrm{O}$ near 28 MeV and significant collectivity of the GDR. A sharp rise is observed in the average E_{n} above 26 MeV . The cross section for $\left(\gamma, \mathrm{n}_{0}\right)$ decreases monotonically for $E_{\mathrm{x}}=25.5$ to 43.8 MeV . In the range $30-35 \mathrm{MeV}$ the E2 cross section exhausts about 4% of the isovector E2 EWSR. Over the range 25.5 to 43.8 MeV it exhausts $\sim 68 \%$ of the isovector E2 EWSR [see (86AJ04) and references cited there]. M1, E1, and E2 strengths were studied by recent polarization and cross section measurements for $E_{\gamma}=17$ to 25 MeV (91FI08). An atlas of photoneutron cross sections obtained with monoenergetic photons is presented in (88DI02).

The absorption cross section has been measured with bremsstrahlung photons of energies from $E_{\mathrm{bs}}=10 \mathrm{MeV}$ to above the meson threshold: see (82AJ01). The $(\gamma, \mathrm{n}),(\gamma, 2 \mathrm{n})$ and (γ, Tn) cross sections have been studied with monoenergetic photons for $E_{\gamma}=24$ to 133 MeV . Above 60 MeV , the main reaction mechanisms appear to be absorption of the photons by a correlated n-p pair in the nucleus: the integrated cross section from threshold to 140 MeV is $161 \pm 16 \mathrm{MeV} \cdot \mathrm{mb}$ (86AJ04). Differential cross sections for ($\gamma, \mathrm{n}_{\mathrm{n}}$) have been measured at $E_{\gamma}=150,200$, and 250 MeV at $\theta_{\text {lab }}=49^{\circ}, 59^{\circ}$, and 88° (88BE20, 89BE14). See also ${ }^{15} \mathrm{O}$ in (91AJ01). For reaction (b) and pion production see (86AJ04). For reaction (c) measurements have been carried out with bremsstrahlung photons with $E_{\gamma} \leq 150 \mathrm{MeV}$ (89VO19), and with tagged photons in the $\Delta(1232)$ resonance region (87KA13). See also (91VA1F). Measurements of reactions (d) and (e) were made with tagged photons of energies 80131 MeV (91MA39). Measurements of the total cross section at $E_{\gamma}=90-400 \mathrm{MeV}$ are described in (88AH04). Calculations which indicate that molecular effects are important in screening corrections to the cross section in the Δ resonance region are discussed. The hadron production cross section has been studied over the range 0.25 to 2.7 GeV see (86AJ04).

Sum rules and transition densities for isoscalar dipole resonances are discussed in (90AM06). For a calculation of monopole giant resonances see (90AS06). Calculations relating to polarization effects are discussed in (90LO20, 90BO31). The contribution
of six-quark configurations to the E1 sum rule has been considered (89AR02), and upper bounds for the production probabilities of $6 q$-clusters have been derived. The continuum self-consistent RPA-SK3 theory predicts charge transition densities in ${ }^{16} \mathrm{O}$ for excitation of GDR (88CA07). Neutron and proton decay is also indicated. See also (91LI28, 91LI29). A contiuum shell model description of (γ, n) and (γ, p) data at medium energies is reported in (90BRZY). Radial dependence of charge densities depends on whether r-values correspond to the interior of the nucleus or to the surface (88CA07). In (85GO1A) (γ, n) and (γ, p) experimental results are compared with those of large-basis shell model calculations. Good results were obtained, but a new source of spreading is warranted. Ratios of (γ, n)-to- (γ, p) cross sections have been computed using R-matrix theory including configuration splitting, isospin splitting, and kinematics effects (86IS09). Computations of the partial photonuclear cross sections have been performed (87KI1C) using the continuum shell model. GDR and other giant multipole resonances are also considered. The authors of (88RO1R) use the continuum shell model as a basis for their study of "self-organization". The role of the velocity-dependent part of the NN interaction is also examined. A method for solving the RPA equations, and an examination of the long-wavelength approximation is discussed in (88RY03). Levinger's modified quasi-deuteron model is applied for $7 \leq A \leq 238$ and $E_{\gamma}=35-140 \mathrm{MeV}$ (89TE06). The quantities $L=6.1 \pm 2.2$ and $D=0.72 A$ are also deduced. The role of distortion in (γ, np) reactions is explored in (91BO29).
41. (a) ${ }^{16} \mathrm{O}(\gamma, \mathrm{p})^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=-12.127$
(b) ${ }^{16} \mathrm{O}(\gamma, \mathrm{d}){ }^{14} \mathrm{~N} \quad Q_{\mathrm{m}}=-20.736$
(c) ${ }^{16} \mathrm{O}(\gamma, \alpha){ }^{12} \mathrm{C} \quad Q_{\mathrm{m}}=-7.161$
(d) ${ }^{16} \mathrm{O}\left(\gamma, \pi^{0}\right)^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-134.974$
(e) ${ }^{16} \mathrm{O}\left(\gamma, \pi^{+}\right){ }^{16} \mathrm{~N} \quad Q_{\mathrm{m}}=-149.986$
(f) ${ }^{16} \mathrm{O}\left(\gamma, \pi^{-}\right)^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-154.984$
(g) ${ }^{16} \mathrm{O}\left(\gamma, \pi^{-} \mathrm{p}\right){ }^{15} \mathrm{O} \quad Q_{\mathrm{m}}=-154.449$

The (γ, p_{0}) cross section derived from the inverse capture reaction (reaction 34) confirms the giant resonance structure indicated above in reaction 40, as do the direct $\left(\gamma, \mathrm{p}_{0}\right)$ measurements. For the earlier work see (82AJ01). For results of measurements with linear polarized photons at $E_{\mathrm{bs}}=22$ and 30 MeV and for differential cross sections at $E_{\gamma}=101.5-382 \mathrm{MeV}$ and proton spectra at $E_{\gamma} \approx 360 \mathrm{MeV}$, see (86AJ04). See also the reviews (87BE1G, 88KO1S), and see (87MA1K). Angular distributions for (γ, p) reactions populating low-lying states of ${ }^{15} \mathrm{~N}$ were measured (88AD07) with bremsstrahlung photons with $E_{\gamma}=196-361 \mathrm{MeV}$. Differential cross sections measurements with $E_{\gamma} \approx 300 \mathrm{MeV}$ tagged photons (90VA07) were used to study the interaction mechanism. Proton spectra measured at 90° (90VA07) showed evidence for an absorption process in which the photon interacts with a $T=1 \mathrm{np}$ pair. See also the comment (92SI01) and reply on the interpretation of these data. A related
calculation concerning quasideuteron behavior of $n p$ pairs is described in (92RY02). See also (87OL1A).

For reaction (b) see (82AJ01). A study of the ${ }^{16} \mathrm{O}\left(\gamma, \alpha_{0}\right)$ reaction (c) at $\theta=45^{\circ}$ and 90° shows a 2^{+}resonance at $E_{\mathrm{x}}=18.2 \mathrm{MeV}$ with an E2 strength which is spread out over a wide energy interval. A strong resonance corresponding to an isospinforbidden 1^{-}state at $E_{\mathrm{x}} \approx 21.1 \mathrm{MeV}$ is also observed (86AJ04). The systematics of cross sections for reaction (d) are discussed in (91BO26). For pion production reactions (e), pion angular distributions were measured for a mixed flux of real and virtual photons at $E_{\gamma}=320 \mathrm{MeV}$ (87YA02). Double differential cross sections with tagged photons with $E_{\gamma}=220-450 \mathrm{MeV}$ are reported in (91AR06). See also ${ }^{16} \mathrm{~N}$ and (86AJ04). Exclusive cross sections for reaction (g) in the Δ resonance region are reported by (92PH01)

Recent theoretical work includes calculations of sum rules and transition densities (90AM06) monopole giant resonances (90AS06), and polarization effects (90LO20, 90BO31). A scheme using fractional-parentage coefficients to separate the wavefunction into three fragments in arbitrary internal states has been proposed, and examples include ${ }^{7} \mathrm{Li}(\gamma, \mathrm{t}){ }^{4} \mathrm{He},{ }^{16} \mathrm{O}(\gamma, \mathrm{dd}){ }^{12} \mathrm{C}$ and ${ }^{12} \mathrm{C}(\gamma, \mathrm{pd}){ }^{9} \mathrm{Be}(88 \mathrm{BU} 1 \mathrm{~N})$. A formula for cross sections for $A\left(\gamma, \mathrm{~d} \gamma^{\prime}\right) A-2$ reactions with $E_{\gamma}=2.23 \mathrm{MeV}$ has been derived (88DU04). In a study of Dirac negative energy bound states, a relativistic shell model predicts $\gamma+{ }^{16} \mathrm{O} \rightarrow{ }_{\overline{\mathrm{F}}}^{15} \mathrm{~N}+\mathrm{p}$ has a threshold at 1.2 GeV and rises to about $5 \mu \mathrm{~b}$ by 1.6 GeV (88YA08). (88LO07) calculate ${ }^{16} \mathrm{O}(\gamma, \mathrm{p})^{15} \mathrm{~N}$ using Dirac phenomenology. Dirac spinors are used to describe the proton dynamics in a DWBA calculation, and results are compared to data. ${ }^{16} \mathrm{O}(\gamma, \mathrm{p}){ }^{15} \mathrm{~N}$ for $E_{\gamma}=50-400 \mathrm{MeV}$ has been calculated (86LU1A) using a coupled-channels continuum shell-model technique. A single particle direct knock-out model is used by (87RY03) to calculate (γ, π) cross sections for $E_{\gamma}=40-400 \mathrm{MeV}$. See also (90BRZY, 91IS1D). ${ }^{16} \mathrm{O}(\gamma, \mathrm{p})$ at intermediate energies has been calculated using both a single particle and a pion-exchange-current mechanism in a relativistic form of the nucleon current operator and four-component nucleon wave functions (88 MC 03). See also the study of the effects of current conservation in these reactions (91MA39) and of scaling (91OW01). An expression for the (γ, N) cross section with incident circularly polarized photons and outgoing nucleon polarization being detected is given in (86PO14). A direct-semidirect model calculation for ${ }^{16} \mathrm{O}\left(\gamma, \mathrm{N}_{0}\right)$ at 60 MeV is given as an example. A model, based on basic interactions between photons, pions, nucleons and isobars, providing an adequate description of the $\gamma \mathrm{N} \rightarrow \pi \mathrm{N}$ reaction is described in (92CA04)
42. ${ }^{16} \mathrm{O}(\gamma, \gamma){ }^{16} \mathrm{O}$

Resonances have been reported (70AH02) at $E_{\gamma}=22.5 \pm 0.3,25.2 \pm 0.3,31.8 \pm 0.6$ and $50 \pm 3 \mathrm{MeV}$: the dipole sum up to 80 MeV exceeds the classical value by a factor 1.4. Elastic photon scattering cross sections for $E_{\gamma}=25$ to 39 MeV have been measured. The E2 strength is $1.25_{-0.9}^{+1.3}$ times the total EWSR strength over that interval. The widths of ${ }^{16} \mathrm{O}^{*}(6.92,7.12)$ are, respectively, 94 ± 4 and $54 \pm 4 \mathrm{meV}$
(85MO10, 86AJ04). Differential cross sections at angles of 135° and 45° for elastic scattering of tagged photons between 21.7 and 27.5 MeV in the giant dipole resonance region have been measured by (87LE12). Differential cross sections for tagged photons with $E_{\gamma}=27-68 \mathrm{MeV}$ have been reported by (90MEZV). Polarizabilities of nucleons imbedded in ${ }^{16} \mathrm{O}$ were measured via Compton scattering of 61 and 77 MeV photons by (92LU01). See also Table 16.14.

A non-perturbative study of damping of dipole and quadrupole motion in ${ }^{16} \mathrm{O}$ is discussed in (92DE06). (87VE03) have used an extended isobar doorway model including open-shell configurations in both ground and excited states to calculate elastic and inelastic photon scattering in the Δ-region, and for linearly polarized photons.
43. (a) ${ }^{16} \mathrm{O}(\mathrm{e}, \mathrm{e})^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right)^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=-12.127$
(c) ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime} \alpha\right){ }^{12} \mathrm{C} \quad Q_{\mathrm{m}}=-7.161$

The ${ }^{16} \mathrm{O}$ charge radius $=2.710 \pm 0.015 \mathrm{fm}$ (78KI01). Form factors for transitions to the ground and to excited states of ${ }^{16} \mathrm{O}$ have been reported in many earlier studies [see (82AJ01. 86AJ04)], and by (87HY01); see Table 16.26. Table 16.26 lists the excited states observed from (e, e^{\prime}). The form factor for ${ }^{16} \mathrm{O}^{*}(9.84)$ indicates a transition density peaked in the interior (86BU02). The energy-weighted M2 strength is nearly exhausted by the M2 states which have been observed. The isospin-forbidden (E1) excitation of ${ }^{16} \mathrm{O}^{*}(7.12)$ is reported: the isovector contribution interferes destructively with the isoscalar part and has a strength $\sim 1 \%$ of the $T=0$ amplitude. The 0^{+} states of ${ }^{16} \mathrm{O}^{*}(6.05,12.05,14.00)$ saturate $\sim 19 \%$ of an isoscalar monopole sum rule. In a recent measurement, the magnetic monopole $0^{+} \rightarrow 0^{-}$transition to ${ }^{16} \mathrm{O}^{*}(10.957)$ was observed (91VO02). The E2 strength is distributed over a wide energy region: see Table 16.26, and (82AJ01, 86AJ04) for references. See also the compilation of nuclear charge density distribution parameters (87DE1B), and the reviews of (89DR1C, 87HO1F).

A study of reaction (b) at 500 MeV shows separation energies of 12.2 and 18.5 MeV , corresponding to ${ }^{15} \mathrm{~N}^{*}(0,6.32)$. The momentum distribution of the recoiling nucleus has been measured. High precision data with $\sim 100 \mathrm{keV}$ resolution in the missing mass are reviewed in (90DE16). The excitation of ${ }^{16} \mathrm{O}^{*}(11.52,12.05,22.3)$ and some other states is reported at $E_{\mathrm{e}}=112-130 \mathrm{MeV}$ in (e, e'). The (e, e'p) and (e, e α) processes lead to the excitation of ${ }^{15} \mathrm{~N}^{*}(0,6.32)$ and of ${ }^{12} \mathrm{C}^{*}(0,4.44)$. (See 82AJ01, 86AJ04 for the references). In a recent measurement the nuclear response function $R_{\text {LT }}$ for ${ }^{15} \mathrm{~N}^{*}(0,6.32)$ was determined in (e, ép) by (91CH39). See also (90MO1K). Coincidence experiments at $E_{\mathrm{e}}=130 \mathrm{MeV}$ are reported by (87DM1A). See also (87RI1A). Non-spherical components in the ${ }^{16} \mathrm{O}$ ground state are indicated by the ($e, e^{\prime} p$) data of (88 LEZW). The inelastic cross section for 537 and 730 MeV electrons has been measured by (87OC01), and the electromagnetic excitation of the Δ resonance was studied.

Angular correlation measurements for reaction (c) to determine isoscalar E2 strengths in ${ }^{16} \mathrm{O}$ are reported in (92FR05).

Inelastic electron-nucleus interactions for ${ }^{16} \mathrm{O}$ at 5 GeV are reported in (90DE1M).
In theoretical work on reactions (a) and (b), models for relativistic Coulomb sum rules are developed in (89DO05). See also (91LE14). A shell-model study of giant resonances and spectroscopic factors in ${ }^{16} \mathrm{O}$ is described in (88HO10). See also (90BO31). (88AM1A) studied an isoscalar dipole excitation in ${ }^{16} \mathrm{O}$ (7.12 MeV state). Core polarization was used in their limited shell model treatment. Exchange amplitudes proved crucial in fitting ($\mathrm{p}, \mathrm{p}^{\prime}$) data. A relativistic Dirac-Hartree-Fock approach is shown to give a reasonably good account of binding energies, single-particle energies and charge, as well as proton and neutron densities of ${ }^{16} \mathrm{O}$ and other closed shell nuclei (88BL1I). The application of Monte Carlo methods in light nuclei including ${ }^{16} \mathrm{O}$ is reviewed in (91CA1C). Non-locality of the nucleon-nucleus optical potential has been used (87BO54) to evaluate the missing single particle strength observed in (e, $e^{\prime} p$) data. (88BO40) have studied the charge form factor by taking the oneand two-body isoscalar charge operands into account in the topological soliton model. Nuclear responses were calculated (87CA16) using self-consistent HF and RPA theory with a SK3 interaction. Decay properties in (e, $e^{\prime} p$) and (e, $e^{\prime} n$) for semidirect and knockout processes are also discussed. A self-consistent RPA with the SK3 interaction has been used by (88CA10) to calculate ($\vec{e}, e^{\prime} x$) reactions. Polarization structure functions are also discussed. (89CA13) use self-consistent RPA with SK3 interactions to calculate monopole excitations in (e, e^{\prime}) and ($\left.\vec{e}, e^{\prime} x\right)$ reactions. Evidence has been presented by (89FR02) for a violation of Siegert's theorem, based on cross section measurements of the electro-excitation of the first 1^{-}level in ${ }^{16} \mathrm{O}$. Previous HartreeFock calculations were used by (90CA34) to study Siegert's Theorem in E1 decay in ${ }^{16} \mathrm{O}$. Their results show that the previously claimed violation cannot be definitely asserted. A pole graph method is used by (87 CH 10) to calculate production of hypernuclei in the continuum. Radial wave functions obtained from realistic nuclear potentials have been used to calculate electron scattering form factors for stretched configurations, which are compared to data (88CL03). (87CO24) exhibit and discuss DWBA structure functions for ($\vec{e}, e^{\prime} x$) cross sections. A numerical study of the decay of giant resonances of ${ }^{16} \mathrm{O}$ was also conducted. The ratio of transverse-to-longitudinal electromagnetic response in (e, e $e^{\prime} p$) reactions has been examined in terms of relativistic dynamics and medium modifications (87CO26). Electron scattering form factors have been calculated (90DA14) using relativistic self-consistent RPA descriptions of discrete excitations. (86GU05) derived an expression for the transition charge density in the Helm model, and (88GU03) calculated charge density distributions using harmonic oscillator wave functions. Experimental values have been compared with calculated transition charge densities from various models in (88GU14). (88KU18) calculated binding energy, excitation spectra to $\sim 12 \mathrm{MeV}$, and e-scattering form factors using the mean-field approximation and the BZM boson image of the shell model Hamiltonian. Results appear superior to the standard shell model. The twobody pion exchange current contributions to the form factor of inelastic electron scattering has been calculated by (86LA15) using the effective pion propagator approximation. Effects due to meson exchange currents and unbound wavefunctions for
the valence nucleon were included in calculations of electron scattering form factors (87LI30). Special attention was paid to $1 \hbar \omega$ stretched states. A sum rule formalism was used by (89LI1G) to investigate giant resonances. Surface effects, non-Hermitian operators, and magnetic excitations were considered.

Normalized correlated wavefunctions were used by (88MA29) to simplify a previously derived expression for the charge form factor in the non-unitary model operator approach, and compared to data. (89MA06, 90MA63) derived an approximate formula for the two-body term in the cluster expansion of the charge form factor, and discussed the correlation parameter. (89MC05) used the Gelerkin approach to calculate a finite nucleus Dirac mean field spectrum, and then applied it to Dirac RPA response and the present results for 1^{-}and 3^{-}longitudinal form factors. A comprehensive study of a full set of 18 response functions relevant to the ($\vec{e}, e^{\prime} p$) reaction is presented by (89PI07). (88PR05) have studied the linear response of ${ }^{16} \mathrm{O}$ to external electroweak current in a relativistic model. Hartree-Fock-RPA quasi-elastic cross sections for ${ }^{16} \mathrm{O}\left(e, e^{\prime} p\right)$ are calculated by (89RY01), who also discuss final state interactions. Electromagnetic quasi-free proton knockout in a one-photon exchange approximation is studied in (91BO10, 91PA06). (89RY06) performed self-consistent HF-RPA model calculations for ($e, e^{\prime} p$) and ($e, e^{\prime} n$) using Skyrme interactions in parallel and perpendicular kinematics. A consistent extension of the QHD1 mean-field RPA theory including correlations induced by isoscalar σ and ω mesons of QHD1 is used by (89SH27) to calculate (e, τ^{\prime}) form factors and transition charge and current densities. See also (91ZH17). (86TK01) calculated M1 resonances taking 1p-1h \times phonon excitations into account. Comparisons were made with data. (87YO04) studied $1 \hbar \omega$ stretched excitations in configuration mixing calculations based on first-order perturbation theory.
44. ${ }^{16} \mathrm{O}\left(\pi^{ \pm}, \pi^{ \pm}\right){ }^{16} \mathrm{O}$

Angular distributions of elastically scattered pions have been studied at $E_{\pi^{-}}=20$ to 240 MeV and at $1 \mathrm{GeV} / \mathrm{c}$ as well as at $E_{\pi^{ \pm}}=20$ to 315 MeV [see (82AJ01, 86AJ04)] and recently at $E_{\pi^{ \pm}}=100-250 \mathrm{MeV}$ at 175° (lab) (87DH01), and at $E_{\pi^{-}}=$ $30,50 \mathrm{MeV}$ (90SE04). At $E_{\pi^{ \pm}}=164 \mathrm{MeV},{ }^{16} \mathrm{O}^{*}(0,6.1,6.9,7.1,11.5,17.8,19.0$, 19.8) are relatively strongly populated. The π^{+}and π^{-}cross sections to ${ }^{16} \mathrm{O}^{*}(17.8$, 19.8) $\left[J^{\pi}=4^{-} ; T=0\right]$ are substantially different while those to ${ }^{16} \mathrm{O}^{*}(19.0)\left[4^{-} ; 1\right]$ are equal. Isospin mixing is suggested with off-diagonal charge-dependent mixing matrix elements of -147 ± 25 and $-99 \pm 17 \mathrm{keV}$ (80HO13). [See also reaction 67 , $\left.{ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{t})\right]$. The inelastic pion scattering is dominated by a single quasi-free pionnucleon interaction mechanism at $E_{\pi^{+}}=240 \mathrm{MeV}$ (83IN02): this is not the case at energies below the Δ-resonance (114 and 163 MeV). For recent inelastic measurements see (87BL1A).

For a study of $\left(\pi^{+}, 2 \mathrm{p}\right)$ and $\left(\pi^{ \pm}, \mathrm{pn}\right)$ at $T_{\pi^{+}}=165 \mathrm{MeV}$ see (86AL22), at $T_{\pi^{+}}=$ 115 MeV see (92MA09). See also (86KY1A, 86KY1B). Pion absorption at $T_{\pi^{+}}=$ 65 MeV followed by multinucleon emission is reported by (92BA31). For $\left(\pi^{+}, \pi^{0} \mathrm{p}\right)$ at
$T_{\pi^{+}}=165$ and 245 MeV see (91HO03, 88HO1L, 86GI15). For $\left(\pi^{+}, \pi^{-}\right)$and (π^{-}, π^{+}) at $T_{\pi^{+}}=180,240 \mathrm{MeV}$ see (89GR06). For $\left(\pi^{+}, \pi^{+} \pi^{-}\right)$at $T_{\pi^{+}}=280 \mathrm{MeV}$ see (89GR05). See also (87ME12, 89ME10, 90KO36).

A calculation of differential elastic cross sections in a local approximation to the delta-hole model is described in (91GA07).

Optical-model calculations for pion scattering on ${ }^{16} \mathrm{O}$ are discussed in (90CA09, 90LI10).
45. ${ }^{16} \mathrm{O}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{16} \mathrm{O}$

Angular distributions have been measured at E_{n} to 24 MeV [see (82AJ01, 86AJ04)] and recently at $E_{\mathrm{n}}=18$ to 26 MeV (87IS04, 88MEZX); n's were observed leading to ${ }^{16} \mathrm{O}^{*}(6.05,6.13,6.92,7.12,9.85,10.35,11.0,11.52)$. For small-angle measurements at $E_{\mathrm{n}}=14.8 \mathrm{MeV}$, see (92QI02). Differential cross sections for (n, n) and ($\mathrm{n}, \mathrm{n}^{\prime}$) at $E_{\mathrm{n}}=21.6 \mathrm{MeV}$ are reported by (900L01). Polarization of gamma rays from ($\mathrm{n}, \mathrm{n}^{\prime}$) with polarized neutrons to ${ }^{16} \mathrm{O}^{*}(6.05,6.13)$ was studied by (88LI34) [see also (87PO11)]. See also the evaluation of $E_{\mathrm{n}}=10^{-5} \mathrm{eV}-20 \mathrm{MeV}$ neutron data for ${ }^{16} \mathrm{O}$ in (90SH1D).

The folding model has been used to calculate the nucleon- ${ }^{16} \mathrm{O}$ interaction potential, and the effect of different nucleon-nucleon forces has been discussed (89HA24). See also the analysis with nonlocal potentials based on RGM formulations by (92KA21) and the optical model study of (92BO04). See also (91KA19, 91KA22, 91SH08).
46. (a) ${ }^{16} \mathrm{O}\left(\mathrm{p}, \mathrm{p}^{\prime}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}(\mathrm{p}, 2 \mathrm{p}){ }^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=-12.127$
(c) ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{pd})^{14} \mathrm{~N} \quad Q_{\mathrm{m}}=-20.736$
(d) ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{pt}){ }^{13} \mathrm{~N} \quad Q_{\mathrm{m}}=-25.032$
(e) ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{p} \alpha)^{12} \mathrm{C} \quad Q_{\mathrm{m}}=-7.161$
(f) ${ }^{16} \mathrm{O}(\overline{\mathrm{p}}, \overline{\mathrm{p}})^{16} \mathrm{O}$

Angular distributions of elastically and inelastically scattered protons have been measured at many energies up to $E_{\mathrm{p}}=1000 \mathrm{MeV}$ [see (82AJ01, 86AJ04)] and recently at $E_{\mathrm{p}}=7.58 \mathrm{MeV}$ (87KR19; p to ${ }^{16} \mathrm{O}^{*}(6.05)$), 8.9-50 MeV (88LE08; p to $\left.{ }^{16} \mathrm{O}^{*}(6.129)\right), 35 \mathrm{MeV}$ (90OH04; p to $\left.{ }^{16} \mathrm{O}^{*}\left(E_{\mathrm{x}} \leq 12.97\right)\right), 40-85 \mathrm{MeV}$ (87LA11; p to ${ }^{16} \mathrm{O}^{*}(6.1299,8.8719)$), 22, $35,42 \mathrm{MeV}$ (88SA1B; p to ${ }^{16} \mathrm{O}^{*}(6.129)$), 135 MeV (86GA31; p to $\left.{ }^{16} \mathrm{O}^{*}(6.044,7.117,12.043)\right)$, (89KE03; p to ${ }^{16} \mathrm{O}^{*}(6.049,6.130,6.917$, 7.117, 9.847, 10.353, 11.09)), $180 \mathrm{MeV}\left(90 \mathrm{KE} 03 ;\right.$ p to $\left.{ }^{16} \mathrm{O}^{*}\left(E_{\mathrm{x}} \leq 12.1\right)\right), 200 \mathrm{MeV}$ (86KIZW; p to ${ }^{16} \mathrm{O}^{*}(10.957)$), (89SAZZ; p to ${ }^{16} \mathrm{O}^{*}(10.957,12.797)$), 201 MeV . (87DJ01; p to many states [see Table 16.27]), 320-800 MeV (88BL07), 318 and 500 MeV (88FEZX, 89FEZV, 91FL01, 91KE02), 100 and 200 MeV (88SEZU, 90GL09), 200, 318 MeV (90FEZY), 400 MeV (91KI08) and 1000 MeV (88BE2B). Parameters of the
observed groups are displayed in Table 16.27. See also (900P01) and the analysis of (90ER09).

For reaction (b) see (91CO13; 151 MeV$),(86 \mathrm{MC10} ; 505 \mathrm{MeV})$ and the review of (87VD1A). For reaction (c) see (86BO1A; 50 MeV), ($86 \mathrm{SA} 24 ; 76.1,101.3 \mathrm{MeV}$). For reaction (p, p α) see ($86 \mathrm{VD} 04 ; 50 \mathrm{MeV}$). See also the study with antiproton beams of (86KO22).
(87CO25) have performed calculations using the Dirac equation for p and n distortions for the ${ }^{16} \mathrm{O}\left(\overrightarrow{\mathrm{p}}, \mathrm{n} \pi^{+}\right){ }^{16} \mathrm{O}$ reaction. A coupled-channels calculation using Dirac phenomenology for inelastic scattering of 800 MeV protons from ${ }^{16} \mathrm{O}$ is presented in (88DE1L). (88DE31) have studied the importance of a deformed spin-orbit potential in the calculations of (88DE1L). Approximate treatment of the nucleon-nucleus interaction in the resonating group method is discussed in (91KA19). First order Kerman-McManus-Thaler optical potentials have been constructed from realistic meson-exchange models of NN interaction including off-shell effects, and are found to be important for spin observables at 200-500 MeV (89EL02). Optical phase shifts have been calculated to fifth order by (88FR06), taking into account cm correlations. The significance of higher-order corrections is assessed. (89GU06) consider breakup reactions in high temperature plasmas, including production of $6.129 \mathrm{MeV} \gamma$'s from ${ }^{16} \mathrm{O}$: mainly from $\mathrm{p}+{ }^{16} \mathrm{O} \rightarrow \mathrm{p}^{\prime}+{ }^{16} \mathrm{O}^{*} \gamma+{ }^{16} \mathrm{O} \rightarrow \gamma^{\prime}+{ }^{16} \mathrm{O}^{*}$, and $\mathrm{p}+{ }^{20} \mathrm{Ne} \rightarrow \mathrm{X}+{ }^{16} \mathrm{O}^{*}$. (88HA08) found Dirac optical potentials constrained by relativistic Hartree theory to give good agreement with elastic scattering data. See also (90TJ01, 91SH08). Spin observables have been calculated by $(88 \mathrm{HO} 1 \mathrm{~K})$ for proton quasi-elastic scattering in the relativistic plane wave-impulse approximation, and compared to ($\mathrm{p}, \mathrm{p}^{\prime}$) data at 490 MeV . Isoscalar spin response functions are studied in (90SH10). (87KE1A) constructed a parametrization of medium modifications of the 2 N effective interaction to reproduce nuclear matter theory, and adjusted it to reproduce proton inelastic scattering data. They obtained good fits to cross section and analyzing power for nine states simultaneously. (89KE05) performed similar calculations, and fitted 135 MeV proton cross section and analyzing power data with the effective interactions. (86KU15) performed a DWIA calculation of $\sigma(\theta)$ and $\mathrm{A}_{\mathrm{y}}(\theta)$ for ${ }^{16} \mathrm{O}(\overrightarrow{\mathrm{p}}, 2 \mathrm{p})$ at 200 MeV including spin-orbit and off-shell effects. (87LU02) performed a semi-relativistic multiple scattering model calculation of intermediate energy proton elastic scattering, and investigated target nucleon correlation contributions. Multiple diffraction scattering theory was used to calculate cross sections and polarization observables in (88BE57, 91BE1E, 91BE1Q, 92BE03). See also (91CH28, 91CR04, 92CR05). A Skyrme force approach was explored in (88CH08). A scalar-vector form of a second-order relativistic impulse approximation optical model including dispersion effects was used by (88LU03) to calculate elastic proton scattering at 500 and 800 MeV . Evidence for a small imaginary potential or actual flux emission was presented (88MA05) for nucleon scattering from ${ }^{16} \mathrm{O}$ at 30 MeV . As an alternate explanation of the (88MA05) findings, (88MA31) discuss the " ψ-potentials", related to projectile current. (88MA1X) contains a review of relativistic theory of nuclear matter and finite nuclei. A relativistic microscopic optical potential derived from the relativistic Brueckner-Bethe-Goldstone equation is discussed in (92CH1E). Polarization transfer measurements in ($\mathrm{p}, \mathrm{p}^{\prime}$) reactions have been examined by (86OR03) with regard to correlations of tensor character.
(86OS08) used the T-matrix approximation with distorted waves to analyze knock-off nucleon (p, pN) and cluster (p, pX) proton induced reactions from 30 to 100 MeV . The scattering of 500 MeV protons has been calculated by (87OT02) using the Dirac equation with and without recoil corrections. Both cross section and spin observables are examined and compared to data. See also (91KA22). (88OT04) present systematics of Dirac impulse approximation for cross sections and spin observables in elastic p scattering at 200,500 , and 800 MeV . Results are compared to data. A mixed-density expansion of the off-diagonal density matrix is used by (88PE09) to study the nonlocal knockout exchange amplitude for nucleon-nucleus scattering. (87PI02) studied $0^{+} \rightarrow 0^{-}$transitions by medium energy protons using the relativistic impulse approximation. (89PI01) considered corrections arising from the energy dependence of the NN interaction, especially for $0^{+}\left(\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{p}}^{\prime}\right) 0^{-}$reactions. Relativistic and non-relativistic dynamical scattering models have been used by (88RA02) to predict elastic scattering observables in the forward angle for $\mathrm{p}+{ }^{16} \mathrm{O}$ at 500 and 800 MeV . See also (90CO19, 90RA12). (89RA02) have obtained the leading three-body anti-symmetrization correction to nucleon-nucleus elastic scattering calculations using multiple scattering theory. Small effects are found at intermediate energies. Folding model potentials are used by (86YA16) to perform a systematic analysis of proton elastic scattering from 65-200 MeV. See also (90AR11, 90CR02, 90EL01 91AR11, 91AR1K). Effects of short-range correlations on the self energy in the optical model of ${ }^{16} \mathrm{O}$ are studied in (92BO1C). See also (92LI1D).
47. (a) ${ }^{16} \mathrm{O}\left(\mathrm{d}, \mathrm{d}^{\prime}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{n}){ }^{17} \mathrm{~F} \quad Q_{\mathrm{m}}=-1.623$

Angular distribution studies have been carried out for E_{d} up to 700 MeV [see (86AJ04)] and recently angular distributions and analyzing powers with polarized deuterons were measured at $19-24 \mathrm{MeV}$ (91ER03) and at $200,400,700 \mathrm{MeV}$ (87NG01). Observed deuteron groups are displayed in Table 16.27. See also ${ }^{18} \mathrm{~F}$ in (87AJ02), and see the analysis of (90ER09).

Reaction (b) has been used for analysis of oxygen in fluoride glasses (90BA1M).
Coupled-channels variational formalism is discussed and applied to ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{d}){ }^{16} \mathrm{O}$ (86KA1A). Coupling to the proton channel is significant at 11 MeV , but can be ignored at $\geq 40 \mathrm{MeV}$. Coupling to d-breakup channels decreases as E increases, but is still significant at 60 MeV . (88IS02) use folding interactions to investigate polarized d-scattering at $E_{\mathrm{d}}=56 \mathrm{MeV}$. Breakup channels are important, as is the D-state admixture in the deuteron ground state - especially for tensor analyzing powers. (88IS02) employed the continuum-discretized coupled-channels (CDCC) method, and obtained good agreement with data. (87GR16) studied d-scattering at 400 MeV using the folding model, but failed to describe A_{yy} at relatively low momentum transfers. They attribute this failure to inadequacies in off-shell properties of NN potentials. (86MA32) analyzed elastic data at 56 MeV using an optical model potential containing a complex tensor term. The OM potential was compared with folding-model re-
sults. (87MA1D) evaluate the Pauli-blocking correction of the three-body Schrödinger equation for d-nucleus reactions.
48. ${ }^{16} \mathrm{O}(\mathrm{t}, \mathrm{t}){ }^{16} \mathrm{O}$

Angular distributions are reported for E_{t} to 20.01 MeV : see (77AJ02) and recently at 36 MeV (86PE13, 87EN06). See also ${ }^{19} \mathrm{~F}$ in (87AJ02), and see the analysis of (90ER09).
(89WA26) studied the spin-orbit potential for triton scattering to explain previous discrepancies with folding model predictions.
49. (a) ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right) \quad Q_{\mathrm{m}}=4.915$

Angular distributions have been measured to $E\left({ }^{3} \mathrm{He}\right)=132 \mathrm{MeV}$ [see (82AJ01, 86AJ04) $]$ and at $E\left({ }^{3} \mathrm{He}\right)=60 \mathrm{MeV}(90 \mathrm{ADZU})$. The matter radius $\left\langle r^{2}\right\rangle^{1 / 2}=2.46 \pm$ 0.12 fm (82VE13). Inelastic groups are shown in Table 16.27. See also the analysis of (90ER09). Differential cross sections for reaction (b) have been measured at $E\left({ }^{3} \mathrm{He}\right)=$ 60 MeV (90ADZT). The reaction has also been used in thin film analysis (90AB1G). (86WAZM) studied the spin-orbit potential for ${ }^{3} \mathrm{He}$ scattering to explain previous discrepancies with folding model predictions. The M3Y double folding model is used (87CO07) to fit data at 33 MeV . No change in the spin-orbit strength is necessary. The three-parameter strong absorption model of Trahn and Venter is applied to data at 25 and 41 MeV . (87RA36) obtain radii, diffusivities and quadrupole deformation parameters. (87TR01) perform a simple optical model analysis of elastic ${ }^{3} \mathrm{He}$ scattering from 10 to 220 MeV .
50. (a) ${ }^{16} \mathrm{O}\left(\alpha, \alpha^{\prime}\right)^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}(\alpha, \alpha \mathrm{p}){ }^{15} \mathrm{~N} \quad Q_{\mathrm{m}}=-12.127$
(c) ${ }^{16} \mathrm{O}(\alpha, 2 \alpha){ }^{12} \mathrm{C} \quad Q_{\mathrm{m}}=-7.161$

Angular distributions and/or differential cross sections of α-particles have been measured up to $E_{\alpha}=146 \mathrm{MeV}$ [see (82AJ01, 86AJ04)] and recently at $E_{\alpha}=48.7$, 54.1 MeV (87AB03; α_{0}): see ${ }^{20} \mathrm{Ne}$ in (83AJ01, 87AJ02). See also the work on $\left(\alpha, \alpha_{0}\right)$ resonances at $E_{\alpha}=2.0-3.6 \mathrm{MeV}$ (85JA17, 88 BL 1 H$)$. A search at $E_{\alpha}=10.2-$ 18 MeV for continuum levels in ${ }^{20} \mathrm{Ne}$ with a large $\left[{ }^{16} \mathrm{O}^{*}\left(0_{2}^{+}\right)+\alpha\right]$ parentage is described in (92LA01). Reaction (a) has also been observed in astrophysical measurements (89LA1G). Observed excited states are displayed in Table 16.27. See also the analysis of (90ER09), and see (90DA1Q, 90IR01).

Reaction (b) has been studied at $E_{\alpha}=13.92 \mathrm{MeV}$ in a quasifree geometry (87SA01). Angular correlations (reaction (c)) have been studied to ${ }^{12} \mathrm{C}_{\text {g.s. }}$ at $E_{\alpha}=$ 23.0 to 27.5 MeV to try to determine if a 3^{-}state exists near the 2^{+}state ${ }^{16} \mathrm{O}^{*}(9.84)$: the evidence is strong that this is not the case (86AJ04). The isoscalar (E2, $T=0$) giant resonance decays predominantly via the α_{1} channel which contains $\sim 40 \%$ of the E2 EWSR, rather than via the α_{0} and p_{0} channels. For the $(\alpha, \alpha \mathrm{d}),(\alpha, \alpha \mathrm{t})$ and ($\alpha, \alpha^{3} \mathrm{He}$) reactions see references in (86AJ04).

In a theoretical study of nucleus-nucleus potentials, (87BA35) determine shallow potentials that are phase equivalent to deep ones. This method eliminates non-physical bound states encountered in some microscopically founded potentials. (87BU06) calculate the probability of direct alpha-decay of the giant quadrupole resonance in ${ }^{16} \mathrm{O}$. They find direct and statistical mechanisms to be commensurate, and obtain good agreement with the data. The construction of a cranked cluster wave function for molecular-like states is discussed by (86HO33). (86MA35) study the radial shape and the energy dependence of the dispersive contribution to the real potential and apply it to alpha-particle scattering from ${ }^{16} \mathrm{O}$. (89MI06) show that alpha-particle scattering from ${ }^{16} \mathrm{O}$ near the Coulomb barrier can be described if the interaction is angular momentum dependent and has a less diffuse surface than that used to describe scattering at higher energies. The separable potential expansion method based on Coulomb-Sturmian functions is presented (88PA21) and the $l=3$ phase shift is calculated for $\alpha+{ }^{16} \mathrm{O}$ at $E=12 \mathrm{MeV}$. (87SA55) show the onechannel orthogonality condition model provides results which agree with experiment for $E_{\alpha} \leq 7.5 \mathrm{MeV}$. (87WA1B) compare a microscopic potential obtained from RGM calculations with the optical model potential. They conclude that internucleus antisymmetrization is responsible for a large part of the energy dependence of the real part of OM potential. (89YA15, 91YA08) use the many body theory which takes the Pauli principle into account to calculate the $\alpha-{ }^{16} \mathrm{O}$ complex potential from a realistic effective two-nucleon interaction. The role of the Pauli principle is also examined in (91OM03). Internucleus potentials in $\alpha+{ }^{16} \mathrm{O}$ systems are calculated with Skyrmetype forces in (90WA01). Nuclear molecular resonances are discussed in the analyses of (90AB10, 92SA1F). See also (90KR16). A peripheral 3-body coupling model is applied to reaction (c) in (92JA04).
51. (a) ${ }^{16} \mathrm{O}\left({ }^{6} \mathrm{Li},{ }^{6} \mathrm{Li}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{7} \mathrm{Li},{ }^{7} \mathrm{Li}\right){ }^{16} \mathrm{O}$

Elastic angular distributions for reaction (a) have been measured at $E\left({ }^{6} \mathrm{Li}\right)=$ 4.5 to 75.4 MeV and $E\left({ }^{16} \mathrm{O}\right)=36$ to 94.2 MeV [see (86AJ04) and Tables 16.25 in (77AJ02) and 16.23 in (82AJ01)] and recently at $E\left({ }^{6} \mathrm{Li}\right)=50 \mathrm{MeV}$ (88TRZY). See also (87 GO 1 C). Vector analyzing power has been measured with polarized ${ }^{6} \mathrm{Li}$ beams at $E\left({ }^{6} \mathrm{Li}\right)=25.7 \mathrm{MeV}(87 \mathrm{VAZY}, 89 \mathrm{VA} 04)$. See also ${ }^{6} \mathrm{Li}$ in (88AJ01). For studies of dα angular correlations see ${ }^{20} \mathrm{Ne}$ in (83AJ01, 87AJ02). For a fusion cross section study see (86MA19). Inelastic scattering to states in ${ }^{16} \mathrm{O}$ are reported at $E\left({ }^{6} \mathrm{Li}\right)=50 \mathrm{MeV}$ by (90TR1A).

Elastic distributions for reaction (b) have been studied at $E\left({ }^{7} \mathrm{Li}\right)=9.0$ to 68 MeV [see (86AJ04) and Tables 16.25 in (77AJ02) and 16.23 in (82AJ01)] as well as at $E\left({ }^{7} \mathrm{Li}\right)=10.3-22.40 \mathrm{MeV}$ (88 MA 07). For fusion cross section studies see (88 SC 14) and references in (86AJ04). See also (88KE07).

A generalized optical model within the method of orthogonal conditions (MOC) has been formulated by (88GR32). Taking account of antisymmetrization improves the description of angular distribution data. See also (90SA1O).
52. $\left.{ }^{16} \mathrm{O}\left({ }^{9} \mathrm{Be},{ }^{9} \mathrm{Be}\right)\right)^{16} \mathrm{O}$

Elastic angular distributions have been reported at $E\left({ }^{9} \mathrm{Be}\right)=20$ to 43 MeV and $E\left({ }^{16} \mathrm{O}\right)=15$ to 29.5 MeV [see (86AJ04) and Table 16.23 in (82AJ01)] and recently at $E_{\text {c.m. }}=7.2,8.4,9.0,9.6,10.2 \mathrm{MeV}(89 \mathrm{WE} 1 \mathrm{I})$. Projectile decomposition measurements were reported at $E\left({ }^{16} \mathrm{O}\right)=32 \mathrm{MeV} /$ nucleon. For fusion cross sections see (82AJ01, 86AJ04, 88HAZS). See also (85BE1A).
53. (a) ${ }^{16} \mathrm{O}\left({ }^{10} \mathrm{~B},{ }^{10} \mathrm{~B}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{11} \mathrm{~B},{ }^{11} \mathrm{~B}\right){ }^{16} \mathrm{O}$

Angular distributions have been reported at $E\left({ }^{10} \mathrm{~B}\right)=33.7$ to 100 MeV and at $E\left({ }^{11} \mathrm{~B}\right)=41.6,49.5$ and 115 MeV [see (86AJ04) and Table 16.23 in (82AJ01)] and recently at $E_{\text {c.m. }}=14.17,16.15$, and $18.65 \mathrm{MeV}(89 \mathrm{KO} 10)$. See also (89 KO 2 A). For fusion cross section measurements (reaction (a)) see (82AJ01, 86AJ04).
54. (a) ${ }^{16} \mathrm{O}\left({ }^{12} \mathrm{C},{ }^{12} \mathrm{C}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{12} \mathrm{C}, \alpha^{12} \mathrm{C}\right){ }^{12} \mathrm{C} \quad Q_{\mathrm{m}}=-7.161$

Angular distributions have been reported at many energies to $E\left({ }^{16} \mathrm{O}\right)=1503 \mathrm{MeV}$ [see (82AJ01, 86AJ04)] and recently at $E\left({ }^{16} \mathrm{O}\right)=49.14,48.14,48.06 \mathrm{MeV}$ (86BA80). A peak in the excitation function at $E_{\text {c.m. }}=33.5 \mathrm{MeV}$ was observed by (90KO1X). See also the review of (86BA1D) and analyses of (88BR04, 88RO01, 89VI09). Many of the studies of this reaction have involved yield and cross section measurements, as they apply to compound structures in ${ }^{28} \mathrm{Si}$, fusion cross sections and evaporation residues. See (90SM1A). Some involve multinucleon transfer. Others involve fragmentation of the incident particle. See (82AJ01, 86AJ04) and (86GA13, 86IK03, 86SU1G, 87SU03, 88KO17 88SZ02, 90BO1X). See also (86CH41, 86DE40, 86SN1B, 86WU03, 87HO1C, 87NA1C. 87YO1A. 88BR1N, 88CAZV, 88KR11 88ME1H 89BEZC. 89KRZX, 89SU1I, 89WE1E, 90BA1Z).

At $E\left({ }^{16} \mathrm{O}\right)=100 \mathrm{MeV}$ members of the $K^{\pi}=0^{+}\left[{ }^{16} \mathrm{O}^{*}(6.05,6.92,10.35,16.3)\right]$ and $K^{\pi}=0^{-}$bands $\left[{ }^{16} \mathrm{O}^{*}(9.63,11.60,14.67)\right]$ are reported to be preferentially populated.

In reaction (b), as well as in the scattering of $140 \mathrm{MeV}{ }^{16} \mathrm{O}$ on ${ }^{13} \mathrm{C}$ and ${ }^{28} \mathrm{Si}_{\mathrm{i}},{ }^{16} \mathrm{O}^{*}$ states $(9.83,10.33,11.04,11.47,11.98,12.38,13.81,14.75,15.33,17.76)$, with $J^{\pi}=2^{+}, 4^{+}$, $4^{+}, 2^{+}, 0^{+}, 1^{-}, 2^{+}, 4^{+}, 6^{+}, 3^{-}$, respectively, for the first ten states, are populated: the state at 11.5 MeV is preferentially populated [see references in (82AJ01, 86AJ04)]. For pion emission see (86AJ04, 88SA31, 89LE12). (87BA50) have investigated the two-proton correlation function using the BUU (semiclassical transport equations) model with conserved total momentum. Experimental features of the correlation function are reproduced. (88BA43) study the energy dependence of the real part of the nucleus-nucleus potential using a modified Seyler-Blanchard two-body effective interaction containing density and momentum dependence. (87BRZW) perform an optical model analysis of ${ }^{12} \mathrm{C}-{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}-{ }^{12} \mathrm{C}$ elastic scattering from $10-94 \mathrm{MeV}$; real part: double folding of a density dependent M3Y interaction - imaginary part: phenomenological.
(88BR20) examine dips in the far-side cross sections which reduce or eliminate potential ambiguities from analyses as in (87BRZW). (88BR29) analyzed elastic data at 9 to 120 MeV per nucleon using a folded potential based on the density and energydependent DDM3Y interaction. (87DA02) present a solution to the inversion problem (i.e., obtaining potentials from data) and apply it to ${ }^{16} \mathrm{O}+{ }^{12} \mathrm{C}$ at 1503 MeV with good results. A microscopic calculation of pion-production in heavy-ion collisions is applied (86DE15) to coherent pion-production in ${ }^{16} \mathrm{O}+{ }^{12} \mathrm{C}$ collisions. Effects of Pauli blocking and a surface contribution to the optical potential are investigated by (89EL01). Data require that a collective surface contribution be added to the volume part.
(88FR14) resolve optical potential model ambiguities by using dips in far side cross section data along with other special features of the angular distributions of elastic scattering data. (86HA13) performed a barrier penetration calculation of heavy-ion fusion cross sections, valid both above and below the Coulomb barrier. (86KA1B) survey projectile breakup processes using the method of coupled discretized continuum channels. An optical model potential containing a parity dependence which accounts for elastic α-particle transfer can explain the oscillations seen in the total fusion excitation function of ${ }^{16} \mathrm{O}$ on ${ }^{12} \mathrm{C}$ (88KA13). (88KO27) perform an optical model analysis of ${ }^{16} \mathrm{O}$ scattering data at $E / A=94 \mathrm{MeV}$. They explored potential shapes more general than folded or Woods-Saxon; no improvement in agreement with data. (89LE23) analyzed reaction data using an eikonal approach. They input only the densities and transition densities of the nuclei and elementary nucleon-nucleon scattering amplitudes. Good agreement with data was obtained. The ${ }^{12} \mathrm{C}+{ }^{16} \mathrm{O}$ internucleus potential is calculated with the use of Skyrme type forces by (90WA01).
(89MI1K) calculate zero-degree and transverse energy for relativistic collisions. Results fit data very well. Low energy optical potentials are derived (87PA24) from effective interactions using double-folding. Only the effective interaction of Satchler and Love give good results over a wide energy range. (88RA1G) explores the relationship between clustering and shell effects, and find that this relationship is a close one. (86SA1D) perform a microscopic coupled-channels calculation. Breakup and virtual breakup effects are found to be important. (87SC34) present an expression for the real part of the nucleus-nucleus potential (energy dependent) which arises
in the framework of the elastic model for heavy-ion fusion. This model is applied to sub-barrier fusion. (88WU1A) propose a non-compact group model to describe quasi-molecular nuclei.
55. (a) ${ }^{16} \mathrm{O}\left({ }^{13} \mathrm{C},{ }^{13} \mathrm{C}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{14} \mathrm{C},{ }^{14} \mathrm{C}\right){ }^{16} \mathrm{O}$

For elastic scattering studies see Table 16.23 in (82AJ01), and see the more recent work at $E_{\text {c.m. }}=48.06,48.48,49.14 \mathrm{MeV}(86 \mathrm{BA} 80)$, and $E_{\text {c.m. }}=19-30 \mathrm{MeV}$ (89FR04). For fusion cross sections see (86AJ04) and recent work at $E_{\text {c.m. }}=7.8-14.6 \mathrm{MeV}$ (86PA10). See also the review of (86ST1A). For the excitation of a number of states in ${ }^{16} \mathrm{O}$ in reaction (a) see (86AJ04). Cross sections for different exit channels of ${ }^{16} \mathrm{O}+{ }^{13} \mathrm{C}$ at $E_{\text {c.m. }}=4.8-9.8 \mathrm{MeV}$ were measured by (91DA05). Emission ratios for pn to d and α pn to $\alpha \mathrm{d}$ were studied in (86GA13). Competition between p2n, dn, and t emission was studied at $E_{\text {c.m. }}=10-16 \mathrm{MeV}$ (90XE01). For reaction (b) a search for resonances in elastic scattering at $E_{\text {lab }}=38-54 \mathrm{MeV}$ is reported in (90AB07).
(87DA34) performed a six-parameter optical model analysis of ${ }^{13} \mathrm{C}\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{13} \mathrm{C}$. A two-center shell model is applied (87NU02) to the ${ }^{13} \mathrm{C}+{ }^{16} \mathrm{O}$ system. Parity dependence of collisions between p- and sd-shell nuclei is studied (86BA69) microscopically in the two-center harmonic oscillator model.
56. (a) ${ }^{16} \mathrm{O}\left({ }^{14} \mathrm{~N},{ }^{14} \mathrm{~N}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{15} \mathrm{~N},{ }^{15} \mathrm{~N}\right){ }^{16} \mathrm{O}$

For elastic scattering studies see (86AJ04) and Table 16.23 in (82AJ01) and (77AJ02). Recent measurements on reaction (b) at $E_{\text {lab }}=30-70 \mathrm{MeV}$ were reported in (86HA1F). For yield and total fusion cross-section measurements see (82AJ01, 86AJ04). See also (86BA69).
57. ${ }^{16} \mathrm{O}\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{16} \mathrm{O}$

The angular distributions for elastic scattering have been measured with $E\left({ }^{16} \mathrm{O}\right)$ up to 140.4 MeV [see (82AJ01, 86AJ04)] and recently at $E_{\text {c.m. }}=17 \mathrm{MeV}$ (87TI01), $E\left({ }^{16} \mathrm{O}\right)=350 \mathrm{MeV}(89 \mathrm{ST} 08)$ and $E\left({ }^{16} \mathrm{O}\right)=38 \mathrm{MeV} /$ nucleon (86BR25). Inelastic scattering studies involving ${ }^{16} \mathrm{O}^{*}(6.05)\left[J^{\pi}=0^{+}\right]$(89ZUZZ) are reported at $E\left({ }^{16} \mathrm{O}\right)=$ 51.0 to 76.0 MeV , and similar studies involving ${ }^{16} \mathrm{O}^{*}(6.13)\left[J^{\pi}=3^{-}\right]$(88PAZZ) are reported at $E_{\text {c.m. }}=26.5-43.0 \mathrm{MeV}$. Coupled channels effects are important at energies a few times the Coulomb barrier (77AJ02, 86AJ04). Intermediate and compound structure studies are described in (86GA10, 86GA24).

For yield and fusion cross sections see (82AJ01, 86AJ04) and more recent work (86IK03, 86TH1A, 87GO30, 87KU02, 88AU03). At $E\left({ }^{16} \mathrm{O}\right)=72 \mathrm{MeV}$, (88AU1A) see no evidence for a low- ℓ fusion window. At $E\left({ }^{16} \mathrm{O}\right)=70-130 \mathrm{MeV}$ measurements of evaporation residues by (86IK03) find no evidence for a low- ℓ cutoff. For a study of α-transfer at near-barrier energies see (86CA24). Light-particle emission at $E\left({ }^{16} \mathrm{O}\right)=$ $25 \mathrm{MeV} /$ nucleon was studied by (86CH27). Related work includes an investigation of the role of isospin in the statistical decay of the GDR by (86HA30) and the review of hot nuclear matter (89SU1I). See also (89FE1F, 89SC1I).
(88AS03) evaluate the influence of the Uehling potential on subbarrier fusion. (87GO19) report a calculation of the fusion cross section using a classical microscopic equations of motion approach. (87LO01) study the effect of elastic transfer process on sub-barrier fusion reactions between similar nuclei. (87 OH 08) show that internal and barrier waves based on a semiclassical picture can account for the oscillations seen in fusion excitation functions. (87RA28) use statistical theory to study the behavior of high spin states formed in fusion reactions. (87SP11) calculate the fusion excitation function using the one-body wall friction.
(87TO10) investigate the influence of nucleon-nucleon collisions in the low angular momentum limit for fusion predicted by TDHF. A relativistic mean-field model consisting of nucleons coupled to scalar and vector mesons is used to solve the time-dependent mean-field equations. A relativistic Vlasov equation derived from mean field theory is applied in (90JI1C). An extended TDHF theory has been used (89GO1F) to study mass fluctuations in deep-inelastic collisions. Results show differences from conventional TDHF calculations (87BA10). (88RE1A) performed TDHF calculations of ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ using various Skyrme forces. (86TO14) calculate subthreshold pion-production using the TDHF formalism, and compare their findings with data. (86UM02) study fusion of ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ using TDHF and Skyrme forces. See also the study of (90SL01).
(86CH44) perform an optical model analysis of elastic scattering data using a calculated real part of the potential. The potentials are constructed in the energy density formalism with nuclear density distributions obtained in the framework of the method of hyperspherical functions. (89DA1C) develop a simple theory of a heavy-ion optical model potential. Colliding ions are described as two slabs of nuclear matter, with energy densities from properties of nuclear matter. (86FA1A) extend and refine the calculation of the real and imaginary parts of the optical model potential in the $20-100 \mathrm{MeV} /$ nucleon range. Techniques for choosing a unique potential are discussed in (90KO18). See also (90RE1E). (88NA10) calculate microscopic nucleus-nucleus potentials using the energy-density formalism. See also (91MA29). (87PA24) derive real parts of the low-energy optical potential using the double-folding model. Pauli exchange effects within this model are studied in (91KH08). A semiclassical method for calculating elastic scattering cross sections was used in (91SA20).
(89HU1C) combine the concepts from a partition temperature model and the wounded nucleon model to describe high-energy nucleus-nucleus collisions. (88IT03) have applied coupled equations which treat the relative motion and internal excitation simultaneously to the case of ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ at intermediate energies. (87KA04) study subthreshold pion production mechanisms for ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ at 40 and $80 \mathrm{MeV} /$ nucleon. A
quantum transport equation with two-body collisions included via a relaxation-time method is applied to ${ }^{16} \mathrm{O}-{ }^{16} \mathrm{O}$ collisions between 40 and $200 \mathrm{MeV} /$ nucleon (88KO02). (88 KO 09) compare predictions of momentum dependence of nucleus-nucleus interactions deduced from various models. (89KO23) describe resonant phenomena in ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ in terms of an ion-ion potential. (88MA1O) solve the inverse scattering problem for fixed angular momentum using E-dependent phases and a Povzner-Levian representation of the wave function. Adiabatic bound and Gamow states have been calculated (86MI22) in a realistic two-center potential. Specific results for a neutron in a ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ potential are presented. (85 SH 1 A) develop a microscopic approach to describe elastic and inelastic cross sections. They employ the quasiparticle phonon model for heavy ions and resolve the "fusion-window-anomaly". The resonating group method is used by (88WA31) to investigate constituent components of the ${ }^{16} \mathrm{O}-{ }^{16} \mathrm{O}$ exchange potential. A two-center shell model description is discussed in (90KH04).
58. (a) ${ }^{16} \mathrm{O}\left({ }^{17} \mathrm{O},{ }^{17} \mathrm{O}\right)^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{O}\right){ }^{16} \mathrm{O}$

Angular distributions of elastically scattered ions have been studied at $E\left({ }^{16} \mathrm{O}\right)=$ 24,28 and 32 MeV and $E\left({ }^{17} \mathrm{O}\right)=53.0$ to $66 \mathrm{MeV}, E\left({ }^{17} \mathrm{O}\right)=22 \mathrm{MeV}$ (reaction (a)) and at $E\left({ }^{16} \mathrm{O}\right)=24$ to 54.8 MeV and $E\left({ }^{18} \mathrm{O}\right)=35$ to 89.3 MeV (reaction (b)) [see (82AJ01, 86AJ04)]. Yields and fusion cross sections are reported in (82AJ01, 86AJ04). See also the studies on light-particle emission ratios in these reactions (86GA13. 90XE1A).
(87IMZZ) have studied the effects of rotational couplings by using the rotating molecular orbitals model. (87IM1C) develop and use a formalism for dynamical treatment of the molecular orbitals of valence nucleons in nucleus-nucleus collisions. (88IM02) consider the role of rotational coupling interactions in the transition between nucleon molecular orbitals. (87MA22) use the semiclassical approach including both one- and two-step contributions to calculate the two-particle elastic transfer reaction, while (88KA39) calculate differential cross sections for transfer of two neutrons taking Coulomb effects into account in a four-body model. (86MI22) use a realistic twocenter potential to show that a substantial fraction of the particle emission comes from sequential decay of the excited fragments after separation, and (86VI08) consider two-particle exchange reactions using a parity-dependent optical potential.
59. (a) ${ }^{16} \mathrm{O}\left({ }^{19} \mathrm{~F},{ }^{19} \mathrm{~F}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{Ne}\right){ }^{16} \mathrm{O}$

Elastic scattering angular distributions have been studied at $E\left({ }^{16} \mathrm{O}\right)=21.4$ and 25.8 MeV and at $E\left({ }^{19} \mathrm{~F}\right)=33$ and 36 MeV : see (77AJ02). Angular distributions in reaction (b) have been measured at $E\left({ }^{16} \mathrm{O}\right)=40.7$ to 94.8 MeV , 25.6 to 44.5 MeV ,
44.1 to 63.9 MeV [see (86AJ04)], $60-80 \mathrm{MeV}$ (86FUZV), and at $E\left({ }^{20} \mathrm{Ne}\right)=50 \mathrm{MeV}$ (86AJ04). Recent excitation functions were measured for reaction (b) at $E_{\text {c.m. }}=21.5-$ 31.2 MeV (88HE06). See also (89SA14). For yield and fusion cross section measurements see (86AJ04). Projectile breakup studies are reported at $3.6 \mathrm{GeV} /$ nucleon. See also (87AN1C). Hyperon production is investigated in (86FUZV, 88BO1D). See also (86HE1A, 88BE2A).
(86FU1C) discuss ways of accounting for the phase anomaly between elastic and inelastic scattering of ${ }^{19} \mathrm{~F}+{ }^{16} \mathrm{O}$. (89GA05) derive a parity-dependent potential for ${ }^{16} \mathrm{O}+{ }^{20} \mathrm{Ne}$.
60. (a) ${ }^{16} \mathrm{O}\left({ }^{23} \mathrm{Na},{ }^{23} \mathrm{Na}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{24} \mathrm{Mg},{ }^{24} \mathrm{Mg}\right){ }^{16} \mathrm{O}$
(c) ${ }^{16} \mathrm{O}\left({ }^{25} \mathrm{Mg},{ }^{25} \mathrm{Mg}\right){ }^{16} \mathrm{O}$
(d) ${ }^{16} \mathrm{O}\left({ }^{26} \mathrm{Mg},{ }^{26} \mathrm{Mg}\right){ }^{16} \mathrm{O}$

Elastic angular distributions are reported at $E\left({ }^{16} \mathrm{O}\right)=35$ to 60.7 MeV (reaction (b)) and 27.4 to 50 MeV (reaction (d)) [see (82AJ01)] and $E\left({ }^{16} \mathrm{O}\right)=150 \mathrm{MeV}$ (86AJ04; reaction (b); elastic). More recent work on reaction (b) includes elastic scattering excitation function measurements at $E_{\text {c.m. }}=31.6-45.2 \mathrm{MeV}$ (86DR11, 86DR1B) and inelastic measurements at $E_{\text {c.m. }}=33.6-49.2 \mathrm{MeV}$ (86NU01, 86NU1A) and at $E_{\text {c.m. }}=64-88 \mathrm{MeV}(86 \mathrm{PE} 1 \mathrm{G})$. Orbiting cross sections for reaction (b) are reported in (89BLZZ). For yield, evaporation residue and fusion measurements, see references in (82AJ01, 86AJ04).
(88AL06) show that algebraic scattering theory provides a simple yet detailed description of the complex coupled channels problem $\left({ }^{16} \mathrm{O}+{ }^{24} \mathrm{Mg}\right)$. (89FI03) calculate the effect of the dynamic α-transfer potential on several channels of the ${ }^{24} \mathrm{Mg}+{ }^{16} \mathrm{O}$ systems. (87NA13) obtain an energy and angular momentum-dependent polarization potential from a compound nucleus level density dependent imaginary potential. They find that the elastic and fusion cross sections of ${ }^{16} \mathrm{O}+{ }^{24} \mathrm{Mg}$ are hardly affected by this potential.
61. ${ }^{16} \mathrm{O}\left({ }^{27} \mathrm{Al},{ }^{27} \mathrm{Al}\right){ }^{16} \mathrm{O}$

An elastic angular distribution has been measured at $E\left({ }^{16} \mathrm{O}\right)=46.5 \mathrm{MeV}$: see (82AJ01). For yield, fusion and evaporation residue studies see (82AJ01, 86AJ04) and (87IK01, 88KO01, 89CA14. 89DE02, 90KR1D). See also (86BR26, 87DEZV). For fragmentation studies see (86AJ04) and (86SH1F 87SH1C, 87SH23, 88AI1C, 88BR1N, 88SH1H, 89CA1F, 89YI1A, 90PAZW). For work on deeply inelastic collisions see (86AJ04) and (87SH21). For pion production see (86AJ04) and (87HU1C, 88BA21, 88JU02, 89FO07). For total reaction cross sections see (87KO12). Angular correlations have been studied at $E\left({ }^{16} \mathrm{O}\right)=65-65.6 \mathrm{MeV}$ (86AJ04) and at
$E\left({ }^{16} \mathrm{O}\right)=82.7 \mathrm{MeV}(88 \mathrm{SH} 1 \mathrm{H})$, at $215 \mathrm{MeV}(90 \mathrm{KR} 14)$, at $E_{\text {c. } . \mathrm{m} .}=80-250 \mathrm{MeV}$ (88DE1A, 89DE02), and at $E\left({ }^{16} \mathrm{O}\right)=4-5 \mathrm{MeV} /$ nucleon (87CA1E). The sequential decay of ${ }^{16} \mathrm{O}^{*}(10,11.6,13.2,15.2,16.2,21)$ is reported via α_{0} [see (86AJ04)].
(87BA01) evaluate the energy dependence of the real part of the nucleus-nucleus potential using two-body effective interactions, calculate ${ }^{16} \mathrm{O}+{ }^{27} \mathrm{Al}$, and compare to data. (89CA11) introduce "pre-equilibrium" temperature to describe the thermodynamics of nuclear systems prior to equilibrium. (88DA11) modify the coalescence model for complex-particle emission by correcting for the Coulomb barrier and the ejectile's binding energy.
62. (a) ${ }^{16} \mathrm{O}\left({ }^{28} \mathrm{Si},{ }^{28} \mathrm{Si}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{29} \mathrm{Si},{ }^{29} \mathrm{Si}\right){ }^{16} \mathrm{O}$
(c) ${ }^{16} \mathrm{O}\left({ }^{30} \mathrm{Si},{ }^{30} \mathrm{Si}\right){ }^{16} \mathrm{O}$
(d) ${ }^{16} \mathrm{O}\left({ }^{31} \mathrm{P},{ }^{31} \mathrm{P}\right){ }^{16} \mathrm{O}$

Angular distributions for reaction (a) have been reported at $E\left({ }^{16} \mathrm{O}\right)=29.3$ to 215.2 MeV [see (82AJ01, 86AJ04)], and recently at $E\left({ }^{16} \mathrm{O}\right)=94 \mathrm{MeV} /$ nucleon (87RO04). Elastic angular distributions for reactions (b) and (c) are reported at $E\left({ }^{16} \mathrm{O}\right)=60 \mathrm{MeV}$ (86AJ04). For yield, fusion cross section and evaporation residue measurements see (82AJ01 86AJ04). See also (86BL08). For a crystal-blocking measurement of time delays in reaction (a) see (89MA23). For pion production see (86AJ04).
(88AL08) obtain expressions for the elastic S-matrix which include effects of the coupling to α-transfer channels to all orders. They study ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ at 180°. (88AS03) evaluate the influences of the Uehling potential on sub-barrier fusion and obtain noticeable modifications of the barrier penetrability. (86BR11) study the E-dependence of an optical potential which fits all ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ elastic data for $E=54.7-215.2 \mathrm{MeV}$. (86HO18) employ a fixed energy potential inversion method to generate an optical model potential which fits ${ }^{16} \mathrm{O}+{ }^{28}$ Si elastic scattering data at 34.8 MeV . (86BR19) create a deformed optical potential consistent with calculations based on nuclear structure information which fits ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ scattering and fusion data. (86BR23) use an optical model with repulsive core and coupled channels method to describe ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ scattering data at large angles for $E=29-35 \mathrm{MeV}$. (88 CH 28) use a Monte Carlo simulation to calculate the nucleon transfer part of the imaginary optical-model potential. (87HU11) find good agreement with back angle elastic data in ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ by including a derived α-transfer polarization potential. (90DE35) employ a multistep α-transfer treatment to study back angle scattering of ${ }^{16} \mathrm{O}+{ }^{28}$ Si. (85KH10) use a conventional optical model potential for $E_{\text {lab }}=33.16-55 \mathrm{MeV}$. They parameterize the S-matrix in terms of Regge poles and look at semiclassical features. (85KR1A) show that existing data do not allow one to draw conclusions about the relevance of Regge poles in ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$. (89MA08) use elastic phase shifts obtained by the algebraic approach to scattering theory in a fixed energy inversion procedure. Results point to an underlying nonlocal interaction. (87NA13) show that the elastic and fusion
cross sections are hardly affected by a strongly attractive real-polarization-potential. (87VA03) have applied a fast algorithm-based method for performing unconstrained phase-shift analyses to ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ at $21.1 \mathrm{MeV}\left(E_{\text {c.m. }}\right)$. (87XI01) formulate a molecular orbit theory for the 3α-transfer process and apply it to ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ for $E=18.67$ 34.80 MeV , and compare it to data.
63. (a) ${ }^{16} \mathrm{O}\left({ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ca}\right){ }^{16} \mathrm{O}$
(b) ${ }^{16} \mathrm{O}\left({ }^{42} \mathrm{Ca},{ }^{42} \mathrm{Ca}\right){ }^{16} \mathrm{O}$
(c) ${ }^{16} \mathrm{O}\left({ }^{44} \mathrm{Ca},{ }^{44} \mathrm{Ca}\right){ }^{16} \mathrm{O}$
(d) ${ }^{16} \mathrm{O}\left({ }^{48} \mathrm{Ca},{ }^{48} \mathrm{Ca}\right){ }^{16} \mathrm{O}$
(e) ${ }^{16} \mathrm{O}\left({ }^{48} \mathrm{Ti},{ }^{48} \mathrm{Ti}\right){ }^{16} \mathrm{O}$

Elastic angular distributions are reported on ${ }^{40} \mathrm{Ca}$ at $E\left({ }^{16} \mathrm{O}\right)=50$ to 214.1 MeV [see (82AJ01, 86AJ04) and recently at $E\left({ }^{16} \mathrm{O}\right)=94 \mathrm{MeV} /$ nucleon (88RO01). Elastic angular distributions were reported at $E\left({ }^{16} \mathrm{O}\right)=60 \mathrm{MeV}\left({ }^{42,44} \mathrm{Ca}\right.$; also inelastic distributions) and 150 MeV [see (86AJ04)]. Similar measurements have been reported for ${ }^{48} \mathrm{Ca}$ at $E\left({ }^{16} \mathrm{O}\right)=60 \mathrm{MeV}$ [see (82AJ01)] and at 56 MeV (86AJ04; also ${ }^{48} \mathrm{Ca}^{*}$) and 158.2 MeV (86AJ04; also ${ }^{48} \mathrm{Ca}^{*}$). Yield, fusion cross section and evaporation residue measurements are reported in (82AJ01, 86AJ04) and by (86SA25, 87BEZY, 87BR20. 87HI10, 88KO1U, 89BE17). See also (86GU1C). For a measurement of the total non-fusion reaction cross section at $E\left({ }^{16} \mathrm{O}\right)=158.2 \mathrm{MeV}$ (reaction (d)) see (86AJ04). For a study of deep inelastic collisions at 142 MeV (reaction (d)) and for reaction (e) see (86AJ04).

A microscopic study of the ${ }^{16} \mathrm{O}+{ }^{40} \mathrm{Ca}$ potential is discussed in (86WA1C). (86AN18) calculate angular distributions for elastic scattering using a simple prescription for the part of the imaginary potential arising from inelastic processes and a folding expression for the real part of the potential, and fit it to the data. (86CH20) perform a microscopic optical model analysis using folding and realistic NN interactions (direct and exchange terms). They compare their results to data. (86CH38) calculate the real part of the optical model potential in a folding approximation using the density dependent M3Y interaction in factorized form. They also compare their results to data. (89DA1C) describe colliding nuclei as two slabs of nuclear matter. Energy density is derived from properties of nuclear matter. (89ES07) obtain good agreement with elastic and inelastic data using a coupled-channels treatment. (87GR04) study peripheral reactions. Neutrons and protons behave separately in an effective mean field. They find a transition between incomplete deep inelastic processes and fragmentation reactions near $35 \mathrm{MeV} /$ nucleon. (86HA13) calculate barrier penetrations with Coulomb included. They obtain good agreement with data in the above and sub-barrier fusion regions. (89HO10) calculated heavy-ion fusion reactions with a macroscopic model proposed by Bertsch. They give a good account of the fusion cross section up to very high energies. (87DA23) develop a semi-microscopic model of elastic and inelastic scattering with a full finite range NN interaction. They also study the role of NN exchange correlations. The real and imaginary potentials have
been derived (87VI04) in a model which includes a large set of non-elastic channels. (88PA20) calculate the particle transfer flux between two scattering nuclei from the time-dependent single-particle wave functions in the field of two moving potential pockets. They deduce the absorptive potentials which compare well with phenomenological ones. (89SU05) study the excitation of the GDR within the framework of the Landau-Vlasov equation. They analyze the GDR excited in peripheral ${ }^{16} \mathrm{O}+{ }^{40} \mathrm{Ca}$ reactions at $E=5 \mathrm{MeV} /$ nucleon.
64. ${ }^{17} \mathrm{Ne}\left(\beta^{+}\right){ }^{17} \mathrm{~F}^{*} \rightarrow{ }^{16} \mathrm{O}+\mathrm{p} \quad Q_{\mathrm{m}}=13.928$

The beta-delayed proton emission in the ${ }^{17} \mathrm{Ne}$ decay has been studied by (88BO39). See Tables 17.16 and 17.27. The half life is measured to be $\mathrm{T}_{1 / 2}=109.3 \pm 0.6 \mathrm{~ms}$.
65. ${ }^{17} \mathrm{O}(\gamma, \mathrm{n}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-4.143$

See (86AJ04, 89OR07, 90MC06) and ${ }^{17} \mathrm{O}$.
66. ${ }^{17} \mathrm{O}(\mathrm{p}, \mathrm{d}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-1.919$

Angular distributions for the ground-state deuteron group have been studied at $E_{\mathrm{p}}=8.62$ to 11.44 MeV . At $E_{\mathrm{p}}=31 \mathrm{MeV}$, angular distributions are reported for the deuterons corresponding to ${ }^{16} \mathrm{O}^{*}(0,6.05+6.13,7.12,8.87,10.36,12.97,13.26)$. States at $E_{\mathrm{x}}=15.22$ and 15.42 MeV were also observed. Spectroscopic factors were obtained from a DWBA analysis: see (77AJ02, 86AJ04). See also (89DE1P, 89OB1B).
67. ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{t}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-2.114$

Differential cross sections and analyzing powers for the reaction were measured at $E_{\mathrm{d}}=89 \mathrm{MeV}$ by (90SA27) and summarized in Table 16.28. Earlier information obtained at $E_{\mathrm{d}}=52 \mathrm{MeV}$ is displayed in Table 16.20 of (86AJ04). As discussed there, comparison of the (d, t) and $\left(\mathrm{d},{ }^{3} \mathrm{He}\right)$ reactions leads to assignments of analog states in ${ }^{16} \mathrm{~N}$ and in ${ }^{16} \mathrm{O}$ [see Table 16.10 in (82AJ01)]. A study of this reaction, the ($\mathrm{d},{ }^{3} \mathrm{He}$) reaction, and reaction $67\left[{ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{16} \mathrm{O}\right]$ below, suggests that there is more than 17% isospin mixing of the 2^{-}states in ${ }^{16} \mathrm{O}^{*}(12.97,12.53)$: the corresponding mixing matrix element is $\geq 155 \pm 30 \mathrm{keV}$. An isospin mixing matrix element of $110 \pm 10 \mathrm{keV}$ for the 4^{-}states of ${ }^{16} \mathrm{O}^{*}(17.79,18.98,19.80)$ is compatible with the results from this reaction and with pion scattering (86AJ04). See also reaction $44\left[{ }^{16} \mathrm{O}\left(\pi^{ \pm}, \pi^{ \pm}\right)^{16} \mathrm{O}\right]$.
68. ${ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=16.435$

Angular distributions have been reported at $E\left({ }^{3} \mathrm{He}\right)=11 \mathrm{MeV}$ [see (77AJ02)], at $E\left({ }^{3} \mathrm{He}\right)=14 \mathrm{MeV}\left(\alpha_{0}\right)$ and at $E\left({ }^{3} \mathrm{He}\right)=33 \mathrm{MeV}$ (to many states of ${ }^{16} \mathrm{O}$) [see (86AJ04)]. Table 16.28 displays some of the information derived from this reaction. For polarization measurements see (86AJ04) and ${ }^{20} \mathrm{Ne}$ in (83AJ01, 87AJ02). See also (82AJ01).
69. ${ }^{18} \mathrm{O}\left(\pi^{+}, \mathrm{d}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=130.387$

See (86AJ04).
70. ${ }^{18} \mathrm{O}(\mathrm{p}, \mathrm{t}){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-3.706$

Angular distributions of tritons have been measured for $E_{\mathrm{p}}=43.7 \mathrm{MeV}$ [see (82AJ01)] and at $E_{\mathrm{p}}=90 \mathrm{MeV}$ (86VO10) (to ${ }^{16} \mathrm{O}^{*}(6.1,6.92,7.12,9.84,13.26$, $16.35)$): see also (85 BL 1 A). It is noted in (86 VO 10) that the 16.35 MeV state may be the $\left(0^{+}, 1^{-}, 2^{+}\right)$multiplet at $E_{\mathrm{x}}=16.35$ and 16.144 MeV (82AJ01). The population of ${ }^{16} \mathrm{O}^{*}(22.7,24.5)$ is consistent with $L=0$ and 2 , respectively, and with assignments of $T=2, J^{\pi}=0^{+}$and 2^{+}. The decay of ${ }^{16} \mathrm{O}^{*}(22.7), J^{\pi} ; T=0^{+} ; 2$, is via α_{0}, α_{1} and $\alpha_{2}\left[{ }^{12} \mathrm{C}^{*}(0,4.4,7.7)\right]$ with $(1.6 \pm 0.7),(1.9 \pm 0.7)$ and $(14 \pm 2) \%$ branches and $\Gamma_{\mathrm{i}}(\mathrm{eV})=190 \pm 100,230 \pm 110$ and $1680 \pm 550 \mathrm{eV}$, respectively; via $\mathrm{p}_{0}, \mathrm{p}_{1+2}, \mathrm{p}_{3}$ with $(7 \pm 2),(11 \pm 2)$ and $(5 \pm 2) \%$ branches and $\Gamma_{\mathrm{i}}(\mathrm{eV})=840 \pm 343,1320 \pm 454$ and $600 \pm 300 \mathrm{eV}$; and via n_{1+2} with a $(23 \pm 15) \%$ branch $\left[\Gamma_{\mathrm{n}}=2760 \pm 1970 \mathrm{eV}\right]$ (the n_{0} branch is $<15 \%$) [Γ_{i} are based on a total width of $12 \pm 3.5 \mathrm{keV}$]. See (86AJ04). See also (82AJ01) and ${ }^{19} \mathrm{~F}$ in (87AJ02).
71. ${ }^{18} \mathrm{O}\left(\alpha,{ }^{6} \mathrm{He}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-11.213$

Angular distributions have been measured at $E_{\alpha}=58 \mathrm{MeV}$ to ${ }^{16} \mathrm{O}^{*}(0,6.1,6.92$, 7.12). Groups at $E_{\mathrm{x}}=10.4,13.3 \pm 0.1$ and $16.3 \pm 0.1 \mathrm{MeV}$ were also observed: see (77AJ02, 86AJ04).
72. ${ }^{18} \mathrm{O}\left({ }^{18} \mathrm{O},{ }^{20} \mathrm{O}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-0.623$

Angular distributions involving ${ }^{16} \mathrm{O}_{\text {g.s }}$ and ${ }^{20} \mathrm{O}$ states are reported at $E\left({ }^{18} \mathrm{O}\right)=24$ to 36 MeV and at 52 MeV : see (82AJ01, 86AJ04).
73. ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=8.115$

Angular distributions have been measured at many energies up to $E_{\mathrm{p}}=44.5 \mathrm{MeV}$ [see (82AJ01)] and $E_{\mathrm{p}}=1.55$ to $2.03 \mathrm{MeV}\left(\alpha_{0}, \alpha_{1}\right), 1.66$ to $1.86 \mathrm{MeV}\left(\alpha_{0}\right), 10.0$ to $11.4 \mathrm{MeV}\left({ }^{16} \mathrm{O}^{*}(0,6.05,6.13,6.92,7.13,8.87,9.84,10.36,10.96,11.08+11.10)\right)$ [see (86AJ04)]. See also Table 16.31 in (71AJ02). For a DWBA analysis of data for incident energies below the Coulomb barrier see (91HE16). A recent measurement of the absolute differential cross section at $E_{\mathrm{p}}=2-3.4 \mathrm{MeV}$ is reported in (86OU01). Measurements at $E_{\mathrm{p}}=1.55-1.64 \mathrm{MeV}$ by (90 AZZY) were used to study resonances corresponding to states in ${ }^{20} \mathrm{Ne}$. Absolute yields, angular distributions and resonance widths of the $6.13,6.92$, and 7.12 MeV photons from the 340.5 keV resonance are reported in (91CR06). See also (91MC08) for a study of resonance-yield deconvolution techniques.

The internal conversion to pair production ratio of the E0 transition ${ }^{16} \mathrm{O}^{*}(6.05 \rightarrow$ g.s.) $\left[0^{+} \rightarrow 0^{+}\right]$is $(4.00 \pm 0.46) \times 10^{-5}$. The ratio of double γ-emission to pair production $\Gamma_{\mathrm{E} 1 \mathrm{E} 1} / \Gamma_{\mathrm{E} 0(\pi)}=(2.5 \pm 1.1) \times 10^{-4} . \tau_{\mathrm{m}}$ for ${ }^{16} \mathrm{O}^{*}(6.05,6.13)$ are $96 \pm 7 \mathrm{psec}$ and $26.6 \pm 0.7 \mathrm{ps}$, respectively. See (82AJ01) for references. $|g|$ for ${ }^{16} \mathrm{O}^{*}(6.13)=$ 0.556 ± 0.004 (84 AS 03.86 AJ 04). For γ-ray branching ratios and mixing ratios see Table 16.14 and (86AJ04).

See also ${ }^{20}$ Ne in (83AJ01, 87AJ02), and see (86KH1A, 87KH1A, 88GN1A, 88UM1A; applied) and (88CA1N; astrophysics).
74. ${ }^{19} \mathrm{~F}\left(\mathrm{t},{ }^{6} \mathrm{He}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=0.608$

Differential cross section measurements at $E_{\mathrm{t}}=38 \mathrm{MeV}$ are reported in (92CL04).
75. ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{Li}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=4.096$

See (77AJ02).
76. ${ }^{19} \mathrm{~F}\left(\alpha,{ }^{7} \mathrm{Li}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-9.233$

See (88SH1E).
77. (a) ${ }^{20} \mathrm{Ne}(\gamma, \alpha){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-4.734$
(b) ${ }^{20} \mathrm{Ne}(\mathrm{p}, \mathrm{p} \alpha){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-4.734$

See (82AJ01, 86AJ04) and ${ }^{20} \mathrm{Ne}$ in (83AJ01, 87AJ02). See also (89TH1C).
78. ${ }^{20} \mathrm{Ne}(\alpha, 2 \alpha){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-4.734$

See (88SH05) for a DWBA analysis of differential cross section data at $E_{\alpha}=$ 140 MeV .
79. ${ }^{20} \mathrm{Ne}\left(\mathrm{d},{ }^{6} \mathrm{Li}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=3.259$

Angular distributions have been studied at E_{d} to 80 MeV : see (82AJ01). At $E_{\mathrm{d}}=55 \mathrm{MeV}^{16} \mathrm{O}^{*}(0,6.05,6.13,6.92,9.8,11.10)$ are strongly populated (86AJ04.).
80. ${ }^{23} \mathrm{Na}\left(\mathrm{d},{ }^{9} \mathrm{Be}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-3.006$

The angular distribution to ${ }^{16} \mathrm{O}_{\text {g.s. }}$ has been measured at $E_{\mathrm{d}}=13.6 \mathrm{MeV}$ (86AJ04).
81. ${ }^{24} \mathrm{Mg}\left(\alpha,{ }^{12} \mathrm{C}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-6.772$

Angular distributions have been reported at $E_{\alpha}=22.8$ to 25.4 MeV and at 90.3 MeV , the latter to ${ }^{16} \mathrm{O}^{*}(0,6.1,7.0,8.8,9.8,10.3)$ [see (82AJ01)] and at $E_{\alpha}=25.1$ to 27.8 MeV (86AJ04). Excitation functions measured for $E_{\alpha}=26-37 \mathrm{MeV}$ at $\theta_{\text {lab }}=30^{\circ}, 40^{\circ}, 60^{\circ}$ have been reported (86ESZV, 89ES06). See also (87SH1B, 88SH1F).
82. ${ }^{24} \mathrm{Mg}\left({ }^{12} \mathrm{C},{ }^{20} \mathrm{Ne}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-2.149$

The ground state angular distribution has been studied at $E\left({ }^{12} \mathrm{C}\right)=40 \mathrm{MeV}$ [see (86AJ04)]. ${ }^{16} \mathrm{O}+{ }^{8} \mathrm{Be}$ breakup of ${ }^{24} \mathrm{Mg}$ following inelastic scattering of ${ }^{24} \mathrm{Mg}$ projectiles on ${ }^{12} \mathrm{C}$ has been reported (89FU10).
83. ${ }^{28} \mathrm{Si}\left({ }^{12} \mathrm{C},{ }^{24} \mathrm{Mg}\right){ }^{16} \mathrm{O} \quad Q_{\mathrm{m}}=-2.822$

Forward-angle yields of ${ }^{16} \mathrm{O}$ measured at $E\left({ }^{28} \mathrm{Si}\right)=100-170 \mathrm{MeV}$ have been reported (86SH25).
84. ${ }^{28} \mathrm{Si}\left({ }^{14} \mathrm{~N},{ }^{16} \mathrm{O}\right){ }^{26} \mathrm{Al} \quad Q_{\mathrm{m}}=-1.682$

Forward-angle yields of ${ }^{16} \mathrm{O}$ measured at $E\left({ }^{28} \mathrm{Si}\right)=100-170 \mathrm{MeV}$ have been reported (86SH25).

${ }^{16} \mathrm{~F}$

(Figures 4 and 5)
GENERAL:See Table 16.29.

1. (a) ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-0.957$
(b) ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{np}\right){ }^{15} \mathrm{O} \quad Q_{\mathrm{m}}=-0.421$

Observed neutron groups from reaction (a) and results from reaction (b) are displayed in Table 16.31. A recent measurement of n-p angular correlations from ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{16} \mathrm{~F}(\mathrm{p}){ }^{15} \mathrm{O}$ is reported in (86RYZZ).
2. ${ }^{15} \mathrm{~N}\left(\mathrm{p}, \pi^{-}\right){ }^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-142.858$

Measurements of pion spectra with polarized protons at $E_{\mathrm{p}}=200 \mathrm{MeV}$ are reported in (87AZZY). Levels in ${ }^{16} \mathrm{~F}$ at $0.39\left(2^{-}\right), 0.72\left(3^{-}\right), 5.40,6.37\left(4^{-}\right), 7.85$, and 11.52 MeV are observed.
3. ${ }^{16} \mathrm{O}\left(\gamma, \pi^{-}\right){ }^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-154.985$

Angular distributions and photoproduction cross sections vs. energy have been measured for $E_{\mathrm{p}}=200-350 \mathrm{MeV}$ (87JE02). See also (86AJ04).
4. ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{n}){ }^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-16.199$

Observed neutron groups are displayed in Table 16.31. Angular distributions of cross sections and/or polarization observables have been studied at $E_{\mathrm{p}}=35-$ 135.2 MeV (86AJ04) and recently at $E_{\mathrm{p}}=35$ and $40 \mathrm{MeV}(87 \mathrm{OH} 04)$ and at $E_{\mathrm{p}}=$ 135 MeV (89WAZZ). See also (83WA29). For a comparison of (p, n) cross sections with B(M1) see (86AJ04). A study of Gamow-Teller strengths is described in (88MA53). An investigation of $0^{+} \rightarrow 0^{-}$transitions is discussed in (86GA31). See also (89GA26) and the reviews of (86AN1E, 86BA78).
5. ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right){ }^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-15.436$

Observed triton groups are shown in Table 16.31. Angular distributions at $E\left({ }^{3} \mathrm{He}\right)=$ 81 MeV , analyzed by DWBA, and angular correlation measurements [mainly involving protons to $\left.{ }^{15} \mathrm{O}^{*}(0,6.18)\right]$, together with information from reactions 1 and 4, lead to the J^{π} values shown in the table. The analog of the giant dipole resonance $\left[E_{\mathrm{x}} \sim 9.5 \mathrm{MeV}\right]$ is strongly excited. The magnetic quadrupole strength has two strong components in ${ }^{16} \mathrm{~F}^{*}(0.42,7.5)$. The 4^{-}state at 6.4 MeV and the GDR have also been observed at $E\left({ }^{3} \mathrm{He}\right)=170 \mathrm{MeV}$ [see (86AJ04, 82AJ01). A recent measurement of differential cross sections at $E\left({ }^{3} \mathrm{He}\right)=66-90 \mathrm{MeV}$ and DWBA analysis is reported in (89VA09). See also (85VA1A, 90VA08).
6. (a) ${ }^{16} \mathrm{O}\left({ }^{6} \mathrm{Li},{ }^{6} \mathrm{He}\right){ }^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-18.924$
(b) ${ }^{16} \mathrm{O}\left({ }^{7} \mathrm{Li},{ }^{7} \mathrm{He}\right)^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-26.62$

Measurements have been reported at $E\left({ }^{6} \mathrm{Li}\right)=93 \mathrm{MeV}, E\left({ }^{7} \mathrm{Li}\right)=78 \mathrm{MeV}$ [see (86AJ04)]. See also (89GA26).
7. ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right){ }^{16} \mathrm{~F} \quad Q_{\mathrm{m}}=-14.828$

See Table 16.31 and (82AJ01, 86AJ04).

$$
{ }^{16} \mathrm{Ne}
$$

(Fig. 5)

GENERAL:

See Table 16.29.
Mass of ${ }^{16} \mathrm{Ne}$: The Q-values of the ${ }^{20} \mathrm{Ne}\left(\alpha,{ }^{8} \mathrm{He}\right)$ and ${ }^{16} \mathrm{O}\left(\pi^{+}, \pi^{-}\right)$reactions lead to atomic mass excesses of $23.93 \pm 0.08 \mathrm{MeV}$ (78KE06), $23.978 \pm 0.024 \mathrm{MeV}$ (83WO01) and $24.048 \pm 0.045 \mathrm{MeV}$ (80BU15) [recalculated using the (85WA02) masses for ${ }^{8} \mathrm{He}$, ${ }^{16} \mathrm{O}$ and ${ }^{20} \mathrm{Ne}$. The weighted mean is $23.989 \pm 0.020 \mathrm{MeV}$, which is also the (85WA02) value. ${ }^{16} \mathrm{Ne}$ is then bound with respect to decay into ${ }^{15} \mathrm{~F}+\mathrm{p}$ by 0.07 MeV and unbound with respect to ${ }^{14} \mathrm{O}+2$ p by 1.40 MeV (86AJ04).

1. ${ }^{16} \mathrm{O}\left(\pi^{+}, \pi^{-}\right){ }^{16} \mathrm{Ne} \quad Q_{\mathrm{m}}=-24.77$

For ground state cross sections and analyses for $E_{\pi^{+}}=80$ to 292 MeV see (82AJ01, 86AJ04). A recent measurement at $\theta_{\text {lab }}=5^{\circ}$ for $E_{\pi^{+}}=140-292 \mathrm{MeV}$ has been reported (90SE11).
2. ${ }^{20} \mathrm{Ne}\left(\alpha,{ }^{8} \mathrm{He}\right){ }^{16} \mathrm{Ne} \quad Q_{\mathrm{m}}=-60.21$

At $E_{\alpha} \approx 117.5 \mathrm{MeV},{ }^{16} \mathrm{Ne}^{*}(0,1.69 \pm 0.07)$ are populated, the former with a differential cross section of $5 \pm 3 \mathrm{nb} / \mathrm{sr}$ at $8^{\circ}(\mathrm{lab})$. The $\Gamma_{\mathrm{c} . \mathrm{m} .}$. for the ground state group is $200 \pm 100 \mathrm{keV}$; applying penetrability corrections leads to a total decay width of 5100 keV . The di-proton branching ratio is $10-90 \%$, with the most probable value being 20%. The cubic term, d, in the IMME (Isobaric Multiplet Mass Equation) is $8 \pm 5 \mathrm{keV}$, $15 \pm 6 \mathrm{keV}$ based, respectively, on the masses of ${ }^{16} \mathrm{Ne}^{*}(0,1.69)$. The first $T=2$ states in ${ }^{16} \mathrm{~F}\left[0^{+}, 2^{+}\right]$are predicted to lie at $E_{\mathrm{x}}=10.08 \pm 0.02$ and $11.87 \pm 0.03 \mathrm{MeV}$ (78 KE 06). At $E_{\alpha}=129 \mathrm{MeV}$ (83WO01) find $\Gamma_{\text {c.m. }}$ for ${ }^{16} \mathrm{Ne}_{\text {g.s. }}=110 \pm 40 \mathrm{keV}$ and the d and e coefficients in the IMME are both $4 \pm 3 \mathrm{keV}$.
${ }^{16} \mathrm{Na},{ }^{16} \mathrm{Mg},{ }^{16} \mathrm{Al},{ }^{16} \mathrm{Si}$
(Not observed)
See (86AN07).

Table 16.1
${ }^{16} \mathrm{C}$ - General

Reference	Description
Complex Reactions	

Hypernuclei

87FA1A Review of International Conference on a European Hadron Facility
88MA09 Hypernucleus production by K^{-}capture at rest on ${ }^{16} \mathrm{O}$ targets
89BA2N Strangeness production by heavy ions
Other Topics

86AN07 Predicted masses and excitation energies in higher isospin multiplets for $9 \leq A \leq 60$
87BL18 Calc. ground state energy of light nucl. (and excited states for $\mathrm{N}=\mathrm{Z}$) using HF method
89PO1K Exotic light nuclei and nuclei in the lead region
89RA16 Predictions of $\mathrm{B}\left(\mathrm{E} 2 ; 0_{1}^{+}-2_{1}^{+}\right)$values for even-even nuclei

Ground State Properties

87BL18 Calculated ground state energies using Gogny's effective interaction and HF method 87SA15 Hartree-Fock calculations of light neutron-rich nuclei using Skyrme interactions
88PO1E Shell model study of light exotic nuclei - compares calc. ground state prop. to data
89RA16 Predictions of B(E2; $\left.0_{1}^{+}-2_{1}^{+}\right)$values for even-even nuclei
89SA10 Total cross sections of reactions induced by neutron-rich light nuclei

Table 16.2
Energy Levels of ${ }^{16} \mathrm{C}$
$\left.\begin{array}{|c|c|c|c|l|}\hline \begin{array}{c}E_{\mathrm{x}} \\ (\mathrm{MeV} \pm \mathrm{keV})\end{array} & J^{\pi} ; T & \begin{array}{c}\tau_{1 / 2}(\mathrm{~s}) \text { or } \\ \Gamma(\mathrm{keV})\end{array} & \text { Decay } & \text { Reactions } \\ \hline 0 & 0^{+} ; 2 & \tau_{1 / 2}=0.747 \pm 0.008 & \beta^{-} & 1,2 \\ 1.766 \pm 10 & 2^{+} & & \gamma & 2 \\ 3.027 \pm 12 & \left(0^{+}\right) & & (\gamma) & 2 \\ 3.986 \pm 7 & 2 & & \gamma & 2 \\ 4.088 \pm 7 & 3^{(+)} & 4^{+} & & \gamma \leq 25\end{array}\right) 2$

Table 16.3
The β^{-}decay of ${ }^{16} \mathrm{C}$

Decay to ${ }^{16} \mathrm{~N}^{*}(\mathrm{MeV})$	J^{π}	Branch $(\%)$	$\log f_{0} t$
0.120	0^{-}	$\left.0.68_{-0.11}^{+0.09}\right)$	$6.70_{-0.05}^{+0.07}$
0.298	3^{-}	$\left.<0.5^{\mathrm{b}}\right)$	>6.83
0.397	1^{-}	$\left.<0.1^{\mathrm{a}}\right)$	>7.46
3.35	1^{+}	$\left.84.4 \pm 1.7^{\mathrm{b}}\right)$	3.551 ± 0.012
4.32	1^{+}	$\left.15.6 \pm 1.7^{\mathrm{b}}\right)$	3.83 ± 0.05

${ }^{\text {a }}$) (83GA03). See also (84GA1A).
b) (76AL02).

Table 16.4
${ }^{16} \mathrm{~N}$ - General
Reference Description

Model Calculations

84VA06	Shell-model treatment of $(0+1) \hbar \omega$ states in $A=4-16$ nuclei 87VA26 An effective interaction derived from spectra and static moments for $A=4-16$ 88VA03
Static moments from a phenomenological interaction	
88MI1J	Shell model transition densities for electron and pion scattering Effective interactions for the 0p1s0d nuclear shell-model space
92WA22	

Complex Reactions
86BI1A Heavy ion secondary beams of radioactive nuclei
86GA1I Spin response function obtained in heavy ion charge-exchange reactions
86HA1B Microscopic model of nucleus-nucleus collisions
86PO06 Calc. half-lives \& kinetic energies for spontaneous emission of heavy ions from nuclei
87AN1A Achromatic spectrometer LISE at GANIL: produc. and ident. of nuclei far from $Z=N$
87BA1T Spin-isospin excitations in nuclei with relativistic heavy ions
87BA38 Systematics of the ${ }^{14} \mathrm{~N}+{ }^{159} \mathrm{~Tb}$ reaction between 6 and $33 \mathrm{MeV} / \mathrm{u}$
87BU07 Projectile-like frags. from ${ }^{20} \mathrm{Ne}+{ }^{197} \mathrm{Au}$ - counting simultaneously emitted neutrons
87EL14 Isovector excitations in nuclei with composite projectiles: $\left({ }^{3} \mathrm{He}, \mathrm{t}\right),\left(\mathrm{d},{ }^{2} \mathrm{He}\right) \&$ heavy ions
87RI03 Isotopic distributions of fragments from ${ }^{40} \mathrm{Ar}+{ }^{68} \mathrm{Zn}$ at $\mathrm{E}=27.6 \mathrm{MeV} / \mathrm{u}$
87VI02 Anisotropies in transfer-induced fission of ${ }^{16} \mathrm{O}+{ }^{232} \mathrm{Th}$
88SA19 Sytematics of isotope production rates: unification of different methods of analysis
89BA2N Strangeness production by heavy ions
89SA10 Total cross sections of reactions induced by neutron-rich light nuclei
89TE02 Dissipative mechanisms in the $120 \mathrm{MeV}{ }^{19} \mathrm{~F}+{ }^{64} \mathrm{Ni}$ reaction
89YO02 Quasi-elastic \& deep inelastic transfer in ${ }^{16} \mathrm{O}+{ }^{197} \mathrm{Au}$ for $E<10 \mathrm{MeV} / \mathrm{u}$

Hypernuclei

88RO11 Distorted wave impulse approximation study of hypernuclear photoproduction
89BA2N Strangeness production by heavy ions
89BE02 Kaon photoproduction from nuclei in a relativistic nuclear model
89BE11 Electromagnetic production of Σ hypernuclei
89TA04 Absorptive effects in $\mathrm{K}+\Lambda$ photoproduction on nucleons and nuclei
89TA17 Compound-hypernucl. interpretation on ${ }_{\Lambda}^{4} \mathrm{H}$ formation in stopped- K^{-}absorption
89TA1T Schmidt diagrams and configuration mixing effects on hypernuclear magnetic moments

Reactions involving pions, muons and neutrinos

```
85GR1A
Induced weak currents in nuclei
Photoproduction of pions off nucleons and nuclei
```


Ground-state Properties

Predicted masses \& excitation energies in higher isospin multiplets for $9 \leq A \leq 60$

Table 16.5
Energy Levels of ${ }^{16} \mathrm{~N}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
0	$2^{-} ; 1$	$\tau_{1 / 2}=7.13 \pm 0.02 \mathrm{~s}$	β^{-}	$\begin{aligned} & 1,2,4,5,7,9,11,12,16,19-25, \\ & 27,28 \end{aligned}$
0.12042 ± 0.12	0^{-}	$\tau_{\mathrm{m}}=7.58 \pm 0.09 \mu \mathrm{~s}$	γ, β^{-}	$1,2,4,5,7,9,11,16-25,27,28$
0.29822 ± 0.08	3^{-}	$131.7 \pm 1.9 \mathrm{ps}$	γ	$2,4,5,7,9-11,16,19-25,27,28$
0.39727 ± 0.10	1^{-}	$\left\{\begin{array}{l}\|\mathrm{g}\|=0.532 \pm 0.020 \\ \tau_{\mathrm{m}}=5.63 \pm 0.05 \mathrm{ps}\end{array}\right.$	γ	$2,4,5,7,9,11,16,18-22,27,28$
3.3528 ± 2.6	$\left(1^{+}\right)^{\text {c }}$)	$\left\{\begin{array}{c} \mathrm{g}=-1.83 \pm 0.13 \\ \Gamma=15 \pm 5 \end{array}\right.$	n	5, 7, 9, 11, 13-17, 22, 25, 27
3.5227 ± 2.6	2^{+}	3	n	$5,7,9,11,13,16,22,25,27$
3.9627 ± 2.6	3^{+}	≤ 2	n	5, 7, 9-11, 13, 16, 22, 25, 27
4.3204 ± 2.7	1^{+}	20 ± 5	n	5, 9, 11, 13-17
4.3914 ± 2.7	1^{-}	82 ± 20	n	$5,7,9,11,13,16$
4.76 ± 50	1^{-}	250 ± 50	n	11, 13, 16
4.7828 ± 2.7	2^{+}	59 ± 8	n	5, 7, 9, 11, 13, 16
5.0537 ± 2.7	2^{-}	19 ± 6	n	5, 9, 11, 13, 16
5.129 ± 7	$\geq 2^{\text {a }}$)	$\leq 7 \pm 4$	n	$5,7,9,11,13,16,25$
5.150 ± 7	$(3)^{-} ; 1^{\text {a,d }}$)	$\leq 7 \pm 4$	n	$5,7,9,11,13,16,25$
5.2301 ± 2.6	3^{+}	≤ 4	n	$5,9,11,13,16,27$
5.25 ± 70	2^{-}	320 ± 80	n	11, 16
5.318 ± 3	$\left(0^{-}, 1^{+}\right)$	(260)	n	5, 13
5.5216 ± 2.5	3^{+}	$\leq 7 \pm 4$	n	5, 7, 9, 11, 13, 16, 22, 24, 27
5.7317 ± 2.5	$\left(5^{+}\right)^{\mathrm{e}}$)	$\leq 7 \pm 4$	n	$5,7,9-11,13,15,16,22,24,27$
6.003 ± 3	1^{-}	270 ± 30	n	5, 11, 13, 27
6.1707 ± 2.4	$4^{-} ; 1$	$\leq 7 \pm 4$	n	5, 7, 9, 11, 16, 20, 22, 24, 27
6.3739 ± 2.8	$\left(3^{-} ; 1\right)$	30 ± 6	n	$5,7,11,13,16,22,27$
6.426 ± 7		300 ± 30		11, 16
6.5054 ± 2.8	1^{+}	34 ± 6	(n)	5, 11, 13, 16, 24, 27
6.6085 ± 2.8	(4)	$\leq 7 \pm 4$		5, 7, 11, 16, 27
6.845 ± 4		$\leq 7 \pm 4$		7, 9, 11, 16, 27
(6.84)	≥ 2	>140	n	13
7.02 ± 20	1^{+}	22 ± 5	n	11, 13, 16, 27
7.134 ± 7		$\leq 7 \pm 4$		9, 11, 16, 27
7.250 ± 7	≥ 2	17 ± 5	n	$7,11,13,16,27$
7.572 ± 4	$\geq 3^{\text {b }}$)	$\leq 7 \pm 4$	n	7, 9-11, 13, 16, 27
7.637 ± 4	$\left.(3,4,5)^{+b}\right)$	$\leq 7 \pm 4$		7, 9-11, 16, 27
7.674 ± 4	(b)	$\leq 7 \pm 4$	n	$7,9,11,13,16,24,27$
7.877 ± 9	≥ 4	100 ± 15	n	7, 11, 13, 16, 20, 27
8.048 ± 9		85 ± 15	n	11, 13, 27

Table 16.5 - continued
Energy Levels of ${ }^{16} \mathrm{~N}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
8.199 ± 5	$(3,2)^{+}$	28 ± 8		9, 11, 27
8.282 ± 8		24 ± 8		11, 27
8.365 ± 8	≥ 1	18 ± 8	n	7, 11, 13, 27
8.49 ± 30	≥ 1	≤ 50	n	13, 27
8.72	≥ 1	40	n	13
8.819 ± 15		≤ 50	n	7, 13, 27
9.035 ± 15		≤ 50		27
9.16 ± 30	≥ 2	100	n	13, 27
9.34 ± 30		≤ 50	n	13, 27
9.459 ± 15	≥ 2	100	n	7, 13, 24, 27
9.760 ± 10	$T=1$	15 ± 8		7, 9, 27
9.813 ± 10	$T=1$			9
9.928 ± 7	$0^{+} ; T=2$	<12		9, 26
10.055 ± 15	≥ 3	30	n	7, 13, 27
10.37 ± 40	≥ 2	165	n	7, 13
10.71	≥ 2	120	n	13
11.16 ± 40				7
11.49	≥ 3		n	13
11.61	≥ 3	220	n, d	8,13
11.701 ± 7	$2^{+} ; 2$	<12		9
11.75 ± 40		<50		7
(11.92)		390	n, d	8
(12.09)			n	13
12.39 ± 60		290	$\mathrm{n}, \mathrm{p}, \mathrm{d}$	7, 8
12.57 ± 60		180	$\mathrm{n}, \mathrm{p}, \mathrm{d}$	7, 8
12.88		155	$\mathrm{n}, \mathrm{p}, \mathrm{d}$	8, 13
(12.97)		175	n, d	8
13.11 ± 60			n, (d)	7, 8, 13
13.83			n	13
14.1	$\left(7^{+} ; 2\right)^{\text {f }}$)			
14.36 ± 50	$(3)^{+}$	180	d	7, 8

${ }^{\text {a }}$) See also Table 16.6.
${ }^{\text {b }}$) See also Table 16.7.
${ }^{\text {c }}$) May be a doublet. See (85BLZZ) and see Table 16.15.
${ }^{\text {d }}$) Probably the analog of ${ }^{16} \mathrm{O}^{*}(18.029)$, D.J. Millener, private communication.
${ }^{\text {e }}$) May be a $2^{-}, 5^{+}$doublet - the analogs of ${ }^{16} \mathrm{O}$ states at $E_{\mathrm{x}}=18.454$ and $18.640 \mathrm{MeV}, J^{\pi}=\left(2^{-}\right)$ and 5^{+}, respectively (D.J. Millener, private communication).
${ }^{\text {f }}$) (87AZZZ) and D.J. Millener, private communication.

Table 16.6
States of ${ }^{16} \mathrm{~N}$ from ${ }^{10} \mathrm{~B}\left({ }^{7} \mathrm{Li}, \mathrm{p}\right)^{\mathrm{a}}$)

$\left.E_{\mathrm{x}}{ }^{\mathrm{b}}\right)(\mathrm{MeV})$	$\left.J^{\mathrm{c}}\right)$	$\left.E_{\mathrm{x}}{ }^{\mathrm{b}}\right)(\mathrm{MeV})$	$\left.J^{\mathrm{c}}\right)$
0		5.142	$\left.{ }^{\mathrm{e}}\right)$
0.124		5.230	$\left.{ }^{\mathrm{f}}\right)$
0.296		5.318	0,1
0.400	5.525	$\left.4,3^{\mathrm{g}}\right)$	
3.352	$\left.{ }^{\mathrm{c}}\right)$	5.734	$\left.{ }^{\mathrm{h}}\right)$
3.524	$\left.{ }^{\mathrm{c}}\right)$	6.002	$\left.1^{\mathrm{f}}\right)$
3.964	$\left.{ }^{\mathrm{c}}\right)$	6.172	$\left.{ }^{\mathrm{i}}\right)$
4.321	$\left.{ }^{\mathrm{c}}\right)$	6.374	$\left.{ }^{\mathrm{c}}\right)$
4.392	$\left.{ }^{\mathrm{c}}\right)$	6.504	$\left.{ }^{\mathrm{c}}\right)$
4.785	$\left.\mathrm{c}^{\mathrm{c}}\right)$	6.608	$\left.4^{\mathrm{j}}\right)$
5.054	$\left.1,2^{\text {d }}\right)$		

${ }^{\text {a }}$) For references see (86AJ04).
b) $\pm 3 \mathrm{keV}$
${ }^{\text {c }}$) Based on the assumption that the angle-integrated cross section is proportional to $2 J+1$. These states have J consistent with known values.
${ }^{\text {d }}$) If a doublet, $J=1$ and 0.
${ }^{\text {e }}$) Doublet. (86AJ04).
${ }^{f}$) Narrow state.
${ }^{\mathrm{g}}$) If a doublet, and if one state is 3^{+}, the second member would have $J=0$.
${ }^{h}$) If a doublet of which one member is 5^{+}, the other would have $J=2(1,3)$.
${ }^{\text {i }}$) May be a doublet. (86AJ04).
$\left.{ }^{\text {j }}\right) J=4$, if a single state.

Table 16.7
States of ${ }^{16} \mathrm{~N}$ from ${ }^{13} \mathrm{C}(\alpha, \mathrm{p}){ }^{\mathrm{a}}$)

$E_{\text {x }}(\mathrm{MeV})$	$\Gamma(\mathrm{keV})$	J^{π}	$E_{\mathrm{x}}(\mathrm{MeV})$	$\Gamma(\mathrm{keV})$	J^{π}
0.00		2^{-}	8.83	45 ± 30	
0.12		0^{-}	$9.08{ }^{\text {b }}$)	195 ± 30	
0.30		3^{-}	$9.35{ }^{\text {b }}$)	90 ± 30	
0.40		1^{-}	$9.49{ }^{\text {c }}$)	70 ± 30	
3.36			$9.70{ }^{\text {d }}$)	≤ 30	
3.52			$9.81{ }^{\text {d }}$)	90 ± 30	
3.96	≤ 20		10.07	35 ± 20	
4.40	110 ± 30		10.40		
$4.77^{\text {b }}$)	170 ± 30		10.80		
$5.05{ }^{\text {b }}$)			$11.21{ }^{\text {d }}$)	≤ 30	$\left(6^{-}\right)$
$5.14{ }^{\text {b,d }}$)			11.66	170 ± 40	
$5.23{ }^{\text {b }}$)			$11.81{ }^{\text {d }}$)	≤ 20	$\left(7^{-}\right)$
$5.73{ }^{\text {d }}$)	<20	doublet $4^{-}, 5^{+}$	$12.27{ }^{\text {b }}$)	~ 100	
6.17	<20	4^{-}	$12.46{ }^{\text {b,d }}$)	90 ± 30	
6.44	260 ± 50		12.61	100 ± 30	
$6.60{ }^{\text {c }}$)	<20		12.95	170 ± 30	
$6.82{ }^{\text {b }}$)	<20		13.35	60 ± 30	
$7.57{ }^{\text {b }}$)	<20		$13.65{ }^{\text {c }}$)	45 ± 30	
$7.64{ }^{\text {b }}$)	<20		$14.41^{\text {a }}$)	~ 100	
$7.68{ }^{\text {b }}$)	<20	$\begin{gathered} \text { unresolved } 4^{-}, 5^{-} \\ 4^{-}, 5^{-} \end{gathered}$			

a) (86AN30) $E_{\mathrm{d}}=118 \mathrm{MeV}$; DWBA analysis.
${ }^{\text {b }}$) Data available at less than four angles.
${ }^{\text {c }}$) Angular distributions over limited angular range.
${ }^{\text {d }}$) State is observed strongly in ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li},{ }^{3} \mathrm{He}\right){ }^{16} \mathrm{~N}$ (77MA1B).

Table 16.8
States of ${ }^{16} \mathrm{~N}$ from $\left.{ }^{14} \mathrm{C}\left({ }^{3} \mathrm{He}, \mathrm{p}\right)^{\mathrm{a}}\right)$

E_{x} $(\mathrm{MeV} \pm \mathrm{keV})$	Γ (keV)	$J^{\pi} ; T$	E_{x} $(\mathrm{MeV} \pm \mathrm{keV})$	Γ (keV)	$J^{\pi} ; T$
0.121 ± 6		0^{-}	5.724 ± 5		5^{+}
0.298 ± 6		3^{-}	6.168 ± 5		
0.396 ± 7		1^{+}	6.843 ± 5		
3.348 ± 7		$2^{+},(3)^{+}$	7.113 ± 5		
3.517 ± 7		$(2)^{+}, 3^{+}$	7.636 ± 5		
3.958 ± 7		1^{+}	7.673 ± 5		
4.313 ± 9			8.205 ± 5		
4.386 ± 9			9.760 ± 10	15 ± 8	$T=1$
4.768 ± 11				9.813 ± 10	
5.052 ± 9				9.928 ± 7	<12

${ }^{\text {a }}$) For references see Table 16.5 in (77AJ02).

Table 16.9
States in ${ }^{16} \mathrm{~N}$ from ${ }^{14} \mathrm{~N}(\mathrm{t}, \mathrm{p}){ }^{\mathrm{a}}$)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma(\mathrm{keV})$	L	J^{π}
0		3	$2^{-\mathrm{f}}$)
0.120 ± 10		1	$0^{-\mathrm{f}}$)
0.300 ± 10		3	$3^{-\mathrm{f}}$)
$0.399 \pm 10^{\text {b }}$)		1	$1^{-\mathrm{f}}$)
3.359 ± 10	15 ± 5	0	$1^{+\mathrm{f}}$)
3.519 ± 10	$\leq 7 \pm 4$	${ }^{\text {d }}$)	
3.957 ± 10	$\leq 7 \pm 4$	2	$3^{+\mathrm{f}}$)
4.318 ± 10	20 ± 5	0	$1^{+\mathrm{f}}$)
4.391 ± 10	82 ± 20	1	$1^{-\mathrm{f}}$)
$4.725 \pm 10^{\mathrm{c}}$)	290 ± 30	1	1^{-}
4.774 ± 10	59 ± 8	2	$2^{-\mathrm{f}}$)
5.053 ± 10	19 ± 6	$(1+3)$	2^{-}
5.130 ± 10	$\leq 7 \pm 4$	${ }^{\text {d }}$)	
5.150 ± 10	$\leq 7 \pm 4$		
5.226 ± 10	$\leq 7 \pm 4$	2	$(1,2,3)^{+}$
$5.305 \pm 10^{\mathrm{c}}$)	260 ± 30	${ }^{\text {d }}$)	
5.520 ± 10	$\leq 7 \pm 4$	$\left.(0,1)+2+4^{\mathrm{e}}\right)$	
5.730 ± 10	$\leq 7 \pm 4$	$(1,3)+4^{\text {e }}$)	
6.009 ± 10	270 ± 30	1	1^{-}
6.167 ± 10	$\leq 7 \pm 4$	(3)	$\left(4^{-}\right)$
6.371 ± 10	30 ± 6	(3)	$\left(3^{-}\right)$
6.422 ± 10	300 ± 30	$\left.0+(2,4)^{\mathrm{e}}\right)$	
6.512 ± 10	34 ± 6	$0+(2,3)$	1^{+}
6.613 ± 10	$\leq 7 \pm 4$	$(2+4)$ or 3	
6.854 ± 10	$\leq 7 \pm 4$	3 or (2+4)	
7.006 ± 10	22 ± 5	$0(+2)$	1^{+}
7.133 ± 10	$\leq 7 \pm 4$	$(3,2)$	
7.250 ± 10	17 ± 5	$(2+4)$ or 3	
7.573 ± 10	$\leq 7 \pm 4$	3 or (2+4)	3, 4^{-}
7.640 ± 10	$\leq 7 \pm 4$	4	$(3,4,5)^{+}$
7.675 ± 10	$\leq 7 \pm 4$	$(1+4)$	
7.876 ± 10	100 ± 15	$1+4^{\mathrm{e}}$)	
8.043 ± 10	85 ± 15	$(2+4)$ or 3	
8.183 ± 10	28 ± 8	$2(+4)$	$(3,2)^{+}$
8.280 ± 10	24 ± 8	(1)	$\left((0,1,2)^{-}\right)$
8.361 ± 10	18 ± 8	$\left.(1+4)^{\mathrm{e}}\right)$	

${ }^{\text {a }}$) For references see Table 16.7 in (82AJ01).
$\left.{ }^{\text {b }}\right) \tau_{\mathrm{m}}=5.1 \pm 0.3 \mathrm{ps}$.
${ }^{\text {c }}$) The errors listed here for E_{x} for these two broad peaks are probably underestimates (86AJ04).
${ }^{\text {d }}$) Results are ambiguous.
${ }^{\text {e }}$) May be a doublet.
${ }^{f}$) Identified with shell-model counterparts.

Table 16.10
Resonances in $\left.{ }^{15} \mathrm{~N}(\mathrm{n}, \mathrm{n})^{15} \mathrm{~N}^{\mathrm{a}, \mathrm{b}}\right)$

$\begin{gathered} E_{\mathrm{n}} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} \Gamma_{\mathrm{lab}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV}) \end{gathered}$	J^{π}
0.921	14	3.354	1^{+c})
1.095	3	3.517	1
1.563	≤ 2	3.955	1
1.944	29	4.312	1^{+d})
2.038	56	4.400	1^{-d})
$2.30 \pm 70{ }^{\text {e }}$)	$410 \pm 100{ }^{\text {e }}$)	4.65	1^{-d})
2.399	107	4.738	$2^{+ \text {d }}$)
2.732	35	5.050	1^{-}
2.830	12	5.142	$3^{(-)}$
$2.84 \pm 70{ }^{\text {f }}$)	$70 \pm 100^{\text {f }}$)	5.15	$2^{- \text {d }}$)
2.915	4	5.222	≥ 2
2.93	260	5.24	1^{+}
3.225		5.512	
3.454	24	5.727	1^{+}
3.69	297	5.95	1^{-}
3.987	88	6.226	$\left(1^{+}\right)$
4.126	78	6.356	$\left(3^{-}\right)$
4.252	113	6.474	$\left(2^{+}\right)$
4.64	>150	6.84	≥ 2
4.80	37	6.99	≥ 1
5.055	25	7.227	≥ 2
5.43	30	7.58	≥ 3
5.56		7.70	
5.73	165	7.86	≥ 4
5.90		8.02	
6.28		8.37	≥ 1
6.42		8.51	≥ 1
6.65	45	8.72	≥ 1
6.76		8.82	
7.10	110	9.14	≥ 2
7.31		9.34	
7.44	105	9.46	≥ 2
7.71	150	9.71	≥ 2
8.07	30	10.05	≥ 3
8.30	175	10.27	≥ 2
8.77	130	10.71	≥ 2
9.61		11.49	≥ 3

Table 16.10 - continued
Resonances in $\left.{ }^{15} \mathrm{~N}(\mathrm{n}, \mathrm{n})^{15} \mathrm{~N}{ }^{\mathrm{a}, \mathrm{b}}\right)$

E_{n} $(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {lab }}$ (keV)	E_{x} (MeV)	J^{π}
9.77		11.64	≥ 3
10.25		12.09	
10.64		12.46	
11.09		12.88	
11.41		13.12	
12.10		13.83	

${ }^{\text {a }}$) For references see Table 16.7 in (77AJ02).
${ }^{\text {b }}$) Below $E_{\mathrm{n}}=4.5 \mathrm{MeV}$, the multilevel R-matrix formalism was used to determine $E_{\lambda}, \Gamma_{\lambda}$ and whenever possible J^{π} by a χ^{2} fitting and minimization technique. Above this energy the $2 J+1$ dependence was used; the parity cannot be determined because no marked interference effects are observed between resonance and potential scattering. Above 5.65 MeV all J-values are lower limits because the inelastic channel is open. [A channel radius $a=4.69 \mathrm{fm}$ was used.]
${ }^{\text {c }}$) Parity determined from angular distribution.
${ }^{\text {d }} J^{\pi}$ also obtained by phase-shift analysis.
${ }^{e}$) The phase-shift analysis indicates that the resonance is at $E_{\mathrm{n}}=$ $2.42 \pm 0.08 \mathrm{MeV}$ with $\Gamma=250 \pm 50 \mathrm{keV}$. This is one of two $\left(\mathrm{d}_{3 / 2} \mathrm{p}_{1 / 2}^{-1}\right)$ single-particle resonances.
${ }^{\text {f }}$) The phase-shift analysis finds $E_{\lambda}=2.94 \pm 0.1 \mathrm{MeV}, \Gamma=320 \pm 80 \mathrm{keV}$. This is the other $\left(\mathrm{d}_{3 / 2} \mathrm{p}_{1 / 2}^{-1}\right)$ single-particle resonance.

Table 16.11
Levels of ${ }^{16} \mathrm{~N}$ from ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{p})$ and $\left.{ }^{18} \mathrm{O}(\mathrm{d}, \alpha){ }^{\mathrm{a}}\right)$

$\begin{gathered} \left.E_{\mathrm{x}}^{\mathrm{b}}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$l_{\mathrm{n}}{ }^{\mathrm{b}}$)	$\begin{gathered} \left.E_{\mathrm{x}}^{\mathrm{c}}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{\pi}{ }^{\text {a }}$)
0		0	2^{-}
$0.1201 \pm 0.5^{\text {d }}$)		0.119 ± 15	0^{-}
$0.2962 \pm 1.0^{\text {e }}$)		0.301 ± 15	3^{-}
$0.3973 \pm 1.0{ }^{\text {e }}$)		0.400 ± 15	1^{-}
3.365 ± 10		3.358 ± 15	1^{-}
3.523 ± 10	2 or $1+3$	3.524 ± 15	2^{+}
3.964 ± 10	3	3.964 ± 15	$3^{+}{ }^{\text {h }}$)
4.325 ± 10	1	4.324 ± 15	1^{+}
4.40	0	4.383 ± 15	$(0,1)^{-}$
4.715 ± 10	1		$(1,2,3)^{+}$
4.780 ± 10		4.787 ± 15	
(4.90 ± 10)			
5.032 ± 10	2	5.065 ± 15	2^{-}
5.128 ± 10	≥ 2		≥ 2
		5.139 ± 15	
5.150 ± 10	2		$(2,3)^{-}$
5.231 ± 10	3	5.240 ± 15	3^{+}
5.310 ± 10			
5.523 ± 10	3	5.528 ± 15	3^{+}
5.739 ± 10	2	5.740 ± 15	$(1,2){ }^{\text {i }}$)
		6.01 ± 15	
6.170 ± 10	≥ 3	6.168 ± 15	4^{-h})
(6.28 ± 10)	1		$(0,1,2)^{+}$
6.376 ± 10	2	6.37 ± 15	$(1,2,3)^{-}$
6.431 ± 10			
6.514 ± 10	1	6.512 ± 15	$(0,1,2)^{+}$
6.609 ± 10		6.620 ± 15	
(6.79 ± 10)			
6.847 ± 10		6.852 ± 15	
7.034 ± 10		7.01 ± 15	
7.135 ± 10		7.141 ± 15	
7.250 ± 10		7.247 ± 15	
7.577 ± 10		7.596 ± 15	
7.638 ± 10		7.64 ± 15	
7.676 ± 10		7.683 ± 15	
7.840 ± 10		7.88 ± 15	

Table 16.11
Levels of ${ }^{16} \mathrm{~N}$ from ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{p})$ and $\left.{ }^{18} \mathrm{O}(\mathrm{d}, \alpha){ }^{\mathrm{a}}\right)$

$\begin{gathered} \left.E_{\mathrm{x}}^{\mathrm{b}}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$l_{\mathrm{n}}{ }^{\mathrm{b}}$)	$\begin{gathered} \left.E_{\mathrm{x}}{ }^{\mathrm{c}}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{\pi}{ }^{\text {a }}$)
		$\begin{aligned} 8.06 & \pm 15 \\ 8.18 & \pm 15 \\ 8.286 & \pm 15 \\ 8.374 & \pm 15 \\ 8.49 & \left. \pm 30^{\mathrm{f}}\right) \\ 8.819 & \left. \pm 15^{\mathrm{g}}\right) \\ 9.035 & \pm 15 \\ (9.16 & \pm 30) \\ (9.34 & \pm 30) \\ 9.459 & \pm 15 \\ (9.66 & \pm 40) \\ 9.794 & \pm 15 \\ 9.90 & \pm 30 \\ 10.055 & \pm 15 \\ (10.17 & \pm 30) \\ (10.26 & \pm 30) \end{aligned}$	

${ }^{\text {a }}$) For the earlier references and additional information see Table 16.9 in (82AJ01).
$\left.{ }^{\text {b }}\right)^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{p})^{16} \mathrm{~N}$.
c) ${ }^{18} \mathrm{O}(\mathrm{d}, \alpha)^{16} \mathrm{~N}$.
${ }^{\text {d }} \tau_{\mathrm{m}}=7.58 \pm 0.09 \mu \mathrm{~s}$.
$\left.{ }^{\mathrm{e}}\right) \tau_{\mathrm{m}}=131.7 \pm 1.9$ and $5.63 \pm 0.05 \mathrm{ps}$, respectively, for ${ }^{16} \mathrm{~N}^{*}(0.30,0.40)$; $|g|=0.532 \pm 0.020$ for ${ }^{16} \mathrm{~N}^{*}(0.30)$ (84BI03).
$\left.{ }^{\text {f }}\right) \Gamma$ for this level and the ones listed below $\leq 40-50 \mathrm{keV}$.
${ }^{g}$) These levels appear to be correlated with thresholds for neutron emission to excited states of ${ }^{15} \mathrm{~N}$.
${ }^{\text {h }}$) $(82 \mathrm{MA} 25): E_{\mathrm{d}}=52 \mathrm{MeV}$.
${ }^{\text {i }}$) A closely spaced doublet appears to be present. At least one of the states has unnatural parity.

Table 16.12
${ }^{16} \mathrm{O}$ - General
Reference Description

Shell Model

Review:	
87KI1C	Microscopic studies of electric dipole resonances in 1p shell nuclei
Other Articles:	
86DE1E	Gamow-Teller strength from spin-isospin saturated nuclei (A)
86FU1B	Relativistic shell model calculations
86HA26	Shell model analysis of Σ-hypernuclear spectra for $A=12 \& 16$
86KL06	Interplay between giant res. \& background - investigated with continuum shell model
86LE1A	Extended basis shell-model calculations for three-nucleon transfer (A)
86YE1A	Hartree-Fock calculations with extended Skyrme forces for ${ }^{16} \mathrm{O}$ and ${ }^{40} \mathrm{Ca}$
87AV08	Neutron and proton hole states in double magic nuclei
87MA30	Contrib. of particle-particle, hole-hole \& particle-hole ring diagrams to binding energies
87SU12	Nuclear ground-state properties \& nuclear forces in unitary-model-operator approach
87YA1B	Effective shell-model matrix elements calculated for the sd-shell
88BL02	Quantized TDHF for giant monopole vibrations in ${ }^{16} \mathrm{O},{ }^{40} \mathrm{Ca} \&{ }^{110} \mathrm{Zr}$
88BL1I	Relativistic Hartree-Fock calculations for nuclear matter \& closed-shell nuclei
88 BO 10	Temperature-dependent shell effects in ${ }^{16} \mathrm{O} \&{ }^{40} \mathrm{Ca}$ with realistic effective Hamiltonian
88BO40	Nuclear charge form factor in the topological soliton model
88FI01	Effective interactions from sd-shell-model calculations
88GU13	Correlated basis functions computation of spectra of light nuclei
$88 \mathrm{HO10}$	Shell-model calculation with Hartree-Fock condition
88MI1J	Shell model transition densities for electron \& pion scattering
88WO04	Expansion of the shell-model space for light nuclei
89GU06	Hartree-Fock \& shell-model charge densities of ${ }^{16,18} \mathrm{O},{ }^{32,34} \mathrm{~S} ; \&{ }^{40,48} \mathrm{Ca}$
90HA35	Weak-interaction rates in ${ }^{16} \mathrm{O}$; nonspurious $4 \hbar \omega$ shell model calculation
90WO09	p-shell nuclei in a $(0+2) \hbar \omega$ model space, Part 1: Method
90 WO 10	90WO09 continued, Part 2: Results
91BO02	Meson exchange effects on magnetic dipole moments of p-shell nuclei
91GM02	Relativistic mean-field fit to microscopic results in nuclear matter
$91 \mathrm{GO12}$	Method of multiple interactions - realistic NN potential (A)
91KA09	Non-orthogonality problem in continuum RPA studied by orthogonality condition
91KN04	RPA calculations of nuclear response in the continuum using a finite-range interaction
91MA33	Super-RPA ground-state correlations
91MU04	Effects of correlations on calc. of binding energy \& radii of nuclei
91YA08	$\alpha+{ }^{16} \mathrm{O}$ studied with complex effective interact. \& antisymmetrized many-body theory
91ZH16	Retardation effect in finite nuclei in relativistic mean field theory
92MI01	Comments on 90WO09 \& 90WO10; inconsistency problems
92WA25	Large-basis shell-model treatment of $\mathrm{A}=16$ nuclei

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General

Reference	Description	
	Collective, Deformed and Rotational Models	

86 CO 15	DWBA analysis for (${ }^{7} \mathrm{Li}, \mathrm{t}$) reactions producing α-cluster states in ${ }^{16} \mathrm{O} \&{ }^{20} \mathrm{Ne}$
86OR1C	Faddeev-Yakubovsky calc. of 4α particle system with realistic alpha-alpha interactions
86SU13	Unitary-model-operators \& calculation of energies of ground \& one-body states
86SU16	(86SU13 cont.) Three-body-cluster effects on properties of ${ }^{16} \mathrm{O}$
87DE21	Microscopic description of the ${ }^{16} \mathrm{O}$ spectrum in a multiconfiguration cluster model
87OS03	Four-body problem for four bound α particles in ${ }^{16} \mathrm{O}$
87SU12	Nucl. ground-state properties \& nucl. forces in unitary-model-operator approach to ${ }^{16} \mathrm{O}$
87ZE05	Microscopic evaluation of clustering in ${ }^{4} \mathrm{He},{ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$
88CS01	Core-plus-alpha-particle states of ${ }^{20} \mathrm{Ne}$ and ${ }^{16} \mathrm{O}$ in terms of vibron models
88KA1Z	Systematic construction method of multi-cluster Pauli-allowed states
88TA1P	Measurement of a fragmentation event of a relativistic O nucleus (A)
89FU1N	Three- α potential in 3α and 4α orthogonality condition models
89KU31	Effective numbers of d-, t-, ${ }^{3} \mathrm{He}-$ and α-clusters and their distributions (in Russian)
89SU01	Isoscalar E0 \& E2 strength of ${ }^{16} \mathrm{O}$ in an $\alpha+{ }^{12} \mathrm{C}$ cluster \& symplectic mixed basis
91BAZW	$4-\alpha$ breakup of ${ }^{16} \mathrm{O}$; comparisons with prompt \& sequential mechanisms (A)
91CS01	Cluster spectroscopic factor in the vibron model
$91 \mathrm{KA12}$	Single-particle states with an excited core in the nuclei ${ }^{13} \mathrm{~N}$ and ${ }^{16} \mathrm{O}$
91 OR02	4α model calculation for the ${ }^{16} \mathrm{O}$ nucleus by the four-body integral equation

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General
Reference Description

Special States

Reviews:	
$85 \mathrm{AD1A}$	Parity violation in the nucleon-nucleon interaction
86HA1E	Breaking of isospin symmetry in compound-nucleus reactions
86 VO 07	0^{+}states and E0 transitions in even-even nuclides
87CA1E	New spin excitation modes in nuclei
89SP01	Reduced electric-octupole transition probabilities for even-even nuclides
Other Articles:	
86AN07	Predicted masses and excitation energies in higher isospin multiplets for $9 \leq A \leq 60$
86AN08	Nucleon momentum \& density distributions in the generator co-ordinate method
86AY01	Effect of higher states on the ground \& low-lying excited 0^{+}states of ${ }^{16} \mathrm{O} \&{ }^{40} \mathrm{Ca}$
86BE1F	Inelastic scattering to unnatural parity states in light nuclei using elementary probes
$86 \mathrm{CO1C}$	Deformed excited 0^{+}states of ${ }^{16} \mathrm{O}$ \& ${ }^{40} \mathrm{Ca}$ studied with the Hartree-Fock method
86EK1A	Highly excited \& high-spin states in ${ }^{16} \mathrm{O}$ populated by $\left({ }^{12} \mathrm{C},{ }^{8} \mathrm{Be}_{\text {g.s. }}\right)$ reaction
86KL06	Interplay between giant res. \& background - investigated with continuum shell model
860R1C	Faddeev-Yakubovshy calculation of 4α particle system with realistic $\alpha-\alpha$ interactions
86RO26	Self-organization in nuclei
86 TOZQ	Axial charge transitions in relativistic nucl. models \& nonrelativ. meson exch. currents
87AV08	Neutron \& proton hole states in doubly magic nuclei
87BL18	Excited states of light $N=Z$ nuclei with a specific spin-isospin order
87CO31	Simple parametrization for low energy octupole modes of s-d shell nuclei
87DE21	Microscopic description of the ${ }^{16} \mathrm{O}$ spectrum in a multiconfiguration cluster model
87KI1C	Microscopic studies of electric dipole resonances in 1p shell nuclei
87PR03	Self-consistent Hartree descrip. of deformed nuclei in a relativistic quantum field theory
87SK02	TDH solution of the Suzuki model of nuclear monopole oscillation
88AM03	Study of the isoscalar dipole excitation (7.12 MeV) in ${ }^{16} \mathrm{O}$
88BL10	RPA for light nuclei based on fully relativistic Hartree-Fock calculations
88BL1I	Relativistic Hartree-Fock calculations for nuclear matter \& closed shell nuclei
88DE22	Search for elusive neutral particles in the $0^{+} \rightarrow 0^{+}$transition at 6.05 MeV in ${ }^{16} \mathrm{O}$
88GU13	Correlated basis functions calculation of spectra of light nuclei
88KU18	Nuclear structure of ${ }^{16} \mathrm{O}$ in a mean-field boson approach
88MI1J	Shell model transition densities for electron \& pion scattering
88MU20	Reduction of stretched-magnetic-transition strengths by core polarization
88PR05	Nuclear linear response to electroweak interactions in a relativistic theory for ${ }^{16} \mathrm{O}$
88RO09	Order out of chaos in atomic nuclei; microscopic calcs. of nucleon-induced rxns.
89BI1A	Search for the emission of a neutral particle in the decay of the first excited state in ${ }^{16} \mathrm{O}$
89DE22	Addendum to 88DE22
89FO1D	Cold fusion results still unexplained
89SU01	Isoscalar E0 \& E2 strength of ${ }^{16} \mathrm{O}$ in an $\alpha+{ }^{12} \mathrm{C}$ cluster \& symplectic mixed basis
91AB1C	Perturbative calculation of periodic solutions of the time-dependent mean-field eqs.
91DE11	Generalization of Frenkel-Dirac variational principle for systs. outside thermal equilib.
91KA09	Non-orthogonality problem in continuum RPA studied by orthogonality condition

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General

| Reference |
| :--- | | Description |
| :--- |

Giant Resonances

86HI07	Neutron-proton correlation in energy systematics of E1 \& M2 states
86KL06	Interplay between giant res. \& background - investigated with continuum shell model
87BU06	Alpha decay of giant electric quadrupole resonances
87KI1C	Microscopic studies of electric dipole resonances in 1p shell nuclei
87QU02	Giant dipole transitions in the nuclear $\mathrm{WSp}(6, \mathrm{R})$ Model
87TH03	Exotic isoscalar dipole resonances in the Walecka model
88BE24	Simple microscopic approach to the nuclear giant monopole \& quadrupole resonances
88BL02	Quantized TDHF for giant monopole vibrations
88CA07	Charge transition densities for excitation \& nucleon decay of the ${ }^{16} \mathrm{O}$ GDR
88CO1G	Charge response in ${ }^{12} \mathrm{C} \&{ }^{40} \mathrm{Ca}$; also includes RPA calc. for ${ }^{16} \mathrm{O}$
88DI07	Scaling- \& antiscal.-type oscillations in isoscalar \& isovector nucl. monopole vibrations
88DR02	Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei
88HO10	Shell-model + Hartree-Fock condition calc. of giant resnc. excitation energies in ${ }^{16} \mathrm{O}$
88LI13	Surface \& temperature effects in isovector giant resonances
88PA05	Time-depend. Hartree-Fock calc. of escape width of giant monopole resonance in ${ }^{16} \mathrm{O}$
89LH02	Isoscalar giant resonances in a relativistic model of doubly-closed-shell nuclei
89LI1G	Sum rules \& giant resonances in nuclei
91BO39	Compressibility of nuclei in relativistic mean field theory
91LI28	Self-consistent RPA calc. of giant multipole resncs. using Skyrme-Landau interaction

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General
Reference Description

Astrophysics

Reference	Description
Reviews:	
86 WO 1 A	The physics of supernova explosions
90RO1C	Radiative capture reactions in nuclear astrophysics
Other Articles:	
86BA50	Coulomb dissociation as a source of information on radiative capture processes
86LA1C	The chemical composition of 30 cool Carbon stars in the galactic disk
86MA1E	Effects of the new ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$ rate on chemical evolution of the solar neighborhood
86SM1A	Chemical composition of red giants: He burning and the s-process in the MS \& S stars
86TR1C	Frequency of occurrence of $\mathrm{O}-\mathrm{Ne}-\mathrm{Mg}$ white dwarfs in classical nova systems
87AD1A	Direct meas. of the charge state of the anomalous O component of cosmic rays (A)
87AL1B	Carbon, nitrogen and oxygen abundances in Procyon, Sun and Arcturus
87BE1H	${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C} \&{ }^{16} \mathrm{O} /{ }^{18} \mathrm{O}$ ratios in Venus' atmosphere from high-res. $10-\mu \mathrm{m}$ spectroscopy
87CU1A	Interstellar medium composition der. from anomalous cosmic ray component meas. (A)
87DO1A	${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C} \&{ }^{16} \mathrm{O} /{ }^{17} \mathrm{O}$ isotopic ratios in seven evolved stars (types MS, S \& SC)
87DW1A	Cosmic-ray elemental abundances from 1 to $10 \mathrm{GeV} / \mathrm{amu}$ for boron through nickel
87FA1C	${ }^{16} \mathrm{O}$ excess in hibonites discredits late supernova injection origin of isotopic anomalies
87HA1C	${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ and ${ }^{16} \mathrm{O} /{ }^{18} \mathrm{O}$ ratios in the solar photosphere
87HA1D	Oxygen istopic abundances in 26 evolved carbon stars
87HA1E	Search for ${ }^{14} \mathrm{C}^{16} \mathrm{O}$ in the atmospheres of evolved stars - none found
87LA1C	Line shapes and linear polarizations of certain γ-rays emitted from solar flares (A)
87MC1A	Oxygen isotopes in refractory stratospheric dust: proof of extraterrestrial origin
87ME1B	Solar coronal isotopic abundances derived from solar energetic particle meas. (A)
87PL03	Scattering of α particles from ${ }^{12} \mathrm{C}$ and the ${ }^{12} \mathrm{C}(\alpha, \gamma){ }^{16} \mathrm{O}$ stellar reaction rate
87PR1A	Neutron capture nucleosynthesis during core helium burning in massive stars
87RA1D	Nuclear processes and accelerated particles in solar flares
87SA1D	Linear polarization of ${ }^{12} \mathrm{C}^{*} \&{ }^{16} \mathrm{O}^{*} \gamma$-rays as particle direction indicators in solar flares
88AN1D	Evolution of Fe, r, and s-elements in our galaxy
88CL1C	Isotopic anomalies: chemical memory of galactic evolution
88CU1A	Elemental composition of anomalous cosmic-ray component (A)
88DU1B	Spectrophotometry \& chemical composition of the O-poor bipolar nebula NGC 6164-5
88DU1G	Abundances of carbon \& nitrogen in I Zw 18 (an oxygen-poor galaxy)
$88 \mathrm{FO1E}$	Nuclear line spectroscopy of solar flares; deduced elemental abundances
88KA1G	Steady state models of white dwarfs accreting helium or carbon/oxygen-rich matter
88RE1E	Bimodal abundances in the energetic particles of solar and interplanetary origin
89AB1J	Oxygen abundances in unevolved metal-poor stars: interpretation \& consequences
89BE2H	Effect of enhanced α-elements in helium-burning population II stars
89CH1X	Stability analysis of C-N-O nuclear reaction inside stars
89CU1E	Observed radial \& latitudinal gradients of anomalous cosmic ray oxygen (A)
89 FU 02	Reaction cross section for "solar flare neutrinos" with ${ }^{37} \mathrm{Cl}$ and ${ }^{16} \mathrm{O}$ targets
89GU06	Hartree-Fock \& shell-model charge densities of ${ }^{16,18} \mathrm{O},{ }^{32,34} \mathrm{~S}$ and ${ }^{40,48} \mathrm{Ca}$

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General

Reference	Description	
	Astrophysics - continued	

Applications

86MU1A	Analysis of oxygen on \& in beryllium using 2 MeV Helium ions (A)
86ZA1A	Passage of nitrogen and oxygen ions through carbon and celluloid films
87BO16	Analytical possibilities of $3<E<12 \mathrm{MeV}$ tritium beams \& appl. to analysis of O in InP
87NA1D	Sputtering of carbon by oxygen and neon
87ZU1A	Oxygen isotope effect in high-temperature oxide superconductors
88AL1K	Analysis of "Desert Rose" (geological sample) using RBS and PIXE techniques
88BL1H	Surface analysis of high Z oxides using $3.05 \mathrm{MeV}{ }^{4} \mathrm{He}-{ }^{16} \mathrm{O}$ backscattering resonance
88GOZR	Non-Rutherford elastic backscattering for light element cross section enhancement (A)
88IL1A	Light element materials study by Rutherford backscattering spectroscopy (A)
88RO1L	Ion implantation in targets for nuclear physics studies (A)

Complex Reactions

Reference Description	
Reviews:	
87MC1B	Introduction to quark-gluon plasma and high energy heavy ion collisions (A)
89GR1J	Cluster radioactivities
Other Articles:	
86AB06	Calculation of mass yields for proton-nucleus spallation reactions
86AL25	Incomplete \& complete fusion in intermediate energy heavy ion reactions
86AV1A	Search for anomalons \& fragments with fractional charge in ${ }^{16} \mathrm{O}$ fragmentation
86BA1E	Multistep fragmentation of heavy ions in peripheral collisions at relativistic energies
86BO1B	Observation of fission of relativistic ${ }^{24} \mathrm{Mg} \&{ }^{28} \mathrm{Si}$ into two fragments of \sim equal charge

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General
Reference Description

Complex Reactions - continued

86HA1B	Microscopic model of nucleus-nucleus collisions
86KI1C	Apparent anomalously short mean free paths observed in relativistic heavy-ion collis.
86MA13	Experimental search for nonfusion yield in the heavy residues emitted from ${ }^{11} \mathrm{~B}+{ }^{12} \mathrm{C}$
86ME06	Quasi-elastic, deep-inelastic, quasi-compound nucleus mechanisms from ${ }^{89} \mathrm{Y}+{ }^{19} \mathrm{~F}$
86NA1B	Correlation of linear momentum \& angular momentum transfer in ${ }^{154} \mathrm{Sm}+{ }^{16} \mathrm{O}$
86PL02	Element distributions after binary fission of ${ }^{44} \mathrm{Ti}$
86PO06	Calc. half-lives \& kinetic energies for spontaneous emission of heavy ions from nuclei
86SA30	Nucleus-nucleus scattering and interaction radii of stable \& unstable nuclei
86SC29	Partition of excitation energy in peripheral heavy-ion reactions
86SHZY	Equilibration in orbiting reactions; ${ }^{12} \mathrm{C} \&{ }^{16} \mathrm{O}$ yields from ${ }^{14} \mathrm{~N}+{ }^{28} \mathrm{Si}$ (A)
86SH1F	Measurements of projectile-like fragments produced by ${ }^{27} \mathrm{Al}+{ }^{16} \mathrm{O}$
86SH25	Equilibration in orbiting reactions; ${ }^{12} \mathrm{C} \&{ }^{16} \mathrm{O}$ yields from ${ }^{14} \mathrm{~N}+{ }^{28} \mathrm{Si}$
86SO10	Particle-bound excited state yields produced in the reaction of $181 \mathrm{MeV}{ }^{19} \mathrm{~F}+{ }^{159} \mathrm{~Tb}$
86 ST 13	Microscop. calc. of ener. \& transitional densities of giant monopole resonances in nucl.
86VA18	Excitation-energy sharing in ${ }^{20} \mathrm{Ne}$ induced reactions
86VA23	Peripheral reactions induced by ${ }^{20} \mathrm{Ne}$ at 11 and $15 \mathrm{MeV} /$ nucleon
87AN1C	Fast frags. of target in interactions of relativistic nuclei with nuclei of nucl. emulsion
87BA02	Energy spectra of fragments calculated using statistical multifragmentation model
87BA1T	Spin-isospin excitations in nuclei with relativistic heavy ions
87BA31	Isotope distribution in nuclear multifragmentation
87BA38	Systematics of the ${ }^{14} \mathrm{~N}+{ }^{159} \mathrm{~Tb}$ reaction between 6 and $33 \mathrm{MeV} / \mathrm{u}$ Part I. Inclusive data
87BE1F	Target fragmentation at ultrarelativistic energies using oxygen beams
87BO1K	Collectivity in composite fragment emission from relativistic heavy ion collisions
87BO23	Intermediate-mass fragments from nonbinary processes in ${ }^{14} \mathrm{~N}+\mathrm{Ag}$ at $E / A=35 \mathrm{MeV}$
87BU07	Projectile-like fragments from ${ }^{20} \mathrm{Ne}+{ }^{197} \mathrm{Au}$ - counting simultaneously emitted neutrons
87DEZV	${ }^{16} \mathrm{O}$ breakup in the ${ }^{27} \mathrm{Al}+{ }^{16} \mathrm{O}$ interaction at 96 MeV (A)
87FA09	Source properties of intermediate-mass frags. emitted in ${ }^{14} \mathrm{~N}+{ }^{232} \mathrm{Th}$ at $E / A=35 \mathrm{MeV}$
87FE1A	Study of deep inelastic collisions in ${ }^{12} \mathrm{C}+{ }^{27} \mathrm{Al}$ at 61.8 MeV
87GE1A	Charges \& angular distributions of fast fragments produced in $3.2-\mathrm{TeV}{ }^{16} \mathrm{O}+\mathrm{Pb}$
87GO1E	Photon and charged particle spectra in ${ }^{16} \mathrm{O}+\mathrm{W}$ at $200 \mathrm{GeV} /$ nucleon (A)
87JA1B	Model of transverse energy production in high energy nucleus-nucleus collisions
$87 \mathrm{KO15}$	Intermediate mass fragments in ${ }^{6} \mathrm{Li}+{ }^{46} \mathrm{Ti}$ at $E / A=26 \mathrm{MeV}$
87LI04	Multistep effects in ${ }^{17} \mathrm{O}+{ }^{208} \mathrm{~Pb}$ near the Coulomb barrier
87LY04	Fragmentation \& the emission of particle stable and unstable complex nuclei
87MA1B	Peripheral like interaction model of spectator residue with central fireball
87MI1B	Projectile fragmentation of ${ }^{16} \mathrm{O}$ at medium energies (A)
87MU03	Study of the emission of clusters by excited compound nuclei
87NA01	Linear momentum \& angular momentum transfer in ${ }^{154} \mathrm{Sm}+{ }^{16} \mathrm{O}$
87PA01	Complete \& incomplete fusion in ${ }^{20} \mathrm{Ne}+{ }^{93} \mathrm{Nb}$
87PA1D	Recoil accelerator mass spectrometry of nuclear reaction products
87RI03	Isotopic distributions of fragments from ${ }^{40} \mathrm{Ar}+{ }^{68} \mathrm{Zn}$ at $E=27.6 \mathrm{MeV} / \mathrm{u}$
87RO10	Projectile fragmentation in heavy-ion reactions at intermediate energies

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General

Reference	Description

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General

Reference	Description
	Muon and Neutrino capture and reactions

Pion, Kaons \& other Mesons

Reviews:	
86BA1C	Pion-nucleus double charge exchange: the modern era
86DO1B	Strange probes of the nucleus
86PE1E	Scattering of electrons, nucleons, and pions as probes of nuclear structure
87FA1A	Conclusions \& outlook (from Proc. of the Int. Conf. on a European Hadron Facility)
87GI1C	Pion-nucleus interactions
88FA1B	Strange particles: a probe for new physics in particles and nuclei
$88 \mathrm{JO1E}$	Pions \& the nuclear spin-isospin response
88KR1E	Meson exchange models of the nuclear response function
88KY1A	Studies of pion absorption at SIN; includes quasi-deuteron absorption in ${ }^{16} \mathrm{O}$
88PE1F	The (π, η) and ($\left.\pi^{+}, \mathrm{K}^{+}\right)$reactions in nuclei
88RO1M	Nuclear scattering \& reactions with low-energy pions
88WA1B	Production of hypernuclei in the (K, π) reaction
89CH32	Recent experiments in novel nuclear excitations at the BNL AGS
89JO1B	Phenomenological optical-model anal. of pion elastic \& charge-exchange scat.
89KH1E	Problems of pion-nucleus interaction
89RI1E	Exchange currents
Other Articles:	
86BE22	Stability of the ground state of finite nuclei against neutral pion condensation
86BE42	$\left(\mathrm{K}^{+}, \mathrm{K}^{+} \pi\right.$) in light nuclear-emulsion nuclei with small momentum transfer to nucleus
86BL04	Pion condensates in excited states of finite nuclei \& nuclear matter

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General

Reference	Description

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General

Reference	Description	
	Pion, Kaons \& other Mesons - continued	

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General

| Reference |
| :--- | | Description |
| :--- | | Pion, Kaons \& other Mesons - continued |
| :--- | :--- |

Hypernuclei

[^1]Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General

Reference	Description
	Hypernuclei - continued

Other articles:	
86HA26	Shell model analysis of Σ-hypernuclear spectra for $A=12 \& 16$
86HA39	Strangeness exchange reactions with the recoil corrected continuum shell model
86MA1C	Decay properties of hypernuclear resonances
86 MO 1 A	The $\Lambda \mathrm{N}$ interaction \& structures of the ${ }^{16-18} \mathrm{O}$ hypernuclei
87CO09	(e, $\mathrm{e}^{\prime} \mathrm{K}^{+}$) \& low hypnuc. excits. using relativ. transit. operator \& nuc. struc. model
87MI1A	Semiphenomenological studies of the ground state binding energies of hypernuclei
87PI1C	Hypernuclei studied with the (π^{+}, K^{+}) reaction (A)
87RU1A	Single-particle spectra of Λ hypnucl. \& enhanced interact. radii of multi-strange objects
87WU05	Resonant and quasi-free mechanisms of Σ-production on nuclei
87YA1C	Density-dependent effective Λ N \& Λ NN interaction applied to light hypernuclei
88HA1I	Phenomenological analysis of Σ-hypernuclear spectra from (K^{-}, π^{+}) reactions
88MA09	Study of hypernucleus production by K^{-}capture at rest
88MA1G	Non-mesonic hypernuclear weak decays - systematic testing in the shell model
88 MI 1 N	Λ-nucleus single-particle potential from analysis of Λ-hypernuclei spectra data
$88 \mathrm{MO1B}$	$\left(\pi^{+}, \mathrm{K}^{+}\right)$reaction used to probe Λ and Σ states in hypernuclei
88MO23	Hypernuclear production by the (π^{+}, K^{+}) reaction
88PE1H	Associated production of hypernuclei with (π^{+}, K^{+}) reaction
89BA06	Polarization of hypernuclei in the ($\left.\pi^{+}, \mathrm{K}^{+}\right)$reaction
89BA1E	Production of hypernuclei in relativistic ion beams
89BA2N	Strangeness production by heavy ions
89 FE 07	Skyrme-Hartree-Fock calculation of Λ-hypernuclear states from (π^{+}, K^{+}) reactions
89HA29	Shell model calculation of Λ-hypernuclear spectra from (π^{+}, K^{+}) reactions
89HA32	Σ-hypernuclear production in flight
89KO37	Relativistic motion of the Λ in hypernuclei using Woods-Saxon \& Gaussian potentials
89LA1I	Indirect methods of study of decays of excited hypernuclei - hypernuclear spectroscopy
89MA30	On Λ-hyperon(s) in the nuclear medium; relativistic mean field theory analysis
89MO17	$\left(\pi, \mathrm{K}^{+}\right)$hypernuc. product. \& struc.; DWIA calc. based on Kapur-Peierls framework
89PI11	Study of hypernuclei from ${ }_{\Lambda}^{9} \mathrm{Be}$ to ${ }_{\Lambda}^{89} \mathrm{Y}$ using the (π^{+}, K^{+}) reaction
89TA16	Formation of ${ }_{\Lambda}^{4} \mathrm{H}$ hypernuclei from K^{-}absorption at rest on light nuclei
$89 \mathrm{TA17}$	Compound-hypernuc. interpretation on ${ }_{\Lambda}^{4} \mathrm{H}$ formation probab. in stopped-K ${ }^{-}$absorption
89TA19	${ }_{\Lambda}^{4} \mathrm{H}$ formation from K^{-}absorption at rest on ${ }^{4} \mathrm{He},{ }^{7} \mathrm{Li},{ }^{9} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{16} \mathrm{O}, \&{ }^{40} \mathrm{Ca}$
89TA1T	Schmidt diagrams \& configuration mixing effects on hypernuclear magnetic moments
91BE01	Electromagnetic production of polarization in hypernuclei
91FE06	Effective $\Lambda \mathrm{N}$-interaction \& spectroscopy of low-lying states of 1 p -shell hypernuclei
91PI07	Study of hypernuclei by associated production through the (π^{+}, K^{+}) reaction

Antinucleon Interactions

Reviews:
87GR1I Low energy antiproton physics in the early LEAR era
87YA1E Why study ($\overline{\mathrm{p}}, \overline{\mathrm{n}}$) on nuclei?

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General

Reference	Description

Other Topics
Review:
88HE1G A summary of theoretical discussion regarding hadronic parity violation Other Articles:
86BE23 Realistic many-body wave functions \& nucleon momentum distributions in finite nuclei
86DE11 Nuclear spin-isospin polarizability \& the spatial non-locality of the mean field
86IN1A The dynamical origin of nuclear mass number dependence in EMC-effect
86IS04 Anomalous absorption of proton partial waves by the optical potential
86PA23 Methods of in-beam internal-pair spectroscopy applied to nucl. structure investigations
86RO26 Self-organization in nuclei
87AB21 Evid. of subshell closures from binding-ener. systematics \& ener. lvls. of dbl. even nucl.
87CH11 Lifetimes of monopole resonances in time-dependent Hartree-Fock theory
87 FUZZ Relativistic RPA calculations of finite nuclei including negative-energy states (A)
87KR1F Local scale transform. meth. with >1 scalar func. for descr. of monopole excits. in nucl.
88 KO 23 Information on three-body interactions from inversion of the energy equations

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General

Reference	Description
	Other Topics - continued
88 TO 09	Damping of quadrupole motion in time-dependent density-matrix theory
887O1C	Quenching of Gamow-Teller strength
88ZH1G	Self-consistent calculation of relativistic microscopic optical potential (in Chinese) (A)
89CEZZ	Composite particle production in intermediate energy nuclear reactions (A)
89PO05	Isobaric multiplets reconstructed from equidistance rule for separation \& decay energies
89SH13	Continuum RPA with exchange term \& appls. to spin-isosp. \& longitudinal resp. funcs.
90BL16	Microscopic approach to the calculation of the vertex constants of neutron cleavage
90HO24	Relativistic RPA for finite nuclei with Skyrme type interaction
90ZHZV	Effects of central, spin-orbit \& tensor interactions in nuclei (A)
91UM01	Nuclear Hartree-Fock calculations with splines

Ground State Properties

Review:	
88MA1X	Relativistic theory of nuclear matter and finite nuclei
Other Articles:	
85 SH 1 A	Unified microscopic description of elastic \& inel. cross sections of heavy-ion reactions.
86AN08	Nucleon momentum \& density distributions in the generator co-ordinate method
86ANZM	A multi harmonic oscillator calculation of binding energies \& charge radii
86AY01	Effect of higher states on the ground \& low-lying excited 0^{+}states of ${ }^{4} \mathrm{He} \&{ }^{16} \mathrm{O}$
86DE33	Correlations in the $\operatorname{Sp}(1, \mathrm{R})$ model for the monopole oscillations
86FU1B	Relativistic shell model calculations
86GL1A	Effects of particle-hole excitations in light nuclei
86HE26	Nuclear single-particle energies as functions of the binding energies for $4 \leq A \leq 90$
86MAZE	Form \& relative importance of first-order contributions to density distribution of ${ }^{16} \mathrm{O}$
86PE22	Effects of the Dirac sea on finite nuclei
86QU1A	Relativistic self-consistent field calculations for closed-shell nuclei
86SU13	Unitary-model-operators \& the ground-state \& one-body energies of ${ }^{16} \mathrm{O}$
86SU16	((86SU13) cont.) Three-body-cluster effects on properties of ${ }^{16} \mathrm{O}$
86TO16	Hartree-Fock calculations of nuclear matter saturation density
86YE1A	Hartree-Fock calculations with extended Skyrme forces for ${ }^{16} \mathrm{O}$ and ${ }^{40} \mathrm{Ca}$
87AB03	Measurement \& folding-potential analysis of the elastic α-scattering on light nuclei
87BL18	Calc. ground \& excited states of light $N=Z$ nuclei; also spin-isospin order for excited
87BL20	Relativistic Hartree-Fock calculations for ${ }^{16} \mathrm{O}$ and ${ }^{40} \mathrm{Ca}$
87BO11	Relativistic description of nuclear systems in the Hartree-Fock approximation
87BO42	Monte Carlo test of the convergence of cluster expansions in Jastrow correlated nuclei
87CA27	Mean field approach to the momentum distribution
87ES06	Consistent description of effect of long-range residual interaction on the RMS radius
87HA37	Excitation of $\Delta(3,3)$ resonance in compressed finite nuclei (early version of (87HA42))
87HA42	Exc. of $\Delta(3,3)$ resonance in compressed finite nucl. from constrained mean-field method
87KR1B	Microscopic calc. of model for ${ }^{16} \mathrm{O}: 16$ nucleons interacting via Malfliet-Tjon potential
87MA30	Contrib. of particle-particle, hole-hole \& particle-hole ring diagrams to binding energies
87PR03	Self-consistent Hartree descrip. of deformed nuclei in a relativistic quantum field theory

Table 16.12 (continued)
${ }^{16} \mathrm{O}$ - General

Reference	Description	
	Ground State Properties - continued	

(A) denotes that only an abstract was available for this reference.

Table 16.13
Energy Levels of ${ }^{16} \mathrm{O}^{a}$)

$E_{\text {x }}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	K^{π}	$\Gamma_{\text {c.m. }}$ or $\tau_{\mathrm{m}}(\mathrm{keV})$	Decay	Reactions
0	$0^{+} ; 0$		stable		$\begin{aligned} & 5,7,11-19,22-24,30,32-34,37- \\ & 68,70-82 \end{aligned}$
6.0494 ± 1.0	$0^{+} ; 0$	0^{+}	$\tau_{\mathrm{m}}=96 \pm 7 \mathrm{ps}$	π	$5,7,11-13,15,17,19,21,23,30$, $32-34,38,39,43,44,47,54,55$, $57,66,67,70,71,73,79,81$
6.129893 ± 0.04	$3^{-} ; 0$		$\tau_{\mathrm{m}}=26.6 \pm 0.7 \mathrm{ps} ;$	γ	$1,5,7,11-13,15,17-19,21,30$ $34,37-39,43-46,49-51,53,54$, $66-68,70,71,73,79,81$
			$g=+0.556 \pm 0.004$		
6.9171 ± 0.6	$2^{+} ; 0$	0^{+}	$\tau_{\mathrm{m}}=6.78 \pm 0.19 \mathrm{fs}$	γ	$\begin{aligned} & 1,5,7,11-13,15,17,19,30-34 \\ & 37,38,42-47,49,50,53-55,67 \\ & 68,70,71,73,78,80 \end{aligned}$
7.11685 ± 0.14	$1^{-} ; 0$		$\tau_{\mathrm{m}}=12.0 \pm 0.7 \mathrm{fs}$	γ	$\begin{aligned} & 1,5,7,11-13,17,30-34,37-39 \\ & 42-44,46,47,50,66-68,70,71 \\ & 73,81 \end{aligned}$
8.8719 ± 0.5	$2^{-} ; 0$		$\tau_{\mathrm{m}}=180 \pm 16 \mathrm{fs}$	γ, α	$\begin{aligned} & 5,7,11,12,16,19,30,31,33 \\ & 37-39,43,45-47,49,50,67,68 \\ & 73,81 \end{aligned}$
9.585 ± 11	$1^{-} ; 0$	0^{-}	$\Gamma=420 \pm 20$	γ, α	$\begin{aligned} & 7,9,11,12,30,38,39,45-47,49, \\ & 50,54,55 \end{aligned}$
9.8445 ± 0.5	$2^{+} ; 0$	$2^{+}{ }^{\text {b }}$)	0.625 ± 0.100	γ, α	$\begin{aligned} & 5,7,9,11,12,19,30,31,33,37- \\ & 39,43,46,47,49,50,54,55,66 \\ & 68,70,73,78,81 \end{aligned}$
10.356 ± 3	$4^{+} ; 0$	0^{+}	26 ± 3	γ, α	$\begin{aligned} & 5,7,9,11-14,16,19,21,30,31 \\ & 33,38,43,46,47,49,50,54,55 \\ & 61,66,68,71,73,81 \end{aligned}$
10.957 ± 1	$0^{-} ; 0$		$\tau_{\mathrm{m}}=8 \pm 5 \mathrm{fs}$		$5,30,37,38,46,47,68,73$
11.080 ± 3	$3^{+} ; 0$	$2^{+}{ }^{\text {b }}$)	$\Gamma<12$	γ	5, 30, 37, 38, 68, 73
11.0967 ± 1.6	$4^{+} ; 0$		0.28 ± 0.05	γ, α	$\begin{aligned} & 5,7,9,11,13,14,16,19,30,31 \\ & 43,46,47,49,50,54,55,73 \end{aligned}$
$(11.26)^{\text {c }}$)	$\left(0^{+} ; 0\right)$		(2500)	(α)	9,38
11.520 ± 4	$2^{+} ; 0$		71 ± 3	γ, α	$\begin{aligned} & 5,7,9,19,30,43,44,46,47,49 \\ & 50,54,55,61 \end{aligned}$
11.60 ± 20	$3^{-} ; 0$	0^{-}	800 ± 100	α	9, 14, 54, 55
12.049 ± 2	$0^{+} ; 0$		1.5 ± 0.5	γ, α	$\begin{aligned} & 9,19,23,30,43,46,47,49,50 \\ & 54,55 \end{aligned}$
12.440 ± 2	$1^{-} ; 0$		91 ± 6	$\gamma, \mathrm{p}, \alpha$	$\begin{aligned} & 7-9,30,34,36-38,43,47,50,54 \text {, } \\ & 55 \end{aligned}$
12.530 ± 1	$2^{-} ; 0$		$(97 \pm 10) \times 10^{-3}$	$\gamma, \mathrm{p}, \alpha$	$\begin{aligned} & 5,19,30,34,36-38,43,46,47 \\ & 50,67 \end{aligned}$
12.796 ± 4	$0^{-} ; 1$		40 ± 4	γ, p	30, 36-38, 46
12.9686 ± 0.4	$2^{-} ; 1$		1.34 ± 0.04	$\gamma, \mathrm{p}, \alpha$	19, 30, 34, 36-38, 43, 66-68
13.020 ± 10	$2^{+} ; 0$		150 ± 10	$\gamma, \mathrm{p}, \alpha$	7, 9, 43, 46, 47, 49, 50, 54, 55, 61
13.090 ± 8	$1^{-} ; 1$		130 ± 5	$\gamma, \mathrm{p}, \alpha$	7-9, 11, 30, 37, 38, 43, 68
13.129 ± 10	$3^{-} ; 0$		110 ± 30	$\gamma, \mathrm{p}, \alpha$	6-9, 30, 38

Table 16.13 (continued)
Energy Levels of ${ }^{16} \mathrm{O}^{\mathrm{a}}$)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	K^{π}	$\Gamma_{\text {c.m. }}$ or $\tau_{\mathrm{m}}(\mathrm{keV})$	Decay	Reactions
13.259 ± 2	$3^{-} ; 1$		21 ± 1	$\gamma, \mathrm{p}, \alpha$	$\begin{aligned} & 7-9,30,36-38,43,46,66-68, \\ & 70,72 \end{aligned}$
13.664 ± 3	$1^{+} ; 0$		64 ± 3	$\gamma, \mathrm{p}, \alpha$	30, 34, 36, 47
13.869 ± 2	$4^{+} ; 0$		89 ± 2	p, α	$\begin{aligned} & 5,9,30,36,43,45,49,50,54 \\ & 55 \end{aligned}$
13.980 ± 2	2^{-}		20 ± 2	p, α	5, 30, 31, 36
14.032 ± 15	0^{+}		185 ± 35	γ, α	9, 43
14.1 ± 100	3^{-}		750 ± 200	α	9
14.302 ± 3	$4^{(-)}$		34 ± 12		19, 30, 31
14.399 ± 2	5^{+}		27 ± 5		5, 12, 19, 30, 31
14.620 ± 20	$4^{(+)}$		490 ± 15	α	9, 11
14.660 ± 20	5^{-}	0^{-}	670 ± 15	α	9, 11-14, 54, 55
14.8153 ± 1.6	$6^{+} ; 0$		70 ± 8	α	$\begin{aligned} & 5,9,11,19,30,31,49,50,54, \\ & 55 \end{aligned}$
14.926 ± 2	2^{+}		54 ± 5	p, α	5, 30, 36, 43
15.097 ± 5	0^{+}		166 ± 30	p, α	8, 9, 30, 36
15.196 ± 3	$2^{-} ; 0$		63 ± 4	p, α	30, 31, 36, 43, 46, 49, 66-68
15.26 ± 50	$2^{+} ;(0)$		300 ± 100	p, α	36, 43, 46, 49
15.408 ± 2	$3^{-} ; 0$		132 ± 7	p, α	$\begin{aligned} & 8,9,30,31,36,43,46,50,54 \\ & 55,61,66-68 \end{aligned}$
15.785 ± 5	3^{+}		40 ± 10		19, 30, 31
15.828 ± 30	3^{-}		700 ± 120	α	9, 43
16.20 ± 90	$1^{-} ; 0$		580 ± 60	$\gamma, \mathrm{p}, \alpha$	7, 30, 36
16.209 ± 2	$1^{+} ; 1$		19 ± 3	$\gamma, \mathrm{n}, \mathrm{p}$	30, 31, 34-36, 41, 43
16.275 ± 7	6^{+}	$0^{+}{ }^{\text {b }}$)	420 ± 20	α	5, 9, 11-14, 21, 31, 54, 55, 61
16.352 ± 8	$\left(2^{+}\right)^{\text {d }}$)		61 ± 8	p, α	8, 9, 30, 36, 46, 49, 50, 70
16.4423 ± 1.6	$2^{+} ; 1$		25 ± 2	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	7-9, 30, 36, 43
16.817 ± 2	$\left.\left(3^{+} ; 1\right)^{\text {b,e }}\right)$		28 ± 3	$\gamma, \mathrm{p}, \alpha$	19, 30, 34, 36
16.844 ± 21	4^{+}		570 ± 60	α	9
16.93 ± 50	2^{+}		~ 280	$\alpha,{ }^{8} \mathrm{Be}$	9, 10
17.09 ± 40	$1^{-} ; 1$		380 ± 40	γ, p	34, 36
17.129 ± 5	2^{+}		107 ± 14	$\mathrm{n}, \mathrm{p}, \alpha$	8, 9
17.140 ± 10	$1^{+} ; 1$		34 ± 3	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	9, 34-36, 43
17.197 ± 17	2^{+}		160 ± 60	$\alpha,{ }^{8} \mathrm{Be}$	$5,9,10,31,38,46,49,50$
17.282 ± 11	$1^{-} ; 1$		78 ± 5	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	8, 34-36, 41, 43
17.510 ± 26	1^{-}		180 ± 60	α	9
17.555 ± 21	$\left(6^{+}\right)$		180 ± 70	n, α	8, 9
17.609 ± 7	$2^{+} ;(1)$		114 ± 14	p, α	8, 9, 36
17.72	$\left(0^{+}, 2^{+}\right)$		~ 75	p, $\alpha,{ }^{8} \mathrm{Be}$	9, 10
17.775 ± 11	$4^{-} ; 0$		45 ± 7	p	$19,43,44,46,49,50,67,68$

Table 16.13 (continued)
Energy Levels of ${ }^{16} \mathrm{O}^{\mathrm{a}}$)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	K^{π}	$\Gamma_{\text {c.m. }}$ or $\tau_{\mathrm{m}}(\mathrm{keV})$	Decay	Reactions
17.784 ± 15	4^{+}		400 ± 40	$\mathrm{n}, \alpha,{ }^{8} \mathrm{Be}$	8-10, 43, 54, 55
17.877 ± 6	$(2)^{-} ; 1^{\text {b }}$)		24 ± 3	$\gamma, \mathrm{p},(\alpha)$	34, 36, 41
18.016 ± 1	$4^{+} ;(0)$		14 ± 2	n, p, $\alpha,{ }^{8} \mathrm{Be}$	8-10, 19
18.029 ± 5	$3^{(-)} ; 1$		26 ± 4	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	19, 34-36, 43, 67
18.089 ± 25	$\left(0^{+}\right)$		288 ± 44	$(\gamma), \mathrm{n}, \mathrm{p}, \alpha$	7-9, 35, 46, 50
18.202 ± 8	2^{+}		220 ± 50	γ, p	36, 43, 46, 50
18.29			~ 380	$\gamma, \mathrm{p}, \alpha$	7-9
18.404 ± 12	5^{-}		550 ± 40	α	9
18.430 ± 15	$2^{+} ; 0$		90 ± 40	p	36, 46, 49, 50
18.484 ± 6	$\left(1^{-}, 2^{-}\right)$		35 ± 6	p	36
18.6	$\left(1^{-}, 5^{-}\right)$		~ 150	α	9
18.6	$\left(4^{+}\right)$		~ 300	$\alpha,{ }^{8} \mathrm{Be}$	9, 10
18.640 ± 15	$\left(5^{+}\right)$		22 ± 7	(n, p)	5, 19, 43
18.773 ± 22	1^{-}		215 ± 45	p, α	8, 9
18.785 ± 6	4^{+}		260 ± 20	$\mathrm{n}, \mathrm{p}, \alpha,{ }^{8} \mathrm{Be}$	8-10
18.79 ± 10	$1^{+} ; 1$		120 ± 20	γ, p	34, 36, 43
18.977 ± 6	$4^{-} ; 1$		8.2 ± 3.8	$\gamma, \mathrm{p}, \alpha$	$\begin{aligned} & 19,34,36,43,44,46,49,67, \\ & 68 \end{aligned}$
19.001 ± 24	$2^{-} ; 1$		420 ± 50	γ, p	34, 36, 43
19.08 ± 30	$2^{+} ;(1)$		~ 120	$\gamma,(\mathrm{n}), \mathrm{p}, \alpha$	8, 9, 14, 34, 36
19.206 ± 12	$3^{-} ; 1$		68 ± 10		43, 67, 68
19.253 ± 30	(5^{-})		50 ± 45	n, α	8, 9
19.257 ± 9	$2^{+} ;(1)$		155 ± 25	$\gamma, \mathrm{p}, \alpha$	8, 9, 34, 36
19.319 ± 14	$\left(6^{+}\right)$		65 ± 35	$\mathrm{p}, \alpha,{ }^{8} \mathrm{Be}$	8-10
19.375 ± 2	4^{+}		23 ± 4	p, α	8, 9
19.47 ± 30	$1^{-} ; 1$		200 ± 70	γ, p	34, 36, 43
19.539 ± 19	$2^{+} ; 0$		255 ± 75	n, α	$5,8,9,46,50$
19.754 ± 16	2^{+}		290 ± 50	p, α	8, 9
19.808 ± 11	$4^{-} ; 0$		32 ± 4		19, 44, 46, 67, 68
19.895 ± 7	3; 1		42 ± 9	$\gamma, \mathrm{p}, \alpha$	5, 34, 36
20.055 ± 13	$2^{+} ; 0$		400 ± 32	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	7-9, 49, 50
20.412 ± 17	$\left(2^{-}, 4^{+}\right) ; 1$		190 ± 20	$\gamma, \mathrm{n}, \mathrm{p}$	34-36, 43, 67, 68
20.510 ± 0.025	$\left(4^{-} ; 1\right)$		50 ± 30	γ	43
20.541 ± 2	$5^{-} ; 1$		11 ± 2	p, α	5, 8, 9
20.560 ± 2	even π		<5	p, α	8, 9
20.615 ± 3	even π		<10	α	9
(20.8)			(~ 60)	$\mathrm{n}, \mathrm{p}, \alpha$	8
20.857 ± 14	7^{-}	0^{-}	900 ± 60	α	9, 11-14
20.945 ± 20	$1^{-} ; 1$		300 ± 10	$\gamma, \mathrm{n}, \mathrm{p}$	34-36, 43
21.05 ± 50	$\left(2^{+} ; 0\right)$		298 ± 43		46, 50

Table 16.13 (continued)
Energy Levels of ${ }^{16} \mathrm{O}^{\mathrm{a}}$)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	K^{π}	$\Gamma_{\text {c.m. }}$ or $\tau_{\mathrm{m}}(\mathrm{keV})$	Decay	Reactions
21.052 ± 6	6^{+}		205 ± 15	α	9
21.175 ± 15					5
21.50	$(1 \rightarrow 4)$		120	p	36
21.623 ± 11	$7{ }^{-}$		60 ± 30	$\mathrm{n}, \mathrm{p}, \alpha$	8, 9
21.648 ± 3	6^{+}		115 ± 8	n, α	8, 9, 11
21.776 ± 9	3^{-}		43 ± 20	$\mathrm{n}, \mathrm{p}, \alpha$	5, 8, 9
22.04	0^{+}		60	$\mathrm{n}, \mathrm{d}, \alpha$	8, 25
22.150 ± 10	$1^{-} ; 1$		680 ± 10	$\gamma, \mathrm{n}, \mathrm{p}, \mathrm{d}, \alpha$	14, 24, 26, 29, 34-36, 40-42
22.35	2^{+}		175	$\mathrm{n}, \mathrm{d}, \alpha$	25, 29
22.5 ± 100	3^{-}		400 ± 50	p, d, α	26, 29, 50
22.65 ± 30			60	n, $\alpha,{ }^{8} \mathrm{Be}$	5, 8, 10
22.721 ± 3	$0^{+} ; 2$		12.5 ± 2.5	$\mathrm{n}, \mathrm{p}, \mathrm{d}, \alpha$	8, 9, 23, 26, 29, 70
22.89 ± 10	$1^{-} ; 1$		300 ± 10	$\gamma, \mathrm{p}, \mathrm{d}$	24, 26, 34, 36
23.0 ± 100	6^{+}		$\lesssim 500$	(d), $\alpha,{ }^{8} \mathrm{Be}$	10, 11, 29
23.1			~ 20	(n), d, $\alpha,{ }^{8} \mathrm{Be}$	9, 10, 25, 29
23.235 ± 62	$\left(1^{-} ; 1\right)$		560 ± 150	$\mathrm{n}, \mathrm{p}, \mathrm{d}$	25-27, 35, 46
23.51 ± 30	$\left(5^{-}\right)$		300	$\mathrm{p}, \mathrm{d}, \alpha$	$5,9,14,26,27,29,49,50$
23.879 ± 6	6^{+}		26 ± 4	p, $\alpha,{ }^{8} \mathrm{Be}$	8-11
24.07 ± 30	$1^{-} ; 1$		550 ± 40	$\gamma, \mathrm{p},{ }^{3} \mathrm{He}$	17, 34, 36, 46
24.36 ± 70	$\left(2^{+}, 3^{-}\right) ; 0$		424 ± 45	n, p	35, 50
24.522 ± 11	$2^{+} ; 2$		<50		23, 70
24.76 ± 50	$(2,4)^{+} ; 1$		340 ± 60	$\gamma, \mathrm{n}, \mathrm{p}$	34-36
25.12 ± 50	$1^{-} ; 1$		3000 ± 300	$\gamma, \mathrm{p},{ }^{3} \mathrm{He}, \alpha$	17, 34, 36, 42, 49
25.50 ± 150	$1^{-} ; 1$		1300 ± 300	γ	43, 46
25.6	$\left(3^{-}\right) ; 1$		450	${ }^{3} \mathrm{He}, \alpha$	9, 17
26.0 ± 100	1^{-}; (1)		500-1000	$\gamma,{ }^{3} \mathrm{He}, \alpha$	17
26.363 ± 62	$(2,4)^{+} ; 1$		550 ± 70	$\gamma, \mathrm{n}, \mathrm{p}, \alpha$	9, 34-36
27.35 ± 100	$(2,4)^{+} ; 1$		830 ± 110	$\gamma, \mathrm{p},{ }^{3} \mathrm{He}, \alpha,{ }^{8} \mathrm{Be}$	17, 34, 36
27.5	$\left(3^{-} ; 0\right)$		~ 2500	$\gamma,{ }^{3} \mathrm{He}$	17
28.2	7^{-}		1000	α	9, 11
28.6 ± 200				$\gamma,{ }^{3} \mathrm{He}$	17
29.0	7^{-}		1000	p, α	9, 11
29.8 ± 100	$9^{-}+8^{+}$		500-1000	${ }^{3} \mathrm{He}, \alpha$	14, 17
31.8 ± 600				γ, α	11, 42
34	$10^{+}\left(9^{-}\right)$		2300	α	9, 11
35				α	11

${ }^{\text {a }}$) See also Tables 16.14 and 16.26.
${ }^{\text {b }}$) D.J. Millener, private communication.
${ }^{\text {c }}$) See (86AJ04).
${ }^{\text {d }}$) See reaction 70 and (86VO10).
$\left.{ }^{e}\right)$ (83SN03). See also Table 16.22.

Table 16.14
Radiative decays in ${ }^{16} \mathrm{O}{ }^{\text {a }}$)

$\begin{gathered} E_{\mathrm{i}} \\ (\mathrm{MeV}) \end{gathered}$	$J_{\mathrm{i}}^{\pi} ; T$	$\begin{gathered} E_{\mathrm{f}} \\ (\mathrm{MeV}) \end{gathered}$	$J_{\mathrm{f}}^{\pi} ; T$	Branch (\%)	$\begin{aligned} & \Gamma_{\mathrm{rad}} \\ & (\mathrm{eV}) \end{aligned}$
6.05	$0^{+} ; 0$	0	$0^{+} ; 0$	100	$3.55 \pm 0.21{ }^{\text {b }}$)
6.13	$3^{-} ; 0$	0	$0^{+} ; 0$	100	$(2.60 \pm 0.13) \times 10^{-5}$
6.92	$2^{+} ; 0$	0	$0^{+} ; 0$	> 99	$0.097 \pm 0.003^{\text {c }}$)
		6.05	$0^{+} ; 0$	$(2.7 \pm 0.3) \times 10^{-2}$	$(2.7 \pm 0.3) \times 10^{-5}$
		6.13	$3^{-} ; 0$	$\leq 8 \times 10^{-3}$	
7.12	$1^{-} ; 0$	0	$0^{+} ; 0$	> 99	$0.055 \pm 0.003{ }^{\text {c }}$)
		6.05	$0^{+} ; 0$	$<6 \times 10^{-4}$	
		6.13	$3^{-} ; 0$	$(7.0 \pm 1.4) \times 10^{-2}$	
8.87	$2^{-} ; 0$	0	$0^{+} ; 0$	7.2 ± 0.8	$(2.6 \pm 0.4) \times 10^{-4}$
		6.05	$0^{+} ; 0$	0.122 ± 0.033	$(3.1 \pm 1.0) \times 10^{-6}$
		$6.13{ }^{\text {f }}$)	$3^{-} ; 0$	$77.7 \pm 1.6^{\text {i }}$)	$\left.(2.8 \pm 0.3) \times 10^{-3 \mathrm{~d}}\right)$
		6.92	$2^{+} ; 0$	$3.6 \pm 0.5^{\text {i }}$)	$(1.5 \pm 0.3) \times 10^{-4}$
		7.12	$1^{-} ; 0$	$11.4 \pm 0.5{ }^{\text {i }}$)	$\left.(4.2 \pm 0.8) \times 10^{-4}{ }^{\mathrm{e}}\right)$
9.59	$1^{-} ; 0$	0	$0^{+} ; 0$	~ 100	$(2.5 \pm 0.4) \times 10^{-2}$
		6.92	$2^{+} ; 0$		$(2.9 \pm 1.0) \times 10^{-3}$
9.84	$2^{+} ; 0$	0	$0^{+} ; 0$	61 ± 4	$(5.7 \pm 0.6) \times 10^{-3}$
		6.05	$0^{+} ; 0$	18 ± 4	$(1.9 \pm 0.4) \times 10^{-5}$
		6.92	$2^{+} ; 0$	21 ± 4	$(2.2 \pm 0.4) \times 10^{-5}$
10.36	$4^{+} ; 0$	0	$0^{+} ; 0$		$(5.6 \pm 2.0) \times 10^{-8}$
		6.13	$3^{-} ; 0$		$<1.0 \times 10^{-3}$
		6.92	$2^{+} ; 0$	~ 100	$(6.2 \pm 0.6) \times 10^{-2}$
10.96	$0^{-} ; 0^{\mathrm{g}}$)	7.12	$1^{-} ; 0$	> 99	0.08 ± 0.05
11.10	$4^{+} ; 0$	6.13	$3^{-} ; 0$		$(3.1 \pm 1.3) \times 10^{-3}$
		6.92	$2^{+} ; 0$		$(2.5 \pm 0.6) \times 10^{-3}$
11.52	$2^{+} ; 0$	0	$0^{+} ; 0$	91.7	0.61 ± 0.02
		6.05	$0^{+} ; 0$	4.2 ± 0.7	$(3.0 \pm 0.5) \times 10^{-2}$
		6.92	$2^{+} ; 0$	4.0 ± 1.0	$(2.9 \pm 0.7) \times 10^{-2}$
		7.12	$1^{-} ; 0$	≤ 0.8	
12.05	$0^{+} ; 0$	0	$0^{+} ; 0$		$4.03 \pm 0.09{ }^{\text {b }}$)
12.44	$1^{-} ; 0$	0	$0^{+} ; 0$	~ 100	12 ± 2
		6.05	$0^{+} ; 0$	1.2 ± 0.4	0.12 ± 0.04
12.53	$2^{-} ; 0$	0	$0^{+} ; 0$		$\left.(3.3 \pm 0.5) \times 10^{-2} \mathrm{j}\right)$
		6.13	$3^{-} ; 0$	60 ± 6	2.1 ± 0.2
		6.92	$2^{+} ; 0$	<10	<0.34
		7.12	$1^{-} ; 0$	15 ± 3	0.5 ± 0.1
		8.87	$2^{-} ; 0$	25 ± 3	0.9 ± 0.1
12.80	$0^{-} ; 1$	7.12	$1^{-} ; 0$	~ 100	2.5 ± 0.2

Table 16.14 (continued)
Radiative decays in ${ }^{16} \mathrm{O}^{\text {a }}$)

E_{i} (MeV)	$J_{\mathrm{i}}^{\pi} ; T$	E_{f} (MeV)	$J_{\mathrm{f}}^{\pi} ; T$	Branch $(\%)$	Γ_{rad} (eV)
12.97	$2^{-} ; 1$	0	$0^{+} ; 0$		$\left.(3.4 \pm 0.9) \times 10^{-2 \mathrm{j}}\right)$
		6.13	$3^{-} ; 0$	63 ± 6	2.3 ± 0.2
		7.12	$1^{-} ; 0$	12 ± 3	0.44 ± 0.10
		8.87	$2^{-} ; 0$	25 ± 3	0.90 ± 0.10
$13.09 \mathrm{~h})$	$1^{-} ; 1$	0	$0^{+} ; 0$	~ 100	32 ± 5
		6.05	$0^{+} ; 0$	0.58 ± 0.12	
		7.12	$1^{-} ; 0$	3.1 ± 0.8	1.4 ± 0.4

${ }^{\text {a }}$) See tables 16.12 in (71AJ02), 16.15 in (77AJ02) and 16.12 in (82AJ01) for the earlier work and for references. See also table 16.15 here.
${ }^{\mathrm{b}}$) Monopole matrix element in fm^{2}.
${ }^{\text {c }}$) Weighted mean of earlier measurements and of a newer one reported in reaction 42 (85MO10).
d) $(3.0 \pm 0.4) \times 10^{-4}[\mathrm{M} 1],(2.5 \pm 0.2) \times 10^{-3}$ [E2] (82VE04).
$\left.{ }^{\mathrm{e}}\right)(8 \pm 3) \times 10^{-5}[\mathrm{M} 1],(3.4 \pm 0.5) \times 10^{-4}$ [E2] (82VE04).
$\left.{ }^{\text {f }}\right) E_{\gamma}=2471.5 \pm 0.5 \mathrm{keV}$ for $(8.87 \rightarrow 6.13)$ transition.
${ }^{g}$) Pairs due to this transition are not observed.
${ }^{\text {h }}$) For the radiative decay of higher states see tables 16.15, 16.22, and 16.26.
${ }^{\text {i }}$) (82VE04). See also for δ.
j) (86ZI08).

Table 16.15
Resonances in ${ }^{12} \mathrm{C}+\alpha^{\mathrm{a}}$)

Table 16.15 (continued)
Resonances in $\left.{ }^{12} \mathrm{C}+\alpha^{\mathrm{a}}\right)$

No.	$\begin{gathered} E_{\alpha} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{aligned} & \Gamma_{\mathrm{c} . \mathrm{m} .} \\ & (\mathrm{keV}) \end{aligned}$	Outgoing particles ${ }^{\text {b }}$)	Γ_{x}	$\Gamma_{\alpha_{0}} / \Gamma$	$\begin{gathered} { }^{16} \mathrm{O}^{*} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{\pi} ; T$
14	8.960 ± 10	75 ± 7	α_{0}	49 keV	0.65 ± 0.05	13.879 ± 8	4^{+}
			α_{1}	23 keV			
15	9.1	4800	α_{0}			(14.0)	$\left(0^{+}\right)$
16	9.164 ± 15	200 ± 15	α_{0}	$\sim 200 \mathrm{keV}$	>0.9	14.032	0^{+}
17	9.3 ± 100	750 ± 200	α_{0}		0.2 ± 0.1	14.1	3^{-}
			α_{1}				
18	9.948	487 ± 12	α_{0}		$0.8{ }^{\text {h }}$)	$\left.14.620 \pm 11{ }^{\mathrm{g}}\right)$	$\left(4^{+}\right)$
			α_{1}				
19	10.002	672 ± 11	α_{0}		0.94	$\left.14.660 \pm 11{ }^{\mathrm{g}}\right)$	5^{-}
			α_{1}				
20	10.195 ± 7	70 ± 8	α_{0}	22 keV	0.45 ± 0.05	14.805	6^{+}
			α_{1}	48 keV			
21	10.544	166 ± 30	$\alpha_{0}, \alpha_{1}, \mathrm{p}_{0}$		0.35	15.066 ± 11	0^{+}
22	10.999	133 ± 7	$\alpha_{0}, \alpha_{1}, \mathrm{p}_{0}$		0.58	15.408 ± 2	3^{-}
23	11.560	703 ± 113	$\alpha_{0},\left(\alpha_{1}\right), \gamma_{4.4}$		0.21	15.828 ± 30	3^{-}
24	11.6	~ 600	γ_{0}	$\Gamma_{\alpha} \Gamma_{\gamma} / \Gamma \sim 0.4 \mathrm{eV}$		15.9	2^{+}
25	12.156	422 ± 14	α_{0}		0.93	16.275 ± 7	6^{+}
26	12.272	65 ± 45	$\alpha_{0},\left(\alpha_{1}, \alpha_{2}\right), \mathrm{p}_{0}$		0.07	16.362 ± 20	$\left(0^{+}, 1^{-}\right)$
27	12.380	22 ± 3	$\gamma_{0}, \mathrm{n}, \mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \alpha_{2}, \gamma_{4.4}$	$\Gamma_{\alpha} \Gamma_{\gamma} / \Gamma=0.45 \mathrm{eV}$	0.28	16.443 ± 2	2^{+}; 1)
28	12.5	730	$\mathrm{p}_{0}, \alpha_{0}$			(16.5)	
29	12.915	567 ± 60	α_{0}		0.28	16.844 ± 21	4^{+}
30	13.0	700	α_{0}			(16.9)	5^{-}
31	13.05	~ 280	$\alpha_{2},{ }^{8} \mathrm{Be}$			16.94	2^{+}
32	13.296	107 ± 14	$\mathrm{n}, \mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \gamma_{4.4}$		0.37	17.129 ± 5	2^{+}
33	13.32	36 ± 5	α_{0}, α_{1}			17.15	
34	13.35	160 ± 60	$\alpha_{2},{ }^{8} \mathrm{Be}$			17.17	2^{+}
35	13.50	< 100	n			17.28	
36	13.805	182 ± 56	$\alpha_{0},\left(\alpha_{1}\right), \alpha_{2}$		0.16	17.510 ± 26	1^{-}
37	13.865	178 ± 66	$\mathrm{n},\left(\alpha_{0}, \alpha_{1}\right)$		0.07	17.555 ± 21	$\left(6^{+}\right)$
38	13.948	175 ± 55	$\mathrm{p}_{0}, \alpha_{0}$		0.32	17.618 ± 20	$\left(0^{+}, 1^{-}\right)$
39	14.08	(~ 75)	$\left(\mathrm{p}_{0}\right),{ }^{8} \mathrm{Be}$			17.72	$\left(0^{+}, 2^{+}\right)$
40	14.170	396 ± 41	$\mathrm{n}, \alpha_{0}, \alpha_{1}, \gamma_{4.4},{ }^{8} \mathrm{Be}$		0.34	17.784 ± 15	4^{+}
41	14.480	14 ± 2	(n), $\mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \gamma_{4.4},{ }^{8} \mathrm{Be}$		0.36	18.016 ± 1	$4^{+} ;(0)$
42	14.577	248 ± 90	(γ_{0}), $\mathrm{n}_{0}, \mathrm{p}_{0}, \alpha_{0}$		0.31	18.089 ± 25	$\left(0^{+}\right)$
43	(14.62)	(~ 45)	α_{0}			(18.12)	$\left(\neq 4^{+}\right)$
44	14.85	~ 380	$\gamma_{0}, \mathrm{p}_{0},\left(\alpha_{1}, \gamma_{4.4}\right)$	$\Gamma_{\alpha} \Gamma_{\gamma} / \Gamma=0.95 \mathrm{eV}$		18.29	
45	14.997	544 ± 39	α_{0}		0.40	18.404 ± 12	5^{-}
46	15.2	~ 150	$\alpha_{0}, \alpha_{1}, \alpha_{2}, \gamma_{4.4}$			18.6	$\left(1^{-}, 5^{-}\right)$
47	15.2	~ 300	$\alpha_{2},{ }^{8} \mathrm{Be}$			18.6	$\left(4^{+}\right)$
48	15.490	215 ± 45	$\mathrm{p}_{0}, \alpha_{0}$		0.26	18.773 ± 22	1^{-}
49	15.506	260 ± 16	$\mathrm{n}, \mathrm{p}_{0}, \alpha_{0},\left(\alpha_{1}\right),{ }^{8} \mathrm{Be}$		0.48	18.785 ± 6	4^{+}

Table 16.15 (continued)
Resonances in $\left.{ }^{12} \mathrm{C}+\alpha^{\mathrm{a}}\right)$

No.	$\begin{gathered} E_{\alpha} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{aligned} & \Gamma_{\mathrm{c} . \mathrm{m} .} \\ & (\mathrm{keV}) \end{aligned}$	Outgoing particles ${ }^{\text {b }}$)	Γ_{x}	$\Gamma_{\alpha_{0}} / \Gamma$	$\begin{gathered} { }^{16} \mathrm{O}^{*} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{\pi} ; T$
50	15.8	~ 550	$\left(\alpha_{0}\right), \alpha_{1}, \gamma_{4.4}$			19.0	(5^{-})
51	15.96	41	(n), α_{0}			(19.12)	$\left(2^{+}, 4^{+}\right)$
52	16.130	50 ± 45	(n), $\left(\alpha_{0}\right)$		0.04	19.253 ± 30	$\left(5^{-}\right)$
53	16.137	155 ± 23	$\mathrm{p}_{0}, \alpha_{0},\left(\alpha_{1}\right)$		0.34	19.257 ± 9	2^{+}
54	16.219	63 ± 33	$\mathrm{p}_{0},\left(\alpha_{0}\right), \alpha_{1}, \alpha_{2},{ }^{8} \mathrm{Be}$		0.07	19.319 ± 14	$\left(6^{+}\right)$
55	16.293	23 ± 4	$\mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \alpha_{2}$		0.23	19.375 ± 2	4^{+}
56	16.496	255 ± 75	(n), $\alpha_{0},\left(\alpha_{1}, \alpha_{2}\right)$		0.20	19.527 ± 26	2^{+}
57	16.799	286 ± 44	$\mathrm{p}_{0}, \alpha_{0}, \alpha_{1}$		0.29	19.754 ± 16	2^{+}
58	(16.92)	(~ 175)	α_{2}			(19.85)	
59	(17.05)	($\sim 30)$	$\left(\alpha_{0}\right)$			(19.94)	$\left(\neq 3^{-}\right)$
60	17.201	432 ± 40	$\gamma_{0}, \mathrm{n},\left(\mathrm{p}_{0}\right), \alpha_{0},\left(\alpha_{1}\right)$		0.43	20.055 ± 13	2^{+}
61	(17.27)	(~ 45)	$\left(\alpha_{0}\right)$			(20.11)	$\left(\neq 3^{-}\right)$
62	17.5	~ 1500	p_{0}			(20.3)	
63	(17.66)	(~ 150)	$\mathrm{n},\left(\mathrm{p}_{0}\right), \alpha_{0}, \alpha_{2}$			(20.40)	$\left(4^{+}\right)$
64	(17.8)	(~ 300)	(α_{0}), α_{1}			(20.5)	
65	17.849	11 ± 2	$\mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \alpha_{2}$		0.14 ± 0.02	20.541 ± 2	5^{-}
66	17.875	<5	α_{0}			20.560 ± 2	even
67	17.948	<10	α_{0}			20.615 ± 3	even
68	(18.2)	(~ 60)	$\mathrm{n},\left(\mathrm{p}_{0}\right)$			(20.8)	
69	18.271	904 ± 55	α_{0}		0.60	20.857 ± 14	7^{-}
70	(18.3)		α_{0}			(20.9)	2^{+}
71	(18.48)	(~ 50)	$\mathrm{n}, \mathrm{p}_{0},\left(\alpha_{0}\right)$			(21.01)	
72	18.50 ± 25	240 ± 80	$\gamma_{0},\left(\alpha_{0}, \alpha_{1}\right)$		0.20	21.03	(1-)
73	18.5	900	α_{0}		${ }^{\text {i }}$)	(21.0)	5^{-}
74	18.531	205 ± 14	α_{0}		0.50	21.052 ± 6	6^{+}
75	18.593	306 ± 46	$\left(\alpha_{0}\right)$		0.20	(21.098)	4^{+}
76	19.294	61 ± 32	$\mathrm{n}, \mathrm{p}_{0}, \alpha_{0}, \alpha_{2}$		< 0.05	21.623 ± 11	$7{ }^{-}$
77	19.327^{j})	115 ± 8	$\mathrm{n}, \alpha_{0}, \alpha_{1}, \alpha_{2}$		0.41	21.648 ± 3	6^{+}
78	$19.498{ }^{\text {j }}$)	43 ± 20	$\mathrm{n}, \mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \alpha_{2}$		0.07	21.776 ± 9	3^{-}
79	19.85	60	n			22.04	
80	19.89	340	n			22.07	
81	19.95	< 150	$\mathrm{n},{ }^{8} \mathrm{Be}$			22.11	
82	20.49	375	n			22.52	
83	20.71	60	n, ${ }^{8} \mathrm{Be}$			22.68	
84	20.760 ± 5	12.5 ± 2.5	$\mathrm{n}_{0}, \mathrm{p}_{0}, \alpha_{0}, \alpha_{2}$			22.721	$0^{+} ; T=2$
85	21.28	~ 20	$\alpha_{1}, \alpha_{2},{ }^{8} \mathrm{Be}$			23.11	
86	21.3	≤ 500	${ }^{8} \mathrm{Be}$			23.1	6^{+}
87	21.67	< 40	$\mathrm{n}, \alpha_{0}, \alpha_{2}$		$\simeq 0.31$	23.40	$\left(5^{-}\right)$
88	21.85	300	α_{0}, α_{1}			23.54	
89	22.0	1500	$\gamma_{12.71}$			23.6	
90	22.14	120	n			23.75	

Table 16.15 (continued) Resonances in $\left.{ }^{12} \mathrm{C}+\alpha^{\mathrm{a}}\right)$

No.	$\begin{gathered} E_{\alpha} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{aligned} & \Gamma_{\text {c.m. }} \\ & (\mathrm{keV}) \end{aligned}$	Outgoing particles ${ }^{\text {b }}$)	Γ_{x}	$\Gamma_{\alpha_{0}} / \Gamma$	$\begin{gathered} { }^{16} \mathrm{O}^{*} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{\pi} ; T$
91	22.306 ± 6	26 ± 4	$\begin{gathered} \mathrm{p}_{0}, \alpha_{0}, \alpha_{1}, \alpha_{2},{ }^{8} \mathrm{Be} \\ \mathrm{n} \\ { }^{8} \mathrm{Be} \end{gathered}$	${ }^{\text {k }}$)	0.06 ± 0.02	23.879	6^{+}
92	22.37					23.93	
$93{ }^{\text {m }}$)	22.75	≤ 500				24.21	
94	23.2	750	$\gamma_{12.71}, \gamma_{15.11}$			24.5	$T=1$
95	24.1	450	$\gamma_{15.11}$			25.2	$T=1$
96	24.6	450	$\gamma_{15.11}$			25.6	$T=1$
97	25.5	450	$\gamma_{15.11}$			26.3	$T=1$
98	25.6	1200	$\alpha_{0}, \gamma_{12.71}$	$\Gamma_{\alpha} \Gamma_{\gamma} / \Gamma=1.2 \mathrm{eV}$		26.3	2^{+}
99	28.1	1000	α_{0}		0.35	28.2	$7{ }^{-}$
100	29.1	1000	$\alpha_{0}, \alpha_{1}, \mathrm{p}_{3}$		0.35	29.0	7^{-}
101	35.8	2300	α_{0}, α_{2}		$0.1{ }^{1}$)	34.0	$10^{+} ;\left(9^{-}\right)$
	${ }^{\mathrm{n}}$)						

${ }^{\text {a }}$) References are listed in tables 16.11 (71AJ02), 16.12 (77AJ02), 16.13 (82AJ01), and 16.12 (86AJ04).
$\left.{ }^{\text {b }}\right) \mathrm{p}_{0}$ corresponds to ${ }^{15} \mathrm{~N}(0) . \alpha_{0}, \alpha_{1}$ corresponds to ${ }^{12} \mathrm{C}^{*}(0,4.4)$ and $\gamma_{4.4}$ corresponds to the γ-ray from the decay of ${ }^{12} \mathrm{C}^{*}(4.4) ; \gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}$ correspond to the transitions to ${ }^{16} \mathrm{O}^{*}(0,6.05,6.13$, $6.92,7.12$).
${ }^{c}$) These are observed widths from (87RE02). We are indebted to Dr. F.C. Barker who informed us of these and other recent observed width determinations. $\Gamma_{\gamma_{3}}^{0}=2.4 \pm 1.4 \mathrm{meV}$ (87RE02), $\Gamma_{\gamma_{3}}=2.4 \mathrm{meV}, \Gamma_{\gamma_{4}}=8.0 \mathrm{meV}(91 \mathrm{BA} 1 \mathrm{~K}), \Gamma_{\gamma_{0}}=16.4 \mathrm{meV}(R$-matrix fit by (91HU10)).
${ }^{\mathrm{d}}$) Branching ratios to ${ }^{16} \mathrm{O} *(0,6.05)=98.8 \%, 1.2 \%$.
$\left.{ }^{\text {e }}\right) \Gamma_{\gamma_{0}}=0.7 \pm 0.2 \mathrm{eV}$, based on $\Gamma_{\alpha_{0}} / \Gamma=1.0$ and $\Gamma_{\text {c.m. }}=190 \pm 40 \mathrm{keV}$.
$\left.{ }^{\text {f }}\right) \Gamma_{\alpha_{0}} \Gamma_{\gamma_{0}} / \Gamma^{2}=(1.49 \pm 0.17) \times 10^{-4}$.
$\left.{ }^{\mathrm{g}}\right)$ Uncertainties in E_{x} may be larger.
${ }^{h}$) For this and the states below Γ_{α} / Γ is ± 0.10 for isolated narrow levels.
$\left.{ }^{\text {i }}\right) \Gamma_{\alpha_{2}} / \Gamma=0.16$ (82KA30).
${ }^{j}$) A resonance is reported at $E_{\alpha}=19.4 \mathrm{MeV}: 4^{+}$is dominant, $\Gamma_{\alpha} / \Gamma \ll 1, \Gamma \geq 0.48$ (82 KA 30).
$\left.{ }^{\mathrm{k}}\right) \Gamma_{8 \mathrm{Be}}, \Gamma_{\alpha_{0}}$, and $\Gamma_{\alpha_{2}} \sim 3.5,1.5 \pm 0.5$ and $\sim 6 \mathrm{keV}$, respectively.
$\left.{ }^{1}\right) \Gamma_{\alpha_{2}} / \Gamma=0.2$ (83AR12).
${ }^{m}$) Broad maxima are reported in the activation cross section at $E_{\alpha}=22.8,24.3,25.3$ and 26.9 MeV (83KO1A; prelim.).
$\left.{ }^{n}\right)$ See (81SA07) for $\left(\alpha, \gamma_{14.8}\right)$ measurements which indicate an 8^{+}GQR built on the 6_{1}^{+}state ${ }^{16} \mathrm{O} *(14.82)$.

Table 16.16
Astrophysical factors for ${ }^{12} \mathrm{C}(\alpha \gamma)^{\mathrm{a}}$)

Reference	$\begin{gathered} S_{\mathrm{E} 1}\left(E_{0}\right) \\ (\mathrm{MeV} \cdot \mathrm{~b}) \\ \hline \end{gathered}$	$\begin{gathered} S_{\mathrm{E} 2}\left(E_{0}\right) \\ (\mathrm{MeV} \cdot \mathrm{~b}) \end{gathered}$
(87RE02)	$\begin{aligned} & \left.0.20_{-0.11}^{+0.27} \mathrm{~b}\right) \\ & \left.0.09_{-0.06}^{+0.10}, 0.14_{-0.08}^{+0.12 \mathrm{c}}\right) \end{aligned}$	$0.096_{-0.030}^{+0.024}$
(87PL03)	$\begin{aligned} & \left.0.20 \pm 0.08^{\mathrm{b}}\right) \\ & \left.0.16 \pm 0.10^{\mathrm{c}}\right) \end{aligned}$	0.089 ± 0.030
(87BA53)	$\left.0.14_{-0.05}^{+0.13}, 0.18_{-0.10}^{+0.16 \mathrm{~b}}\right)$	$0.03{ }_{-0.03}^{+0.05}$
(88KR06)	$\begin{aligned} & 0.01_{-0.01}^{+0.13} \mathrm{~b} \\ & \left.0.08^{\mathrm{c}}\right) \end{aligned}$	
(89FI08)	$0.03_{-0.03}^{+0.14 \mathrm{~d}}$)	$0.007_{-0.005}^{+0.024}{ }^{\text {d }}$)
(91BA1K)	$\left.0.155_{-0.07}^{+0.17}, 0.26_{-0.16}^{+0.14 \mathrm{~b}}\right)$	$0.12_{-0.07}^{+0.06}$
(91HU10)	$0.043_{-0.016}^{+0.020}{ }^{\text {d }}$)	

${ }^{\text {a }}$) We are indebted to Dr. F.C. Barker for providing this list of recent values.
${ }^{\text {b }}$) 3-level R fitting.
${ }^{c}$) Hybrid R fitting.
${ }^{\text {d }}$) K fitting.

Table 16.17
States of ${ }^{16} \mathrm{O}$ from ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li}, \mathrm{d}\right)$ and ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right)$

$\left.E_{\mathrm{x}}{ }^{\mathrm{a}}\right)(\mathrm{MeV} \pm \mathrm{keV})$	$\left.\Gamma_{\text {c.m. }}{ }^{\mathrm{b}}\right)(\mathrm{keV})$	$\left.\theta_{\alpha}^{2} / \theta_{\alpha}^{2}\left(2^{+}\right)^{\mathrm{c}}\right)$	$\Gamma_{\alpha_{0}} / \Gamma$	$J^{\pi} ; K^{\pi}$
0		$0.93,0.18$		0^{+}
6.05		$0.38,1.10$		$0^{+} ; 0^{+}$
6.13		$0.23,0.22$		3^{-}
6.92		$\equiv 1.0$		$2^{+} ; 0^{+}$
7.12		$0.53,0.39$		1^{-}
8.87	400 ± 10	$0.30,0.60$		2^{-}
$\left.9.63 \pm 30^{\mathrm{d}}\right)$	<20	$\leq 0.05, \leq 0.01$		$1^{-} ; 0^{-}$
9.84	35 ± 5	$0.25,0.47$	0.86 ± 0.09	$4^{+} ; 0^{+}$
$\left.10.346 \pm 6^{\mathrm{e}}\right)$			0^{+}	
10.96				0^{-}

Table 16.17 (continued)
States of ${ }^{16} \mathrm{O}$ from ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li}, \mathrm{d}\right)$ and ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right)$

$\left.E_{\mathrm{x}}{ }^{\text {a }}\right)(\mathrm{MeV} \pm \mathrm{keV})$	$\left.\Gamma_{\text {c.m. }}{ }^{\text {b }}\right)(\mathrm{keV})$	$\left.\theta_{\alpha}^{2} / \theta_{\alpha}^{2}\left(2^{+}\right)^{\text {c }}\right)$	$\Gamma_{\alpha_{0}} / \Gamma$	$J^{\pi} ; K^{\pi}$
$11.10{ }^{\text {e }}$)	<30	$\leq 0.06, \leq 0.03$	$\begin{gathered} 0.31 \pm 0.03 \\ \left(J=4^{+}\right) \end{gathered}$	$3^{+}+4^{+}$
11.59 ± 20	700 ± 100	~ 0.4		$3^{-} ; 0^{-}$
13.09	~ 230			1^{-}
14.363 ± 15	<120			$>5, \pi=$ nat.
14.66 ± 20	500 ± 50		1.03 ± 0.1	$5^{-} ; 0^{-}$
14.82	45 ± 10			$\left(6^{+}\right)$
16.30 ± 20	300 ± 50		1.07 ± 0.11	$6^{+} ; 0^{+}$
17.65 ± 50	100 ± 50			
17.85 ± 50	~ 200			
$(18.6)^{\mathrm{f}}$)				$\left(5^{-}\right)$
19.30 ± 50	~ 200			
$20.8 \pm 100^{\text {e }}$)	500 ± 100		1.16 ± 0.23	$7^{-} ; 0^{-}$
21.6 ± 100	≤ 100		0.67 ± 0.14	6^{+}
23.0 ± 100	~ 200			$\left(6^{+}\right)$
23.8 ± 100	1980 ± 250			$\left(6^{+}\right)$
26.9 ± 100	1700 ± 250			$\left(7^{-}\right)$
$27.7{ }^{\text {f }}$)				$\left(7^{-}\right)$
$(29.3)^{\text {f }}$)				$\left(7^{-}\right)$
32^{g})	broad			
$34{ }^{\text {h }}$)				$10^{+}\left(9^{-}\right)$
$35^{\text {g }}$)	broad			

${ }^{\text {a }}{ }^{\text {) }} E_{\mathrm{x}}$ quoted without errors are from Table 16.13. For the earlier references see Table 16.14 (82AJ01). Angular distributions are reported in both reactions for the first nine states.
${ }^{\text {b }}$) Line widths, not corrected for α-penetrabilities.
${ }^{\text {c }}$) Ratio of dimensionless reduced α-width calculated at a channel radius of 5.4 fm , relative to that for ${ }^{16} \mathrm{O}^{*}(6.92)$. (N, L) here are taken to be $(2,0)$ and $(4,1)$ respectively, for ${ }^{16} \mathrm{O}^{*}(0$, 7.12). The first number listed is the value reported at $E\left({ }^{6} \mathrm{Li}\right)=42 \mathrm{MeV}$, the second at $E\left({ }^{6} \mathrm{Li}\right)=90.2 \mathrm{MeV}$.
$\left.{ }^{\mathrm{d}}\right)$ On the basis of studies of the ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li}, \mathrm{d}\right),{ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right),{ }^{12} \mathrm{C}\left({ }^{10} \mathrm{~B},{ }^{6} \mathrm{Li}\right)$ and ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha)$ reactions, the energy of ${ }^{16} \mathrm{O}^{*}(9.6)$ is $9619 \pm 15 \mathrm{keV}$ with $\Gamma=400 \pm 100 \mathrm{keV}$ (line width). $\Gamma_{\mathrm{R}}=430 \pm 10 \mathrm{keV}$ as inferred from the best fit B-W line shape. This value is corrected for penetrability (81OV02; Becchetti, private communication.).
${ }^{e}$) Angular distributions are reported at $E\left({ }^{6} \mathrm{Li}\right)=35.5-35.6 \mathrm{MeV}$ to ${ }^{16} \mathrm{O}^{*}(10.36)$ and to the unresolved 3^{+}and 4^{+}states at 11.1 MeV (86AJ04). More recent coincidence measurements (86CA19) have indicated that while the 4^{+}state is dominantly populated and decays by α emission, the 3^{+}state decays by γ emission. Angular correlation measurements (80CU08) and analysis (88SE1E) indicate that the 4^{+}state is populated by a two-step process.
${ }^{\text {f }}$) (82AR20); decay primarily by α_{0}.
g) (82AR20); decay primarily by α_{1}.
${ }^{\text {h }}$) (82AR20, 83AR12); decays primarily by α_{2}.

Table 16.18
Resonances in ${ }^{13} \mathrm{C}+{ }^{3} \mathrm{He}{ }^{\text {a }}$)

$\begin{gathered} E\left({ }^{3} \mathrm{He}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{aligned} & \Gamma_{\text {c.m. }} \\ & (\mathrm{keV}) \end{aligned}$	Outgoing particles	$\begin{gathered} { }^{16} \mathrm{O}^{*} \\ (\mathrm{MeV}) \\ \hline \end{gathered}$	$J^{\pi} ; T$
1.55	~ 80	$\mathrm{n}_{0}, \mathrm{n}_{3}$	24.05	
1.55 ± 100	450	γ_{0}	24.1	
2.0	~ 250	n_{0}	24.4	
2.6 ± 100		$\alpha \gamma_{15.1}$	24.9	($T=1$)
2.87 ± 50	600	γ_{0}	25.12	1^{-}
~ 3.1		α_{0}, α_{2}	~ 25.3	
~ 3.5	~ 300	α_{0}	~ 25.6	$\left(3^{-}\right)$
~ 4	~ 300	$\alpha_{0}, \alpha_{1}, \alpha_{2}$	~ 26	$\left(3^{-}\right)$
4.0 ± 100	b)	$\gamma_{0}, \gamma_{1+2}, \alpha \gamma_{15.1}$	26.0	$1^{-} ;(1)$
$4.6 \pm 100^{\text {c }}$)	$720 \pm 160^{\text {c }}$)	$\gamma_{2}, \mathrm{p}_{0}$	26.5	$2^{+}, 4^{+}$
5.2 ± 100	$\mathrm{b}^{\text {b }}$	$\alpha \gamma_{15.1}$	27.0	($T=1$)
5.6 ± 100	~ 600	$\gamma_{0}, \gamma_{1+2}, \alpha \gamma_{15.1},{ }^{8} \mathrm{Be}$	27.3	$\left(1^{-}\right)$
~ 5.8	~ 2500	γ_{3+4}	27.5	
6.0 ± 100	~ 500	$\mathrm{p}_{0}, \mathrm{p}_{1+2},{ }^{3} \mathrm{He}, \alpha_{1}, \alpha_{2}$	27.7	$\left(3^{-} ; 0\right)$
~ 6		γ_{0}	28	
6.5 ± 100	${ }^{\text {b }}$)	$\alpha \gamma_{15.1}$	28.1	$(T=1)$
6.8 ± 100		$\alpha_{0}, \alpha_{1}, \alpha_{2}$	28.3	($T=0$)
7.1 ± 200		γ_{1+2}	28.6	
7.5 ± 100	${ }^{\text {b }}$)	$\alpha \gamma_{15.1}$	28.9	($T=1$)
8.6 ± 100	${ }^{\text {b }}$)	$\alpha \gamma_{15.1}$	29.8	($T=1$)
9.4 ± 100	${ }^{\text {b }}$)	$\alpha \gamma_{15.1}$	30.4	$(T=1)$
10.1 ± 100	${ }^{\text {b }}$)	$\alpha \gamma_{15.1}$	31.0	($T=1$)

${ }^{\text {a }}$) For references see Tables 16.15 in (71AJ02), 16.13 in (77AJ02), and 16.15 in (82AJ01).
b) Lab widths $0.5-1 \mathrm{MeV}$.
${ }^{c}$) Based on $\Gamma_{\text {c.m. }}=530 \pm 80 \mathrm{keV}\left[\right.$ from ${ }^{15} \mathrm{~N}(\mathrm{p}, \gamma)$, see Table 16.22], $\Gamma_{\mathrm{p}_{0}}=150 \pm 45 \mathrm{keV}$ $\left[J^{\pi}=2^{+}\right], 110 \pm 35 \mathrm{keV}\left[4^{+}\right] ; \Gamma_{\mathrm{n} n} / \Gamma=0.29 \pm 0.10\left[2^{+}\right], 0.21 \pm 0.07\left[4^{+}\right] ; \Gamma_{\gamma_{2}}=740 \pm 240 \mathrm{eV}$ $\left[2^{+}\right], 410 \pm 140 \mathrm{eV}\left[4^{+}\right]$. See (86AJ04, 77CH16, 78CH19).

Table 16.19
States of ${ }^{16} \mathrm{O}$ from ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li}, \mathrm{t}\right){ }^{16} \mathrm{O}$

$\begin{gathered} \left.E_{\mathrm{x}}{ }^{\mathrm{a}}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} \left.\hline \Gamma_{\text {c.m. }}{ }^{\text {c}}\right) \\ (\mathrm{keV}) \end{gathered}$	Comments ${ }^{\text {d }}$)
	$\begin{aligned} & 28 \pm 7 \\ & 45 \pm 7 \\ & 40 \pm 7 \\ & 22 \pm 7 \\ & 25 \pm 7 \\ & 23 \pm 7 \end{aligned}$	c.n. c.n. c.n. 4^{+}probably dominates; m.s. consistent with $L=1 \rightarrow 0^{+}$ consistent with $L=2 \rightarrow 2^{-}$ consistent with $L=2 \rightarrow 2^{-}$ $L=2$, but which state is involved? $L=4 \rightarrow 4^{(-)}$ anomalous shape $L=5$; probably $J^{\pi}=6^{+}$ consistent with $L=3 \rightarrow 3^{+}$ consistent with $L=3 \rightarrow 3^{+}$ $L=4$ or $L=5$ $L=3$; both states are probably populated $L=4$ or 5 ; probably 5^{+} probably 4^{-} very strongly excited

$\mathrm{u}=$ unresolved.
c.n. $=$ formation appears to be by a compound nuclear process.
m.s. $=$ multistep process.
${ }^{\text {a }}$) E_{x} without uncertainties are from Table 16.13.
${ }^{\text {b }}$) Angular distributions have been reported at $E\left({ }^{6} \mathrm{Li}\right)=25 \mathrm{MeV}$ to the first seven groups shown here and at 28 MeV : see (86AJ04) for references. See also (82AJ01).
${ }^{\text {c }}$) Angular distribution at $E\left({ }^{6} \mathrm{Li}\right)=34 \mathrm{MeV}$ (see 83KE06, 86AJ04).
${ }^{\text {d }}$) For abbreviations see above. When an L value is shown, stripping patterns are evident (83KE06).
${ }^{\mathrm{e}}$) There is some evidence for a state at $E_{\mathrm{x}}=17.90 \mathrm{MeV}$ (83KE06, 86AJ04).
${ }^{\text {f }}$) There is some evidence for a state at $E_{\mathrm{x}}=18.46 \mathrm{MeV}$ with $\Gamma \sim 60 \mathrm{keV}$ (83KE06, 86AJ04).

Table 16.20
Structure in ${ }^{14} \mathrm{~N}+\mathrm{d}^{\mathrm{a}}$)

$E_{\text {d }}(\mathrm{MeV})$	Resonant channel	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$J^{\pi} ; T$	$E_{\mathrm{x}}(\mathrm{MeV})$
1.4	$\mathrm{n}_{0}, \alpha_{0}$	$300{ }^{\text {e }}$)	$0^{+}{ }^{\text {e }}$)	22.0
1.7 ± 0.1	$\gamma_{0}, \mathrm{p}_{0}, \mathrm{p}_{1}, \alpha_{0}-\alpha_{3}$	$400{ }^{\text {e }}$)	$1^{-}{ }^{\text {e }}$)	22.2
1.85	$\mathrm{n}_{0}, \alpha_{0}$	175	$2^{+}{ }^{\text {e }}$)	22.35
2.0 ± 0.1	$\mathrm{p}_{0}, \mathrm{p}_{1}, \alpha_{0}, \alpha_{3}$	$350{ }^{\text {e }}$)	3^{-}e)	22.5
$2.272 \pm 0.005^{\text {b }}$)	$\mathrm{p}_{0}, \mathrm{p}_{1+2},\left(\mathrm{p}_{3}\right), \mathrm{p}_{4}, \mathrm{p}_{5}, \alpha_{0}, \alpha_{2}$			22.722
$2.40 \pm 0.05{ }^{\text {c }}$)	$\gamma_{0}{ }^{\text {d }}$), $\mathrm{p}_{0}, \mathrm{p}_{1}$	$500^{\text {e }}$)	$1^{-} ; 1$	22.83
2.5	α_{0}			22.9
2.6	$\left(\mathrm{n}_{0}\right), \alpha_{0}, \alpha_{1}$	$200{ }^{\text {e }}$)	$4^{+}{ }^{\text {e }}$)	23.0
2.8	$\left(\mathrm{n}_{0}\right), \mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{~d}_{0}$	$350{ }^{\text {e }}$)	$2^{+}{ }^{\text {e }}$)	23.2
3.24	$\mathrm{p}_{0}, \mathrm{p}_{1+2}, \mathrm{p}_{4}, \mathrm{p}_{5}, \mathrm{p}_{6}, \mathrm{~d}_{0}, \alpha_{3}$			23.57
4.2	$\gamma_{0},\left(\mathrm{p}_{0}\right), \mathrm{d}_{0}, \gamma_{15.1}$			24.4
4.58	(p_{0}), $\mathrm{d}_{0}, \gamma_{15.1}$			24.74
4.9	$\mathrm{n}_{0}, \mathrm{p}_{0}$			25.0
5.95	$\mathrm{d}_{1}, \gamma_{15.1}$			25.9
7.1	$\gamma_{15.1}$			26.9
7.4	d_{2}			27.2
7.7	d_{1}			27.5
(8.5)	$\left(\gamma_{15.1}\right)$			(28.2)
10.2	d_{2}			29.7

${ }^{\text {a }}$) For earlier references see Table 16.14 in (77AJ02) and 16.16 in (82AJ01, 86AJ04).
$\left.{ }^{\text {b }}\right)\left(\Gamma_{\mathrm{d}_{0}} \Gamma_{\mathrm{i}} / \Gamma^{2}\right) \times 10^{-3}$ are greater than $1.6 \pm 0.4,0.27 \pm 0.13,0.41 \pm 0.15$ and 0.07 ± 0.05 for the $\alpha_{2}, \mathrm{p}_{0}, \mathrm{p}_{1+2}$, and p_{3} groups.
${ }^{c}$) If this resonance is fitted with a single-level Breit-Wigner shape, penetrability effects could lower the resonance energy by as much as 50 keV , assuming $l=1$.
${ }^{\text {d }}$) The angular distribution of γ_{0} is consistent with E1.
${ }^{e}$) See references in (86AJ04).

Table 16.21
${ }^{16} \mathrm{O}$ states from $\left.{ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{16} \mathrm{O}{ }^{\text {a }}\right)$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	L	J^{π}
0		$0+2$	
6.052 ± 5		(0) ${ }^{\text {b }}$)	
6.131 ± 4		$1+3$	
6.916 ± 3		(0)	
7.115 ± 3		$1+3$	
8.870 ± 3	<20	$3+1$	
9.614 ± 30	510 ± 60		
9.847 ± 3	<20	$0(+2)$	
10.356 ± 3	25 ± 5	${ }^{\text {b }}$)	
10.957 ± 1	<12	1	
$\begin{aligned} & 11.080 \pm 3 \\ & 11.098 \pm 2 \end{aligned}$	< 12 12 $\}$	$2+4^{\text {c }}$)	
11.520 ± 4	64 ± 5	${ }^{\text {b }}$)	
12.049 ± 2	<12	0	
12.438 ± 3	70 ± 10	1	
$12.530 \pm 2^{\text {d }}$)	<12	$1+3$	
12.797 ± 4	40 ± 10	1	$0^{-} ; T=1^{\text {f }}$)
12.970 ± 1	<12	$1+3$	$2^{-} ; T=1^{\text {f }}$)
13.105 ± 15	160 ± 30	$0+3^{\text {c }}$)	
13.257 ± 2	20 ± 5	$(1+3)$	$3^{-} ; T=1^{\text {f }}$)
13.663 ± 4	63 ± 7	0	
13.869 ± 2	85 ± 20	(4) ${ }^{\text {b }}$)	
$13.979 \pm 2^{\text {d }}$)	14 ± 5	$1(+3)$	
14.302 ± 3	<20	${ }^{\text {b }}$)	
$14.399 \pm 2^{\text {d }}$)	27 ± 5	(4)	
14.818 ± 3		2	$(0 \rightarrow 4)^{+}$
$14.927 \pm 2^{\text {d }}$)	60 ± 10	$0(+2)$	$\left.(0,1,2)^{+\mathrm{g}}\right)$
15.103 ± 5			
15.196 ± 3		$(0+2)$	
15.409 ± 6		${ }^{\text {b }}$)	
$15.785 \pm 5^{\text {d }}$)	40 ± 10	$2(+4)$	$(2,3,4)+\mathrm{g})$
$16.114 \pm 4^{\text {e }}$)			
$16.209 \pm 2^{\text {d }}$)	40 ± 10	$0+2$	
16.350 ± 13			

Table 16.21 (continued)
${ }^{16} \mathrm{O}$ states from $\left.{ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{16} \mathrm{O}{ }^{\mathrm{a}}\right)$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	L	J^{π}
16.440 ± 13	~ 30	$0+2$	
16.817 ± 2	70 ± 10		
h$)$			

${ }^{\text {a }}$) For references see Table 16.17 in (82AJ01).
b) Mostly compound nucleus.
${ }^{\text {c }}$) Unresolved.
$\left.{ }^{\mathrm{d}}\right)$ Also reported in $\mathrm{p} \gamma_{4.4}$ coincidences.
${ }^{\text {e }}$) Very weak proton group. See (86AJ04).
f) (78 FO 27) have compared the cross section ratios of these three $T=1$ states with their analogs in ${ }^{16} \mathrm{~N}$ populated in the (t, p) reaction: only the 2^{-} states have the expected cross section ratio of 0.5 for $\left({ }^{3} \mathrm{He}, \mathrm{p}\right) /(\mathrm{t}, \mathrm{p})$. The populations of the 0^{-}and 3^{-} states in ${ }^{16} \mathrm{O}$ are lower by a factor of two.
$\left.{ }^{\mathrm{g}}\right)(78 \mathrm{FO} 19)$ suggest that these two states $\left[{ }^{16} \mathrm{O}^{*}(14.93\right.$, $15.79)]$ are 1^{+}and $3^{+} 2 \mathrm{p}-2 \mathrm{~h}$ states with $T_{\mathrm{p}}=T_{\mathrm{h}}=0$.
$\left.{ }^{\mathrm{h}}\right)$ States at 17.82 and $18.04(\pm 0.04) \mathrm{MeV}$ are also reported in $\mathrm{p} \gamma_{4.4}$ coincidences.

Table 16.22
Levels of ${ }^{16} \mathrm{O}$ from ${ }^{15} \mathrm{~N}(\mathrm{p}, \gamma),{ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{p})$ and ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha)$

No.	$\begin{gathered} E_{\mathrm{p}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{aligned} & \hline \Gamma_{\gamma_{0}} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & \hline \Gamma_{\gamma_{1}} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{gathered} \Gamma_{\mathrm{p}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \hline \Gamma_{\mathrm{p}} \Gamma_{\gamma} / \Gamma \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} \Gamma_{\alpha_{0}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \Gamma_{\alpha_{1}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \hline \Gamma_{\text {lab }} \\ (\mathrm{keV}) \end{gathered}$	$J^{\pi} ; T$	$\begin{aligned} & \hline E_{\mathrm{x}} \\ & (\mathrm{MeV} \pm \mathrm{keV}) \end{aligned}$
1	$335 \pm 4^{\text {a }}$)	12 ± 2	0.12 ± 0.04	0.9 ± 0.1		102 ± 4	0.025	110 ± 4	$1^{-} ; 0$	12.442
2	$\left.429.57 \pm 0.09{ }^{\text {b }}\right)$	(33 ± 5)	2.1 ± 0.2	$0.016 \pm 0.003{ }^{\text {c }}$)		nr	$0.092 \pm 0.010^{\text {c }}$)	0.103 ± 0.011	$2^{-} ; 0$	12.530
		$\times 10^{-3}{ }^{\text {c }}$)								
3	710 ± 7			40		nr		40 ± 40	$0^{-} ; 1$	12.793
4	897.37 ± 0.29	(34 ± 9)		$1.04 \pm 0.07{ }^{\text {c }}$)		nr	$0.30 \pm 0.06{ }^{\text {c }}$)	$1.47 \pm 0.04{ }^{\text {c }}$)	$2^{-} ; 1$	12.9686
		$\left.\times 10^{-3}{ }^{\mathrm{c}}\right)$								
5	1028 ± 10	32 ± 5		100		40	r	140 ± 10	$1^{-} ; 1$	13.091
6	1050 ± 150					$\begin{aligned} & \Gamma_{\mathrm{p}} \Gamma_{\alpha_{0}}= \\ & 500 \mathrm{keV}^{2} \end{aligned}$			2^{+}	13.1
7	1210 ± 3			4.1		r	8.2 ± 1.1	22.5 ± 1	$3^{-} ; 1$	13.262
8	1640 ± 3	$<1^{\text {d }}$)		10		nr	59 ± 6	68 ± 3	$1^{+} ; 0$	13.664
9	1890 ± 20			0.5		r	(r)	90 ± 2		13.90
10	1979 ± 3					nr	r	23 ± 2	2^{-}	13.982
11	$2982 \pm 6^{\text {e }}$)			$20 \pm 3^{\text {f }}$)		1.5	30^{g})	$55 \pm 5{ }^{\text {e }}$)	2^{+}	$14.921{ }^{\text {l }}$)
12	$3170{ }^{\text {h }}$)			$12{ }^{\text {i }}$)		152	163	330 ± 100	0^{+}	$\left.15.10{ }^{1}\right)$
13	$3264 \pm 11^{\text {e }}$)			j)		nr	$7{ }^{\text {k }}$)	$67 \pm 4{ }^{\text {e }}$)	2^{-}	15.186^{1})
14	$3340{ }^{\text {h,m }}$)			$15^{\text {i }}$)		12	182	315 ± 100	$2^{+} ;(0)$	$\left.15.26^{1}\right)$
15	$\left.3499 \pm 8^{\text {e,m }}\right)$			$15 \pm 5^{\text {f }}$)		103	1	$131 \pm 18{ }^{\text {e }}$)	3^{-}	15.406^{1})
16	$4350 \pm 90^{\text {f }}$)			$210 \pm 38{ }^{\text {f }}$)				$620 \pm 60^{\text {f }}$)	$1^{-} ; 0$	16.20
17	$\left.4357 \pm 5^{\text {e }}\right)$	$\left.3.7 \pm 0.5^{\mathrm{n}}\right)$	$\left.0.44 \pm 0.06{ }^{\text {n }}\right)$	$7 \pm 3{ }^{\text {f }}$)	$2.70 \pm 0.25^{\text {d }}$)			$20 \pm 3^{\text {e }}$)	$1^{+} ; 1$	16.210
18	$4505 \pm 12^{\text {f }}$)			$53 \pm 12{ }^{\text {f }}$)				$65 \pm 8^{\text {f }}$)	$0^{+} ; 0$	16.349
19	$4612 \pm 9^{\text {d }}$)			r	$1.11 \pm 0.24{ }^{\circ}$)	r	r	$26 \pm 8^{\text {d }}$)	$1-4 ; 1^{\text {d }}$)	16.449
20	$\left.5001 \pm 5^{\text {e,m }}\right)$			$7 \pm 2{ }^{\text {f }}$)	p)	nr	r	$28 \pm 4{ }^{\text {e }}$)	$3^{+} ; 0+1^{\text {d }}$)	16.813
21	$\left.5300 \pm 40^{\mathrm{f}}\right)$	r		q)				$\left.405 \pm 43^{\text {e }}\right)$	$1^{-} ; 1$	17.09
22	$5329 \pm 5^{\text {e }}$)	6.7 ± 1.0	$1.00 \pm 0.17^{\text {n }}$)	$22{ }^{\text {d }}$)	$3.90 \pm 0.50^{\text {d }}$)			$33 \pm 4^{\text {e }}$)	$1^{+} ; 1$	17.120
23	$5487 \pm 9^{\text {e }}$)	67		45	r)			$\left.80 \pm 8^{\text {e }}\right)$	$1^{-} ; 1$	17.268
24	$\left.5848 \pm 8^{\text {f }}\right)$			$37 \pm 8^{\text {f }}$)				$\left.117 \pm 15^{\mathrm{f}}\right)$	2^{+}; ${ }^{\text {(1) }}$	17.607
25	$6100 \pm 100{ }^{\text {f }}$)			$500 \pm 100{ }^{\text {f }}$)				$875 \pm 110^{\text {f }}$)	2^{-}	17.84

Table 16.22 (continued)
Levels of ${ }^{16} \mathrm{O}$ from ${ }^{15} \mathrm{~N}(\mathrm{p}, \gamma),{ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{p})$ and ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha)$

No.	$\begin{gathered} E_{\mathrm{p}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{aligned} & \hline \Gamma_{\gamma_{0}} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{aligned} & \hline \Gamma_{\gamma_{1}} \\ & (\mathrm{eV}) \end{aligned}$	$\begin{gathered} \Gamma_{\mathrm{p}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \hline \Gamma_{\mathrm{p}} \Gamma_{\gamma} / \Gamma \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} \Gamma_{\alpha_{0}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \Gamma_{\alpha_{1}} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \Gamma_{\text {lab }} \\ (\mathrm{keV}) \end{gathered}$	$J^{\pi} ; T$	$\begin{aligned} & \hline E_{\mathrm{x}} \\ & (\mathrm{MeV} \pm \mathrm{keV}) \end{aligned}$
26	$6137 \pm 6^{\text {e }}$)			$6^{\text {d }}$)	(r)		r	$26 \pm 3{ }^{\text {e }}$)	$1^{-} ; 2^{-} ; 1$	17.877
27	$6297 \pm 6^{\text {e }}$)	nr	$4.8 \pm 1.9{ }^{\text {t }}$)	$13 \pm 3^{\text {f,u }}$)			$8.9 \pm 3.2^{\text {d }}$)	28 ± 6	$3^{-} ; 1^{\text {y }}$)	18.027
28	$6490 \pm 15^{\text {f }}$)			$33 \pm 12^{\text {f }}$)				150 ± 26	2^{+}	18.208
29	$6727 \pm 15^{\text {f }}$)			11 ± 6				97 ± 41	2^{+}	18.430
30	$6785 \pm 6^{\text {f }}$)			17 ± 3				37 ± 6	1^{-}	18.484
31	$7100 \pm 100^{\text {d }}$)	$\geq 3.6{ }^{\text {n }}$)		${ }^{\mathrm{v}}$)					$1^{+} ; 1$	18.78
32	$7313 \pm 9^{\text {d }}$)		$7.1 \pm 3.1{ }^{\text {w }}$)	${ }^{\text {x }}$)	x)		$0.57 \pm 0.49{ }^{\text {d }}$)	$8.7 \pm 4 .{ }^{\text {d }}$)	$\left.4^{-} ; 1^{\mathrm{y}}\right)$	18.979
33	7330 ± 30	38		≤ 130	$\geq 1.8 \pm 0.3$			~ 260	1^{+}	18.99
34	7420	r		~ 30				~ 130	2^{+}; (1)	19.08
35	$\left.7600 \pm 30^{\mathrm{z}}\right)$	nr	$1.5{ }^{\text {aa) }}$					100	(2, 3; 1)	19.25
36	$7840 \pm 30^{\text {z }}$)			(r)				350	$1^{-} ; 1$	19.47
37	$8289 \pm{ }^{\text {d }}$)	nr	$\left.17 \pm 6^{\text {bb }}\right)$	$\left.25 \pm 10^{\text {cc }}\right)$	dd)		r	45 ± 10	3; $1^{\text {d }}$)	19.893
38	$8843 \pm 17^{\text {d }}$)	nr	$38^{\text {ee }}$)	${ }^{\text {ee) }}$	${ }^{\text {ee }}$)			200 ± 20	$1-4 ; 1$	20.412
39	8990			${ }_{\text {ff }}$)				160		20.55
40	$9410{ }^{\text {h }}$)	170		${ }^{\text {ff) }}$	21 ± 1			320 ± 10	$1^{-} ; 1$	20.945 ± 20
41	$10000^{\text {h }}$)			${ }^{\text {hh }}$)				130	$1 \rightarrow 4$	21.50
42	$10180^{\text {h }}$)			ii)		r		<45	$T=0$	21.66
43	$10700^{\text {h,gg }}$)	r		hh)	488 ± 20			730 ± 10	$1^{-} ; 1$	22.150 ± 10
44	$11490{ }^{\text {h }}$)	120	$27^{\text {aa }}$)	${ }^{\text {hh }}$)	69 ± 5			320 ± 10	$1^{-} ; 1$	22.89 ± 10
45	$12740{ }^{\text {h }}$)	r			130 ± 13			590 ± 40	$1^{-} ; 1$	24.07 ± 30
46	13490 ± 60		230 ± 90, or $130 \pm 50^{\text {jj }}$)	$85^{\text {cc }}$)				360 ± 60	$(2,4)^{+} ; 1$	24.76
47	$13870{ }^{\text {h }}$)	r			651 ± 117		${ }^{\mathrm{kk}}$)	3150 ± 320	$1^{-} ; 1$	25.12 ± 60
48	15250 ± 80		$\left.740 \pm 240, \text { or } 410 \pm 140^{\mathrm{jj}}\right)$	$122{ }^{\text {cc }}$)			${ }^{\mathrm{kk}}$)	$\left.565 \pm 85^{11}\right)$	$(2,4)^{+} ; 1$	26.41
49	16250 ± 100		1070 ± 380, or $590 \pm 10{ }^{\text {jj }}$)	$206{ }^{\text {cc }}$)			${ }^{\mathrm{kk}}$)	880 ± 125	$(2,4)^{+} ; 1$	27.35

$\mathrm{nr}=$ non-resonant
$\mathrm{r}=$ resonant
For earlier references see Tables 16.21 in (71AJ02), 16.19 in (77AJ02) and 16.18 in (82AJ01) and 16.18 in (86AJ04).

Table 16.22 (continued)
Levels of ${ }^{16} \mathrm{O}$ from ${ }^{15} \mathrm{~N}(\mathrm{p}, \gamma),{ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{p})$ and ${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha)$

```
a) (82RE06).
\(\left.{ }^{\text {b }}\right)\) (87OS01). See also the result \(E_{\mathrm{p}}=429.88 \pm 0.14\) from the \({ }^{1} \mathrm{H}\left({ }^{15} \mathrm{~N}, \alpha \gamma\right)\) reaction.
c) (86ZI08).
d) See (83SN03).
\({ }^{\text {e }}\) ) Weighted mean of values obtained by (83SN03, 84DA18) and in earlier work [see 82AJ01)].
\({ }^{\text {f }}\) ) (84DA18). See also for calculated \(\Gamma_{n}\).
\({ }^{\mathrm{g})} \Gamma_{\mathrm{p}} \Gamma_{\alpha_{1}} / \Gamma=16.4 \mathrm{keV}\) (83SN03).
\({ }^{\mathrm{h}}\) ) Nominal \(E_{\mathrm{p}}\) calculated from \(E_{\mathrm{x}}\).
\({ }^{i}\) ) Not observed in \(p_{0}\) channel.
\({ }^{\text {j) }} 35 \pm 3 \mathrm{keV}(s=1), 15 \pm 2 \mathrm{keV}(s=0) ; \Gamma_{\mathrm{p}} / \Gamma=0.78\) (84DA18).
\(\left.{ }^{\mathrm{k}}\right) \Gamma_{\mathrm{p}} \Gamma_{\alpha_{1}} / \Gamma=10.9 \mathrm{keV}\) (83SN03).
\({ }^{1}\) ) See also footnote \({ }^{\mathrm{c}}\) ) in table 16.18 (82AJ01).
\({ }^{\mathrm{m}}\) ) Broad structures have also been observed at \(E_{\mathrm{p}} \sim 3.5 \mathrm{MeV}\) in \(\left(\alpha_{1} \gamma\right)\) and at 5.7 MeV in \(\left(\alpha_{1} \gamma\right)\) and ( \(\left.\gamma_{1+2}\right)\) (83SN03).
\(\left.{ }^{\mathrm{n}}\right) \Gamma_{\gamma}\) uncertainties neglect the error in \(\Gamma_{\mathrm{p}} / \Gamma\) (83SN03).
\({ }^{\circ}\) ) \(\Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma\); also \(\Gamma_{\gamma_{2}} \simeq 11 \mathrm{eV}\) (83SN03).
\(\left.{ }^{\mathrm{p}}\right) \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma=0.48 \pm 0.09 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\gamma_{3+4}} / \Gamma=0.62 \pm 0.13 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\alpha_{1}} / \Gamma=6.8 \mathrm{eV} ; \Gamma_{\gamma_{2}}=1.0 \mathrm{eV}, \Gamma_{\gamma_{3}}=1.2 \mathrm{eV}, \Gamma_{\mathrm{p}} / \Gamma=0.5\) [see, however, values shown for \(\Gamma_{\mathrm{p}}\) and \(\Gamma\) ]
(83SN03).
\(\left.{ }^{\text {q }}\right) \Gamma_{\mathrm{p}}=24 \pm 6(l=0), 246 \pm 24 \mathrm{keV}(l=2)\) (84DA18).
\(\left.{ }^{\mathrm{r}}\right) \Gamma_{\gamma_{3}}=8 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\gamma_{3}} / \Gamma=3.27 \pm 0.41 \mathrm{eV}\) (83SN03).
\(\left.{ }^{\text {s }}\right) \Gamma_{\gamma_{4}}=2 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\gamma_{4}} / \Gamma=0.69 \pm 0.10 \mathrm{eV}, \Gamma_{\mathrm{o}} \Gamma_{\alpha_{1}} / \Gamma=1.48 \mathrm{keV}\) (83SN03).
\(\left.{ }^{\mathrm{t}}\right) \Gamma_{\gamma_{2}} ; \Gamma_{\gamma_{3}}=0.76 \pm 0.39 \mathrm{eV}\) : see (83SN03).
\(\left.{ }^{\mathrm{u}}\right) \Gamma_{\mathrm{p}_{0}}=7.8 \pm 2.8 \mathrm{keV}, \Gamma_{\mathrm{p}_{1+2}}=2.7 \pm 1.2 \mathrm{keV} ; \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma=1.96 \pm 0.27 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\gamma_{3+4}} / \Gamma=0.31 \pm 0.11 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{p}_{1+2}} / \Gamma=1.11 \pm 0.26 \mathrm{keV}, \Gamma_{\mathrm{p}} \Gamma_{\alpha_{1}} / \Gamma=4.25 \pm 1.00 \mathrm{keV}: \mathrm{see}\)
(83SN03).
\(\left.{ }^{\mathrm{v}}\right) \Gamma_{\mathrm{p}} / \Gamma \leq 0.5, \Gamma_{\mathrm{p}} \Gamma_{\gamma_{0}} / \Gamma \geq 1.8 \pm 0.3 \mathrm{eV}\) (83SN03).
\(\left.{ }^{\mathrm{w}}\right) \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} ; \Gamma_{\mathrm{p}} \Gamma_{\gamma_{3}}<0.3 \mathrm{eV}\) : see (83SN03).
\(\left.{ }^{\mathrm{x}}\right) \Gamma_{\mathrm{p}_{0}}=0.98 \pm 0.19 \mathrm{keV}, \Gamma_{\mathrm{p}_{1+2}}=5.2 \pm 2.3 \mathrm{keV} ; \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma=0.85 \pm 0.01 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\gamma_{3+4}} / \Gamma<0.03 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{p}_{1+2}} / \Gamma=0.62 \pm 0.09, \Gamma_{\mathrm{p}} \Gamma_{\alpha_{0}} / \Gamma<0.09 \mathrm{keV}: \operatorname{see}(83 \mathrm{SN03})\).
\({ }^{\text {y }}\) ) See also Table IV in (83SN03).
\({ }^{\text {z }}\) ) See also (83SN03).
aa) \(\gamma_{1}+\gamma_{2}\).
\(\left.{ }^{\text {bb }}\right) \Gamma_{\gamma_{0}}\) (77CH19). See also (83SN03).
```



```
\(\left.{ }^{\mathrm{dd}}\right) \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma=3.9 \pm 0.56 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{p}_{1+2}} / \Gamma=4.48 \mathrm{keV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{p}_{3}} / \Gamma=0.52 \mathrm{keV}, \Gamma_{\mathrm{p}} \Gamma_{\alpha_{1}} / \Gamma=1.07 \mathrm{keV}\) (83SN03).
\({ }^{\text {ee }}\) ) \(\Gamma_{\gamma_{2}}=38 \mathrm{eV} ; \Gamma_{\mathrm{p}} \Gamma_{\gamma_{2}} / \Gamma=18.8 \pm 3.9 \mathrm{eV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{p}_{1+2}} / \Gamma=15.8 \mathrm{keV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{p}_{3}} / \Gamma=5.8 \mathrm{keV}, \Gamma_{\mathrm{p}} \Gamma_{\mathrm{n}_{0}} / \Gamma=22 \mathrm{keV}\); the state is probably \(4^{+} ; T=1\) : see \((83 \mathrm{SN03})\).
\({ }^{\text {ff }}\) ) Resonant in \(\mathrm{p}_{2}\).
\(\left.{ }^{\mathrm{gg}}\right) \sigma=12.9 \mathrm{mb}\) at peak of GDR (78OC01).
\({ }^{\mathrm{hh}}\) ) Resonant in \(\mathrm{p}_{1}\).
\(\left.{ }^{\text {ii }}\right)\) Resonant in \(\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{6}\).
\(\left.{ }^{\mathrm{jj}}\right) \Gamma_{\gamma_{2}}(\mathrm{eV})\).
\(\left.{ }^{\mathrm{kk}}\right)\) Apparent resonance in yield of \(\left(\alpha \gamma_{15.1}\right)\) (780C01).
\(\left.{ }^{11}\right)\) Average of values obtained in this experiment and in \({ }^{12} \mathrm{C}\left(\alpha, \gamma_{2}\right)\).
```

Table 16.23
Resonances in $\left.{ }^{15} \mathrm{~N}(\mathrm{p}, \mathrm{n})^{15} \mathrm{O}^{\mathrm{a}}\right)$

$\begin{gathered} E_{\mathrm{p}} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{aligned} & \hline \Gamma_{\mathrm{c} . \mathrm{m} .} \\ & (\mathrm{keV}) \end{aligned}$	$J^{\pi} ; T^{\text {b }}$)	$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV}) \end{gathered}$
4.37 ± 15	19 ± 6	$1^{(+)} ; 1$	16.22
4.45 ± 30	240 ± 30	$0^{(-)}$	16.30
5.35 ± 15	33 ± 5	$1^{(-)} ; 1$	17.14
5.52 ± 15	90 ± 10	$1^{-} ; 1$	17.30
5.88 ± 15	59 ± 10	$\geq 1 ; 1$	17.64
6.12 ± 15	101 ± 10	$\geq 1 ; 1$	17.86
$6.23 \pm 15^{\text {c }}$)	≤ 50	$T=1$	17.96
6.33 ± 15	26 ± 5	$\geq 1 ; 1$	18.06
6.43 ± 30	$\simeq 300$		18.15
6.76 ± 25	$\simeq 160$		18.46
7.03 ± 30	260 ± 30		18.71
7.59 ± 25	90 ± 10	$2^{-} ; 1$	19.24
7.86 ± 30	300 ± 80		19.49
8.30 ± 25	120 ± 40		19.90
$8.88 \pm 40^{\text {d }}$)	200 ± 50	2	20.45
9.08 ± 40	130 ± 50		20.63
9.42 ± 100	235 ± 45		20.95
10.73 ± 100	800 ± 95	1	22.18
11.01 ± 100	300 ± 100		22.44
11.92 ± 100	520 ± 200		23.29
13.03 ± 100	520 ± 100		24.33
13.63 ± 100	~ 280	2, 4	24.89
15.12 ± 100	610 ± 140	2, 4	26.29
18.4 ± 200	470 ± 150		29.4

${ }^{\text {a }}$) For references see Table 16.19 in (82AJ01).
${ }^{\mathrm{b}}$) Assignments are from (p, n) and (p, γ) results. The T-assignments are made on the basis of energy and width comparisons with states of ${ }^{16} \mathrm{~N}$.
${ }^{c}$) Probably a doublet.
${ }^{\text {d }}$) Values of $(2 J+1) \Gamma_{\mathrm{p}_{0}} \Gamma_{\mathrm{n}_{0}} / \Gamma^{2}$ are derived for this resonance and the ones below: see (78CH09).

Table 16.24
States in ${ }^{16} \mathrm{O}$ from ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{n})$ and ${ }^{15} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$

${ }^{16} \mathrm{O}^{*}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$l{ }^{\text {a }}$)	$l{ }^{\text {b }}$)	$S^{\text {c }}$)
0	$0^{+} ; 0$	1	1	3.1
6.05	$0^{+} ; 0$		1	d)
6.13	$3^{-} ; 0$	2	2	
6.92	$2^{+} ; 0$	not direct	$1+3$	d)
7.12	$1^{-} ; 0$	0	$0+2$	
8.87	$2^{-} ; 0$	2	2	0.72
9.59	$1^{-} ; 0$		0	d)
9.84	$2^{+} ; 0$	1	not direct	${ }^{\text {d }}$)
10.36	$4^{+} ; 0$		3	${ }^{\text {d }}$)
10.96	$0^{-} ; 0$	0	0	0.76
11.08	$3^{+} ; 0$	3	3	0.18
11.26	$0^{+} ; 0$		broad	
12.44	$1^{-} ; 0$	0	0	0.40
12.53	$2^{-} ; 0$	2	2	0.72
12.80	$0^{-} ; 1$	0	0	0.44
12.97	$2^{-} ; 1$	2	2	0.40
13.09	$1^{-} ; 1$	(0)		0.58
			$2(+0)$	
$13.13{ }^{\text {e }}$)	$3^{-} ; 0$	(2)		0.32
13.26	$3^{-} ; 1$	2	2	0.46
17.14			obs.	
17.20	2^{+}		obs.	

a) ${ }^{15} \mathrm{~N}(\mathrm{~d}, \mathrm{n}) ; E_{\mathrm{d}}=4.8$ to 6 MeV ; see (77AJ02) for references.
${ }^{\text {b }}{ }^{15} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{d}\right) ; E\left({ }^{3} \mathrm{He}\right)=11,16.0$ and 24.0 MeV ; see (77AJ02).
${ }^{c}$) "Best" values from (d, n) and $\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$ data. See Table 16.22 in (77AJ02) for a more complete display.
${ }^{\text {d }}$) Very small value of S : see (77AJ02).
$\left.{ }^{e}\right) \Gamma=128 \mathrm{keV}$.

Table 16.25
Beta decay of the ground state of ${ }^{16} \mathrm{~N}$

Final State			
${ }^{16} \mathrm{O}^{*}(\mathrm{MeV})$	J^{π}	Branch $(\%)$	$\log f t$
0	0^{+}	$\left.28.0 \pm 0.5^{\mathrm{a}}\right)$	$\left.9.077 \pm 0.005^{\mathrm{d}, \mathrm{e}}\right)$
6.05	0^{+}	$(1.2 \pm 0.4) \times 10^{-2}$	$\left.9.96 \pm 0.15^{\mathrm{d}}\right)$
6.13	3^{-}	$\left.66.2 \pm 0.6^{\mathrm{b}}\right)$	4.48 ± 0.04
7.12	1^{-}	4.8 ± 0.4	5.11 ± 0.04
8.87	2^{-}	$\left.1.06 \pm 0.07^{\mathrm{c}}\right)$	$\left.4.41 \pm 0.03^{\mathrm{c}}\right)$
9.59	1^{-}	$(1.20 \pm 0.05) \times 10^{-3}$	$\left.6.12 \pm 0.05^{\mathrm{f}}\right)$
9.84	2^{+}	$(6.5 \pm 2.0) \times 10^{-7}$	$\left.9.07 \pm 0.13^{\mathrm{d}}\right)$

${ }^{\text {a }}$) Adopted value average of (84WA07, 85HE08).
${ }^{\text {b }}$) Recalculated so that the sum of the branches is 100%.
${ }^{\text {c }}$) See (86AJ04).
$\left.{ }^{\text {d }}\right) \log f_{1} t$.
$\left.{ }^{e}\right)$ E.K. Warburton, private communication. We are indebted to Dr. Warburton for his very useful comments.
${ }^{\text {f }}$) See also (93 CH 1 A).

Table 16.26
Excited states observed in $\left.{ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)^{16} \mathrm{O}^{\text {a }}\right)$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	Mult.	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$\Gamma_{\gamma_{0}}(\mathrm{eV})$
6.05	0^{+}	E0		$3.55 \pm 0.21{ }^{\text {c }}$)
6.13	3^{-}	E3		$(2.60 \pm 0.13) \times 10^{-5}$
6.92	2^{+}	E2		0.105 ± 0.007
7.12	1^{-}	E1		$(4.6 \pm 2.3) \times 10^{-2}$
$8.87{ }^{\text {b }}$)	2^{-}	M2		
9.84	2^{+}	E2		$(8.8 \pm 1.7) \times 10^{-3}$
10.36	4^{+}	E4		$(5.6 \pm 2.0) \times 10^{-8}$
11.52	2^{+}	E2		0.61 ± 0.02
12.05	0^{+}	E0		$4.03 \pm 0.09^{\text {c }}$)
$12.44{ }^{\text {b }}$)	1^{-}	E1		
$12.53{ }^{\text {b }}$)	2^{-}	M2		0.021 ± 0.006
$12.97{ }^{\text {b }}$)	2^{-}	M2		0.071 ± 0.002
13.02	2^{+}	E2		0.89
13.10 ± 250	$1^{-} ; 1$	E1		$\leq 49 \pm 13$
$13.26{ }^{\text {b }}$)	3^{-}	E3		
$13.87{ }^{\text {b }}$)	4^{+}	E4		
$14.00 \pm 50^{\text {b }}$)	0^{+}	E0	170 ± 50	$3.3 \pm 0.7{ }^{\text {c }}$)
$\sim 14.7{ }^{\text {b }}$)			~ 600	
$14.93{ }^{\text {b }}$)	2^{+}	E2		
15.15 ± 150	2^{+}	E2	500 ± 200	1.0 ± 0.5
$15.20{ }^{\text {b }}$)	2^{-}	M2		
$15.41{ }^{\text {b }}$)	3^{-}	E3		
~ 15.85			~ 600	
$16.22 \pm 10^{\text {b,d }}$)	$1^{+} ; 1$	M1	18 ± 3	3.2 ± 0.3
$\left.16.45 \pm 10^{\text {b,d }}\right)$	2^{+}	E2	32 ± 4	0.18 ± 0.01
$16.82 \pm 10^{\text {b,d }}$)	2^{-}	M2	30 ± 5	0.05 ± 0.01
$\left.17.14 \pm 10{ }^{\text {b,d }}\right)$	$1^{+} ; 1$	M1	<25	6.1 ± 0.5
$\left.17.30 \pm 10^{\text {b,d }}\right)$	1^{-}	E1	70 ± 10	3.4 ± 2.3
$17.774 \pm 17^{\text {b }}$)	$4^{-} ; 0$	M4		
$\left.17.78 \pm 10^{\text {d,e }}\right)$	2^{-}	M2		0.07 ± 0.01
$17.880 \pm 15{ }^{\text {f }}$)	$\left(4^{+} ; 1\right)$	E4	20 ± 20	
$18.021 \pm 23^{\text {b }}$)	$3^{-} ; 1$			
$18.20 \pm 10^{\text {d }}$)	2^{+}	E2	280 ± 20	1.68 ± 0.22
$\sim 18.3{ }^{\text {f }}$)			~ 430	

Table 16.26 (continued)
Excited states observed in $\left.{ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime}\right)^{16} \mathrm{O}^{\text {a }}\right)$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	Mult.	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	$\Gamma_{\gamma_{0}}(\mathrm{eV})$
$\left.18.50 \pm 10^{\mathrm{b}, \mathrm{d}}\right)$	2^{-}	M 2	70 ± 5	0.38 ± 0.07
$\left.18.635 \pm 20^{\mathrm{f}}\right)$	$\left(4^{-} ; 1\right)$		35 ± 30	
$\left.18.79 \pm 10^{\mathrm{d}}\right)$	$1^{+} ; 1$	M 1	120 ± 20	5.3 ± 0.3
$\left.18.968 \pm 17^{\mathrm{b}, \mathrm{g}}\right)$	$4^{-} ; 1$	M 4		
$\left.19.02 \pm 40^{\mathrm{d}, \mathrm{h}}\right)$	$2^{-} ; 1$	M 2	420 ± 50	2.52 ± 0.38
$\left.19.206 \pm 12^{\mathrm{b}}\right)$	$3^{-} ; 1$	E3		
$\left.19.430 \pm 20^{\mathrm{f}}\right)$			150 ± 15	
$\left.20.185 \pm 40^{\mathrm{f}}\right)$			400 ± 100	
$\left.20.335 \pm 25^{\mathrm{f}}\right)$			~ 200	
$\left.20.510 \pm 25^{\mathrm{f}}\right)$	$\left(4^{-} ; 1\right)$		50 ± 30	
$\left.20.88^{\mathrm{b}}\right)$			~ 90	
20.95 ± 50	$1^{-} ; 1$	E1	270 ± 70	180 ± 50
$\left.21.46^{\mathrm{b}}\right)$			~ 300	
$\left.22.60 \pm 20^{\mathrm{b}}\right)$			90 ± 40	
23.0				
23.7 ± 250	$\left(2^{-} ; 1\right)$			
24.2				
25.5 ± 250	$1^{-} ; 1$	E1		
26.7 ± 250	1^{+}	M1		
44.5	$\left(1^{-} ; 1\right)$		$2000-3000$	5300
49	$\left(1^{-} ; 1\right)$		$2000-3000$	19000

${ }^{\text {a }}$) See also Table 16.26 in (71AJ02). For references see Table 16.24 in (77AJ02). See also the text.
${ }^{\text {b }}$) (85 HY 1 A : momentum transfer range 0.8 to $2.5 \mathrm{fm}^{-1}$). See (86AJ04).
${ }^{\text {c }}$) Monopole matrix element in fm^{2}.
${ }^{\text {d }}$) (83KU14).
${ }^{e}$) An unresolved complex of M1 strength has a centroid at $E_{\mathrm{x}} \sim 17.7 \mathrm{MeV}$: the total $\Gamma_{\gamma_{0}}$ is $7.4 \pm 1.9 \mathrm{eV}(83 \mathrm{KU14})$.
f) (87HY01).
g) See also (86AJ04).
$\left.{ }^{h}\right)$ The total cross section $\left(E_{\mathrm{x}}=18.7-19.4 \mathrm{MeV}\right)$ is $12 \% \mathrm{M} 1$ and $88 \% \mathrm{M} 2$, leading to $B(\mathrm{M} 1) \uparrow=0.13 \pm 0.03 \mu_{\mathrm{N}}^{2}$ and $B(\mathrm{M} 2) \uparrow=341 \pm 51 \mu_{\mathrm{N}}^{2} \cdot \mathrm{fm}^{2}:$ see (86AJ04).

Table 16.27
Excited states of ${ }^{16} \mathrm{O}$ from ${ }^{16} \mathrm{O}\left(\mathrm{p}, \mathrm{p}^{\prime}\right),\left(\mathrm{d}, \mathrm{d}^{\prime}\right),\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}^{\prime}\right)$ and $\left.\left(\alpha, \alpha^{\prime}\right){ }^{\mathrm{a}}\right)$

No.	$\begin{aligned} & \left.E_{\mathrm{x}}^{\mathrm{b}}\right) \\ & (\mathrm{MeV} \pm \mathrm{keV}) \end{aligned}$	$L^{\text {b }}$)	$\begin{aligned} & \left.E_{\mathrm{x}}^{\mathrm{c}}\right) \\ & (\mathrm{MeV}) \end{aligned}$	$\begin{aligned} & \left.E_{\mathrm{x}}^{\mathrm{d}}\right) \\ & (\mathrm{MeV} \pm \mathrm{keV}) \end{aligned}$	$\begin{aligned} & \left.E_{\mathrm{x}}{ }^{\mathrm{e}}\right) \\ & (\mathrm{MeV} \pm \mathrm{keV}) \end{aligned}$	$L^{\text {e }}$)	$\begin{gathered} \left.\Gamma^{\mathrm{b}}\right) \\ (\mathrm{keV}) \end{gathered}$	$J^{\pi} ; T^{\text {b }}$)
1			6.05					
2	$6.13{ }^{\text {f }}$)	3	6.13	$6.13{ }^{\text {i }}$)	6.13	3		$3^{-} ; 0$
3	$6.92{ }^{\text {f }}$)	2	6.92	$6.92{ }^{\text {d }}$)	6.92	2		$2^{+} ; 0^{\text {f }}$)
4	$7.12{ }^{\text {f }}$)	1	7.12		7.12	1		$1^{-} ; 0$
5	$8.87{ }^{\text {g }}$)		8.87	$8.87 \pm 30^{\text {d }}$)	8.87	$3^{\text {a }}$)		$\left.2^{-} ; 0^{\text {g}}\right)$
6	$9.84{ }^{\text {f }}$)	2	9.85	9.84 ± 30	9.85	2		$\left.2^{+} ; 0^{\text {d,f }}\right)$
7	$10.35 \pm 20^{\text {f }}$)	4	10.34	10.35 ± 30	10.35 ± 30	4		$4^{+} ; 0$
8	$10.95 \pm 30^{\text {h }}$)	1	10.95					$0^{-} ; 0$
9	$11.10 \pm 20^{\text {f }}$)	4	$11.1{ }^{\text {i }}$)	$11.09 \pm 30^{\text {i }}$)	11.10 ± 30	4		$4^{+} ; 0$
10	$11.52 \pm 20^{\text {f }}$)	2	11.52	$11.52 \pm 30^{\text {d }}$)	11.52 ± 30	2	74 ± 4	$2^{+} ; 0$
11	$12.05 \pm 20^{\text {f }}$)		12.05	12.04 ± 30	12.05 ± 30	(0)		$0^{+} ; 0^{-}$
12			12.44		12.44	1		$1^{-} ; 0$
13	$12.53 \pm 20^{\mathrm{g})}$	1	12.53		12.51 ± 30			$2^{-} ; 0^{\text {g }}$)
14	$12.80{ }^{\text {h }}$)							$0^{-} ; 1$
15	$12.97{ }^{\text {g }}$)							$2^{-} ; 1$
16	13.02 ± 20	2	$13.1{ }^{\text {i }}$)	13.11 ± 30	$13.07 \pm 20^{\text {i }}$)	2		$2^{+} ; 0$
17	13.26 ± 30	3						$3^{-} ; 1$
18			13.66					
19	13.95 ± 50	$(0+4)$		13.97 ± 30	$13.95 \pm 50^{\text {i }}$)	4		$4^{+} ; 0$
20	$14.0{ }^{\text {g,i }}$)							$\left(1^{+} ; 1\right)$
21				14.94 ± 30	14.87 ± 100	6		6^{+}
22	15.26 ± 50	(3)		15.4				
23	$15.50 \pm 30^{\text {f }}$)	3			15.50 ± 50	3	200 ± 60	$3^{-} ; 0$
24	$\left.16.22 \pm 10^{\mathrm{g}}\right)$							$1^{+} ; 1$
25	16.52 ± 50	2		16.46 ± 30	16.40 ± 100		< 100	2^{+}
26	16.93 ± 50	(3)						
27	$\left.17.14 \pm 10^{\mathrm{g}}\right)$							$1^{+} ; 1$
28	$17.25 \pm 50^{\text {f }}$)			17.19 ± 30	17.25 ± 80	(2)	160 ± 60	$1^{+} ; 0^{\text {f }}$)
29	17.79 ± 40	(3)		17.8	17.83 ± 100		150 ± 60	$4^{-} ; 0$
30	18.15 ± 50	(2)			18.0 ± 100	2	300 ± 50	$\left(2^{+}\right) ; 0$
31	18.40 ± 100	2		18.52 ± 30	18.5 ± 100	2	250 ± 50	$2^{+} ; 0$
32	18.60 ± 100				18.70 ± 100	(3)	$280 \pm 80^{\text {i }}$)	
33	$\left.18.77 \pm 10^{\mathrm{g}}\right)$							$1^{+} ; 1$

Table 16.27 (continued)
Excited states of ${ }^{16} \mathrm{O}$ from ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{p}),\left(\mathrm{d}, \mathrm{d}^{\prime}\right),\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}^{\prime}\right)$ and $\left.\left(\alpha, \alpha^{\prime}\right){ }^{\mathrm{a}}\right)$

No.	$\begin{aligned} & \left.E_{\mathrm{x}}^{\mathrm{b}}\right) \\ & (\mathrm{MeV} \pm \mathrm{keV}) \end{aligned}$	$L^{\text {b }}$)	$\begin{aligned} & \left.E_{\mathrm{x}}{ }^{\mathrm{c}}\right) \\ & (\mathrm{MeV}) \end{aligned}$	$\begin{aligned} & \left.\overline{E_{\mathrm{x}}} \mathrm{~d}\right) \\ & (\mathrm{MeV} \pm \mathrm{keV}) \end{aligned}$	$\begin{aligned} & \left.E_{\mathrm{x}} \mathrm{e}\right) \\ & (\mathrm{MeV} \pm \mathrm{keV}) \end{aligned}$	$L^{\text {e }}$)	$\begin{gathered} \left.\bar{\Gamma}{ }^{\mathrm{b}}\right) \\ (\mathrm{keV}) \end{gathered}$	$J^{\pi} ; T^{\text {b }}$)
34	18.98 ± 40	(3)		19.09 ± 30			< 100	$4^{-} ; 1$
35	19.35 ± 80	(1)						
36	$19.56 \pm 50^{\text {f }}$)				19.50 ± 100	$(2,3)$	300 ± 50	$3^{-} ; 0$
37	19.80 ± 40	3					<100	$4^{-} ; 0$
38				$20.2 \pm 200{ }^{\text {i }}$)	20.15 ± 100	2	350 ± 50	$2^{+} ; 0$
39	$20.40{ }^{\text {g,i }}$)							$2^{-} ; 1$
40	20.56 ± 80	$(1,2)$					370 ± 100	
41	$20.90{ }^{\mathrm{g}, \mathrm{i}}$)							$2^{-} ; 1$
42	21.05 ± 50	1			21.0 ± 100	2	320 ± 50	$\left(2^{+} ; 0\right)$
43				21.6 ± 200			1000 ± 300	2^{+}
44	21.80 ± 80	1			21.85 ± 100	2	400 ± 50	$\left(2^{+} ; 0\right)$
45	22.40 ± 80	$(1,2)$					420 ± 100	$1^{-} ; 1$
46					22.5 ± 100		400 ± 50	$\left(2^{+}, 3^{-}\right) ; 0$
47	23.20 ± 80	1					600 ± 200	$1^{-} ; 1$
48				23.50 ± 150	23.25 ± 100	2	400 ± 50	$2^{+} ; 0$
49					23.85 ± 100	(0)	400 ± 50	$\left(2^{+}, 0^{+}\right) ; 0$
50	24.00 ± 100	$(1,2)$					1200 ± 300	$1^{-} ; 1$
51					24.4 ± 100		400 ± 50	$\left(2^{+}, 3^{-}\right) ; 0$
52					25.15 ± 300		2800 ± 600	2^{+}
53	25.50 ± 150	(1)					1300 ± 300	$1^{-} ; 1$

${ }^{\text {a }}$) For references see Table 16.24 in (82AJ01).
$\left.{ }^{\mathrm{b}}\right)\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$.
$\left.{ }^{c}\right)\left(\mathrm{d}, \mathrm{d}^{\prime}\right)$. Energies are nominal $(\pm 100$ to $\pm 260 \mathrm{keV})$; angular distributions reported to all but last state.
$\left.{ }^{\text {d }}\right)\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}^{\prime}\right)$.
$\left.{ }^{\mathrm{e}}\right)\left(\alpha, \alpha^{\prime}\right)$
f) (84AM04): $E_{\mathrm{p}}=135 \mathrm{MeV}$.
g) (87DJ01).
$\left.{ }^{\text {h }}\right)(84 \mathrm{HO} 17) ; E_{\mathrm{p}}=65 \mathrm{MeV}$.
$\left.{ }^{i}\right)$ Unresolved states.

Table 16.28
States in ${ }^{16} \mathrm{O}$ from ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{t})$ and ${ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right)$

$\begin{aligned} & \left.E_{\mathrm{x}}^{\mathrm{a}}\right) \\ & (\mathrm{MeV} \pm \mathrm{keV}) \end{aligned}$	$J^{\pi} ; T$	${ }^{\text {a }}$)	$j^{\text {a }}$)	$C^{2} S^{\text {a }}$)	$\begin{gathered} \left.(\mathrm{d} \sigma / \mathrm{d} \Omega)_{\max }{ }^{\mathrm{a}}\right) \\ (\mu \mathrm{b} / \mathrm{sr}) \end{gathered}$	$l{ }^{\text {c }}$)	$S{ }^{\text {c }}$)
0.000	$0^{+} ; 0$	2	$\frac{5}{2}$	1.034 ± 0.084	1736 ± 21.9	2	0.88
6.045 ± 8	$0^{+} ; 0$	2	$\frac{5}{2}$	0.016 ± 0.004	17.9 ± 2.2	2	0.009
6.131 ± 3	$3^{-} ; 0$	1	$\frac{1}{2}$ $\frac{3}{2}$	$\begin{aligned} & 0.578 \pm 0.137 \\ & 0.373 \pm 0.081 \end{aligned}$	527 ± 21.9	$1^{\text {d }}$)	0.37
6.913 ± 4	$2^{+} ; 0$	(2)	($\frac{5}{2}$)	(0.030 $\pm 0.004)$	78.9 ± 11.9	$(2+0)$	0.022
7.115 ± 3	$1^{-} ; 0$	1	$\frac{3}{2}$	0.055 ± 0.006	39.2 ± 3.2	$(3+1)$	0.007
8.870 ± 3	$2^{-} ; 0$	1	$\frac{1}{2}$ $\frac{3}{2}$	$\begin{aligned} & 0.335 \pm 0.086 \\ & 0.137 \pm 0.048 \end{aligned}$	289 ± 24.0	$1{ }^{\text {d }}$)	0.26
9.841 ± 6	$2^{+} ; 0$	2	$\frac{5}{2}$	0.007 ± 0.003	12.9 ± 2.7	2	0.025
10.354 ± 3	$4^{+} ; 0$	(2)	$\left(\frac{5}{2}\right)$	(0.016 $\pm 0.004)$	19.9 ± 3.5	2	0.025
10.955 ± 9	$0^{-} ; 0$				6.7 ± 3.4	$(3+1)$	0.008
$11.08{ }^{\text {b }}$)	$3^{+} ; 0$					2	$\begin{array}{r} 0.044 \text { or } \\ 0.086 \end{array}$
11.095 ± 6	$4^{+} ; 0$				26.1 ± 5.3		
11.525 ± 9	$2^{+} ; 0$				20.0 ± 18.5		
12.528 ± 6	$2^{-} ; 0$	1	$\frac{1}{2}$ $\frac{3}{2}$	$\begin{aligned} & 0.234 \pm 0.046 \\ & 0.036 \pm 0.015 \end{aligned}$	53.5 ± 22.3		
12.782 ± 23	$0^{-} ; 1$				29.8 ± 5.0		
12.971 ± 3	$2^{-} ; 1$	1	$\frac{1}{2}$	0.396 ± 0.101	356 ± 22.2	$1{ }^{\text {d }}$)	0.38
$13.09{ }^{\text {b }}$)	$1^{-} ; 1$					1	0.1
13.148 ± 14	$3^{-} ; 0$	1	$\frac{1}{2}$ $\frac{3}{2}$	$\begin{aligned} & 0.058 \pm 0.019 \\ & 0.019 \pm 0.012 \end{aligned}$	62.1 ± 17.0		
13.256 ± 3	$3^{-} ; 1^{\text {b }}$)	1	$\frac{1}{2}$	0.562 ± 0.106	335 ± 21.9	1 ${ }^{\text {d) }}$	0.34
13.857 ± 30	$4^{+} ; 0$	(2)	$\left(\frac{5}{2}\right)$	(0.015 $\pm 0.003)$	10.3 ± 4.6		
13.979 ± 17	2^{-}	1	$\frac{3}{2}$	0.016 ± 0.004	11.9 ± 4.7		
14.313 ± 18	$4^{(-)}$				24.1 ± 9.2		
14.409 ± 11	5^{+}				7.8 ± 6.2		
15.195 ± 32	$2^{-} ; 0$	1	$\frac{3}{2}$	0.106 ± 0.030	38.4 ± 16.8	d)	
15.414 ± 6	3^{-}; 0	1	$\frac{3}{2}$	0.242 ± 0.038	76.3 ± 16.7	${ }^{\text {d }}$)	
16.808 ± 11	$3^{+} ; 1$	(2)	$\left(\frac{5}{2}\right)$	(0.015 ± 0.005)	72 ± 4.3		
17.776 ± 11	$4^{-} ; 0$	1	$\frac{3}{2}$	0.089 ± 0.045	48.3 ± 13.2	d)	$\left.(\Gamma<50 \mathrm{keV})^{\mathrm{b}}\right)$
18.027 ± 7	$3^{(-)} ; 1$	1	$\frac{3}{2}$	0.102 ± 0.023	76.1 ± 20.8		
18.483 ± 17	$1^{-} ; 1$	1	$\frac{3}{2}$	0.129 ± 0.028	94.6 ± 26.0	${ }^{\text {d }}$)	
18.978 ± 7	$4^{-} ; 1$	1	$\frac{3}{2}$	0.706 ± 0.065	502 ± 11.2	${ }^{\text {d }}$)	

Table 16.28 (continued) States in ${ }^{16} \mathrm{O}$ from ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{t})$ and ${ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right)$

$\left.E_{\mathrm{x}}{ }^{\mathrm{a}}\right)$ $(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\left.l^{\mathrm{a}}\right)$	$\left.j^{\mathrm{a}}\right)$	$\left.C^{2} S^{\mathrm{a}}\right)$	$\left.(\mathrm{d} \sigma / \mathrm{d} \Omega)_{\max }{ }^{\mathrm{a}}\right)$ $(\mu \mathrm{b} / \mathrm{sr})$	$\left.l^{\mathrm{c}}\right)$	$\left.S^{\mathrm{c}}\right)$

a) ${ }^{17} \mathrm{O}(\mathrm{d}, \mathrm{t}) ; E_{\mathrm{d}}=89 \mathrm{MeV}$ (90SA27).
${ }^{\text {b }}$) See table 16.20 (86 AJ 04).
c) ${ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right) ; E\left({ }^{3} \mathrm{He}\right)=11 \mathrm{MeV}$ (71BO02).
$\left.{ }^{\text {d }}\right){ }^{17} \mathrm{O}\left({ }^{3} \mathrm{He}, \alpha\right) ; E\left({ }^{3} \mathrm{He}\right)=33 \mathrm{MeV}$ (82KA12).

Table 16.29
${ }^{16} \mathrm{~F}$ \& ${ }^{16} \mathrm{Ne}$ - General

Reference	Description
Reviews:	
86AN07	Predicted masses \& excitation energies in higher isospin multiplets for $9 \leq A \leq 60$
86BA1C	Pion-nucleus double charge exchange: review of LAMPF workshop
87GI1C	Pion-nucleus interactions
88CO15	Thomas-Ehrman shift; charge-symmetric mass relationship calcs. for proton-rich nuclei
Other Articles:	
86CH39	$\pi \Delta$ interaction mechanism comp. with double charge exchange exp. data on $N=Z$ nuclei
86GI13	Nuclear-structure aspects of nonanalog pion double charge exchange
87KA39	Delta-hole approach to pion double charge exchange
87LE1B	Strong interaction studies via meson-nucleus reactions
88GO21	Neutron-excessive nuclei \& two-proton radioactivity
88MA27	Non-analog dbl. chrg. exchng. transition: ${ }^{16} \mathrm{O}\left(\pi^{+}, \pi^{-}\right){ }^{16} \mathrm{Ne}$ (g.s.) \& ${ }^{12} \mathrm{C}\left(\pi^{+}, \pi^{-}\right){ }^{12} \mathrm{O}$ (g.s.)
89WI1E	Hot proton-proton chains in low-metallicity objects
90 LO 11	Self-consistent calculations of light nuclei: binding energies \& radii
90PO04	Determining masses of light nuclides \& quantum characteristics of corresponding nucl.

Table 16.30
Energy levels of ${ }^{16} \mathrm{~F}^{\mathrm{a}}$)

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
0	$0^{-} ; 1$	$40 \pm 20^{\text {b }}$)	p	1-7
0.193 ± 6	1^{-}	$<40^{\text {b }}$)	p	1, 4, 5, 7
0.424 ± 5	2^{-}	40 ± 30	p	1, 4, 5, 7
0.721 ± 4	3^{-}	<15	p	1, 4, 5, 7
3.758 ± 6	1^{+}	<40	p	1, 4, 5, 7
3.870 ± 6	2^{+}	<20	p	1, 4, 5, 7
4.372 ± 6	3^{+}	50 ± 20	p	1, 4, 5, 7
4.654 ± 6	1^{+}	60 ± 20	p	1, 4, 5, 7
(4.71 ± 20)				7
4.977 ± 8	$\left(2^{+}\right)$	60 ± 40	p	1, 5, 7
5.272 ± 8	$\left(1^{-}\right)$		p	1, 4, 5
5.404 ± 10	4		p	1,5,7
5.449 ± 14			p	1
5.524 ± 9	$\pi=+$		p	1, 5, 7
(5.57 ± 20)			p	1
5.856 ± 10	2^{-}		p	1, 4, 5
(6.05 $\pm 20)$				7
6.224 ± 14				1, 4
6.372 ± 9	4^{-}			1, 4, 5
$\left.\begin{array}{l} 6.559 \pm 10 \\ 6.679 \pm 8 \end{array}\right\}$	$\left(3^{-}+1^{-}\right)$	≤ 45	p	$\begin{aligned} & 4 \\ & 1,5,7 \end{aligned}$
(6.93 $\pm 20)$				7
7.110 ± 20				1
7.50 ± 30	2^{-}	950 ± 100	p	4, 5
7.90 ± 15		<100		1, 4, 5
9.50 ± 30	$1^{-}\left(+2^{-}\right)$	1050 ± 100	p	4, 5
9.60 ± 20		250 ± 50		5
11.50 ± 50	$1^{-}\left(+2^{-}\right)$	1900 ± 500	p	4, 5

${ }^{\text {a }}$) See Table 16.24 in (86AJ04).
$\left.{ }^{\text {b }}\right)(84 \mathrm{ST} 10)$ report $\Gamma_{\mathrm{c} . \mathrm{m} .} \sim 25$ and $\sim 100 \mathrm{keV}$ for ${ }^{16} \mathrm{~F}^{*}(0,0.19)$.

Table 16.31
${ }^{16} \mathrm{~F}$ levels from ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{n}\right),{ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{n}),{ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$ and $\left.{ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right){ }^{\text {a }}\right)$

$\begin{gathered} \left.{ }^{16} \mathrm{~F}^{*}{ }^{\mathrm{b}}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$L^{\text {b }}$)	$\begin{gathered} \left.{ }^{16} \mathrm{~F}^{*}{ }^{\mathrm{c}}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{\pi}{ }^{\text {d }}$)	$\begin{gathered} \left.{ }^{16} \mathrm{~F}^{*}{ }^{\mathrm{e}}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\left.\Delta l^{\mathrm{f}}\right)$	$\begin{gathered} \left.{ }^{16} \mathrm{~F}^{*} \mathrm{~g}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} \left.{ }^{16} \mathrm{~F}^{*} \mathrm{~h}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} \left.\Gamma_{\text {c.m. }}{ }^{\mathrm{i}}\right) \\ (\mathrm{keV}) \end{gathered}$	$J^{\pi}{ }^{\text {j }}$)
0	1	0	$\left(1^{-}\right)$	0		0	0	40 ± 20	0^{-}
0.192 ± 15	1	0.190 ± 20	$\left(0^{-}\right)$	0.197 ± 12		0.19 ± 20	0.192 ± 10	<40	1^{-}
0.425 ± 15	3	0.425 ± 10	(≥ 2)	0.424 ± 5	1	0.425 ± 20	0.424	40 ± 30	2^{-}
0.722 ± 10	(3)	0.725 ± 10	(≥ 2)	0.720 ± 6	3	0.72 ± 20	0.722 ± 10	<15	3^{-}
3.751 ± 10	0	$3.775 \pm 10^{\text {k }}$)	(1)	3.76	0	3.75 ± 20	$3.740 \pm 15^{\mathrm{n}}$)	<40	1^{+}
3.861 ± 10	2	$3.880 \pm 10^{\text {k }}$)	≥ 1			3.86 ± 20	$3.873 \pm 15^{\mathrm{n}}$)	<20	2^{+}
4.370 ± 10		$\left.4.375 \pm 10^{\mathrm{k}}\right)$	(≥ 2)	4.37	2	4.37 ± 20	$4.372{ }^{\text {n }}$)	50 ± 20	3^{+}
4.646 ± 10	0	$\left.4.661 \pm 10^{\mathrm{k}}\right)$	≥ 1	4.65	0	4.66 ± 20	$4.652 \pm 10^{\mathrm{n}}$)	60 ± 20	1^{+}
						$\left.4.71 \pm 20^{\mathrm{m}}\right)$			
4.973 ± 10	2	$4.97 \pm 20^{\text {1 }}$)	≥ 2			4.97 ± 20	5.007 ± 20	60 ± 40	$\left(2^{+}\right)$
5.264 ± 20		5.27 ± 20^{1})		5.27	1		$5.274 \pm 10^{\mathrm{n}}$)		$\left(1^{-}\right)$
5.390 ± 20	2	5.40 ± 20^{1})				5.39 ± 20	5.414 ± 15		4
5.448 ± 20		$\left.5.45 \pm 20^{1}\right)$							
5.528 ± 20	2	$\left.5.52 \pm 20^{1}\right)$				5.53 ± 20	5.521 ± 15		$\pi=+$
		$\left.(5.57 \pm 20)^{1}\right)$							
5.840 ± 40				5.86	3		$5.858 \pm 10^{\text {n }}$)		2^{-}
						$6.05 \pm 20{ }^{\text {m }}$)			
6.230 ± 50				6.22	0		6.224 ± 15		
6.371 ± 20				6.37	3		6.372 ± 10		4^{-}
							$6.559 \pm 10^{\mathrm{n}}$)		
6.678 ± 10		$6.68 \pm 20^{\text {l }}$)	≥ 1			6.68 ± 20		≤ 45	$\left(3^{-}+1^{-}\right)$
						$\left.6.93 \pm 20^{\mathrm{m}}\right)$			

Table 16.31
${ }^{16} \mathrm{~F}$ levels from ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{n}\right),{ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{n}),{ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$ and $\left.{ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right){ }^{\text {a }}\right)$

$\begin{gathered} \left.{ }^{16} \mathrm{~F}^{*}{ }^{\mathrm{b}}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$L^{\text {b }}$)	$\begin{gathered} \left.{ }^{16} \mathrm{~F}^{*}{ }^{\mathrm{c}}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{\pi}{ }^{\text {d }}$)	$\begin{gathered} \left.{ }^{16} \mathrm{~F}^{*}{ }^{\mathrm{e}}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\Delta l^{\text {f }}$)	$\begin{gathered} \left.{ }^{16} \mathrm{~F}^{*} \mathrm{~g}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} \left.{ }^{16} \mathrm{~F}^{*}{ }^{\mathrm{h}}\right) \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} \left.\Gamma_{\text {c.m. }}{ }^{\mathrm{i}}\right) \\ (\mathrm{keV}) \end{gathered}$	$J^{\pi}{ }^{\text {j }}$)
7.110 ± 20									
				~ 7.5	1		$\left.7.50 \pm 30^{\text {n,o }}\right)$	950 ± 100	2^{-}
7.730 ± 40							7.90 ± 15	<100	
				~ 9.5	1		$\left.9.50 \pm 30^{\mathrm{n}, \mathrm{o}}\right)$	1050 ± 100	$1^{-}+\left(2^{-}\right)$
							9.60 ± 20	250 ± 50	
				~ 11.5	1		$\left.11.50 \pm 50^{\text {n,o }}\right)$	1900 ± 500	$1^{-}+\left(2^{-}\right)$

${ }^{\text {a }}$) See also Tables 16.33 in (71AJ02) and 16.26 in (82AJ01) for earlier work and for references.
b) ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{16} \mathrm{~F}$.
c) ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He}, \mathrm{np}\right){ }^{15} \mathrm{O}$.
${ }^{\text {d }}$) From angular correlation studies.
${ }^{e}$) ${ }^{16} \mathrm{O}(\mathrm{p}, \mathrm{n})^{16} \mathrm{~F}$. E_{x} shown without uncertainties are from Table 16.30.
${ }^{\text {f }}$) (82FA06; $E_{\mathrm{p}}=99.1$ and 135.2 MeV$)$.
g) ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$ and ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right){ }^{16} \mathrm{~F}$.
$\left.{ }^{\text {h }}\right){ }^{16} \mathrm{O}\left({ }^{3} \mathrm{He}, \mathrm{t}\right):\left(84 \mathrm{ST} 10 ; E\left({ }^{3} \mathrm{He}\right)=81 \mathrm{MeV}\right)$. See (86AJ04).
${ }^{\text {i }}$) From (a) and (84ST10, 85HA01).
${ }^{\text {j }}$) From (a) and (84ST10).
${ }^{k}$) See also (85HA01).
$\left.{ }^{1}\right)(85 \mathrm{HA} 01)$.
${ }^{\text {m }}$) Observed only in ${ }^{19} \mathrm{~F}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right)$.
${ }^{\mathrm{n}}$) Decays to ${ }^{15} \mathrm{O}_{\text {g.s. }}$ by proton emission (84ST10).
${ }^{\circ}$) Decays to ${ }^{15} \mathrm{O}^{*}(6.18)$ (84ST10).

Table 16.32
Energy levels of ${ }^{16} \mathrm{Ne}$

E_{x} $(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	$\Gamma_{\text {c.m. }}$ (keV)	Decay	Reactions
0	$0^{+} ; 2$	122 ± 37	p	1,2
1.69 ± 0.07	$\left(2^{+}\right) ; 2$		(p)	2

References

(Closed 31 December 1992)
References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author's name and then by two additional characters. Most of the references appear in National Nuclear Data Center files and have NNDC key numbers ending in numeric characters. Otherwise, TUNL key numbers were assigned with the last two characters of the form $1 \mathrm{~A}, 1 \mathrm{~B}$, etc.

59AJ76	AJZENBERG-SELOVE AND LAURITSEN, NUCL. PHYS. 11 (1959) 1
60WI1A	WILKINSON, NUCL. SPECTROSCOPY B, ED. F. AJZENBERG-SELOVE (ACADEMIC
	PRESS, NY, 1960)
66KE16	KELSON AND GARVEY, PHYS. LETT. 23 (1966) 689
66LA04	LAURITSEN AND AJZENBERG-SELOVE, NUCL. PHYS. 78 (1966) 1
68AJ02	AJZENBERG-SELOVE AND LAURITSEN, NUCL. PHYS. A114 (1968) 1
69AD02	ADELBERGER, MCDONALD AND BARNES, NUCL. PHYS. A124 (1969) 49
70AD1A	ADELBERGER, NERO AND MCDONALD, NUCL. PHYS. A143 (1970) 97
70AH02	AHRENS ET AL, PHYS. LETT. B31 (1970) 570
70AJ04	AJZENBERG-SELOVE, NUCL. PHYS. A152 (1970) 1
70DU04	DURAY AND BROWNE, PHYS. REV. C1 (1970) 776
71AJ02	AJZENBERG-SELOVE, NUCL. PHYS. A166 (1971) 1
71BO02	BOHNE ET AL, NUCL. PHYS. A160 (1971) 257
71HA05	HARDY ET AL, PHYS. REV. C3 (1971) 700
71 TO 08	TOWNER, WARBURTON AND GARVEY, ANN. PHYS. 66 (1971) 674
72AJ02	AJZENBERG-SELOVE, NUCL. PHYS. A190 (1972) 1
73AD1A	ADELBERGER, IN PROC. OF THE INT. CONG. ON NUCL. PHYS., FLORENCE, AUGUST-SEPT. 1983, VOL. 2, EDITORS: P. BLASI AND R.A. RICCI; TIPOGRAFIA COMPOSITORI BOLOGNA (1983) 499
74AJ01	AJZENBERG-SELOVE AND LAURITSEN, NUCL. PHYS. A227 (1974) 1
74BO05	BOWMAN ET AL, PHYS. REV. C9 (1974) 836
74MI21	MINAMISONO ET AL, NUCL. PHYS. A236 (1974) 416
74TH01	THIBAULT AND KLAPISCH, PHYS. REV. C9 (1974) 793
75AJ02	AJZENBERG-SELOVE, NUCL. PHYS. A248 (1975) 1
75HA06	HARAKEH, PAUL AND SNOVER, PHYS. REV. C11 (1975) 998
75 HA 07	HARAKEH, PAUL AND GORODETZKY, PHYS. REV. C11 (1975) 1008
76AJ04	AJZENBERG-SELOVE, NUCL. PHYS. A268 (1976) 1
76AL02	ALBURGER AND WILKINSON, PHYS. REV. C13 (1976) 835
76HI09	HINTERBERGER ET AL, NUCL. PHYS. A263 (1976) 460
76MC11	MC DONALD, ALEXANDER AND HAUSSER, NUCL. PHYS. A273 (1976) 464
77AJ02	AJZENBERG-SELOVE, NUCL. PHYS. A281 (1977) 1
77CH16	CHEW, NUCL. PHYS. A283 (1977) 445
77CH19	CHEW ET AL, NUCL. PHYS. A286 (1977) 451
77MA10	MAIRLE ET AL, NUCL. PHYS. A280 (1977) 97
77MA1B	MARTZ ET AL, INT. CONF. NUCL. STRUC., TOKYO (1977) 177
77MC05	MC DONALD ET AL, NUCL. PHYS. A281 (1977) 325
77NO06	NORUM, BERGSTROM AND CAPLAN, NUCL. PHYS. A289 (1977) 275
78AJ03	AJZENBERG-SELOVE, NUCL. PHYS. A300 (1978) 1
78AR15	ARTEMOV ET AL, YAD. FIZ. 28 (1978) 288
77BA59	BALAMUTH ET AL, NUCL. PHYS. A290 (1977) 65
78CH09	CHEW ET AL, NUCL. PHYS. A298 (1978) 19
78CH19	CHEW AND LOWE, NUCL. PHYS. A306 (1978) 125
78CL08	CLARK, KEMPER AND FOX, PHYS. REV. C18 (1978) 1262
78FO27	FORTUNE, MIDDLETON AND BILANIUK, PHYS. REV. C18 (1978) 1920

78GU05
78GU07
78KE06
78KI01
78KU1A
78LEZA
780C01
79AJ01
79BR04
79CL10
79CU1A
79EN1A
79FO14
79GU06
79KO26
79MO04
79SA29
79SC07
79VE02
80AJ01
80BU15
80CU08
80HO13
80HO18
80JO1A JOHNSON ET AL, NUCL. CROSS SECTIONS FOR TECH. (NBS) (1980) 807
80JU01 JURY ET AL, PHYS. REV. C21 (1980) 503
80LI05 LINCK, KRAUS AND BLATT, PHYS. REV. C21 (1980) 791
81AJ01 AJZENBERG-SELOVE, NUCL. PHYS. A360 (1981) 1
81CU11 CUNSOLO ET AL, PHYS. REV. C24 (1981) 2127
81HI01 HINTERBERGER ET AL, NUCL. PHYS. A352 (1981) 93
81JA1A JARCZYK ET AL, NUCL. PHYS. A369 (1981) 191
81LI23 LISOWSKI ET AL, PHYS. REV. C24 (1981) 1852
81MA1A MAIRLE ET AL, NUCL. PHYS. A393 (1981) 413
81MUZQ MUGHABGHAB, DIVADEENAM AND HOLDEN, NEUTRON CROSS SECTIONS 1A (1981)

81NA14 NARAYANASWAMY ET AL, PHYS. REV. C24 (1981) 2727
81OV02 OVERWAY ET AL, NUCL. PHYS. A366 (1981) 299
81SA07 SANDORFI ET AL, PHYS. REV. LETT. 46 (1981) 884
81 TO16 TOWNER AND KAHANA, NUCL. PHYS. A372 (1981) 331
82AB04 ABDEL-WAHAB ET AL, CAN. J. PHYS. 60 (1982) 1595
82AJ01 AJZENBERG-SELOVE, NUCL. PHYS. A375 (1982) 1
82AR20 ARTEMOV ET AL, SOV. J. NUCL. PHYS. 36 (1982) 779
82AV1A AVERYANOV, GOLUBEV AND SADOVI, SOV. J. NUCL. PHYS. 35 (1982) 484
82BA03 BANGERT ET AL, NUCL. PHYS. A376 (1982) 15
82 CH 07 CHAN ET AL, PHYS. REV. C25 (1982) 1410
82CUZZ CURTIN, WILDENTHAL AND BROWN, BULL. AM. PHYS. SOC. 27 (1982) 696
82FI10 FIFIELD ET AL, NUCL. PHYS. A385 (1982) 505
82HA1A HAIGHT, PROC. 4TH INT. SYMP. GRENOBLE 1981 (IOP 1982) 510
82HE07 HEUSCH ET AL, PHYS. REV. C26 (1982) 542
82HI01 HICKS, PHYS. REV. C25 (1982) 695
82KA12 KARBAN ET AL, PHYS. LETT. B112 (1982) 433
82KA30 KARADZHEV ET AL, YAD. FIZ. 36 (1982) 308
82KU14 KUEHNER ET AL, PHYS. LETT. B115 (1982) 437
82MA11 MADEY ET AL, PHYS. REV. C25 (1982) 1715

```
82NE04
82OL01
82RE06
82REZZ
82VE04
82VE13
82WE16
83AJ01
83ANZQ
83AR12
83BR11
83BY03
83CU02
83CU04
83DA22
83DE1A
83GA03
83GA18
83IN02
83KE06 KEMPER ET AL, NUCL. PHYS. A405 (1983) 348
83KO1A KONDRATIEV ET AL, IN MOSCOW (1983) }32
83KU14 KUCHLER ET AL, NUCL. PHYS. A406 (1983) }47
83LE25 LEAVITT ET AL, NUCL. PHYS. A410 (1983) 93
83PUZZ PUGH ET AL, BULL. AM. PHYS. SOC. 28 (1983) }69
83RA1B RANGACHARYULU ET AL, NUCL. PHYS. A406 (1983) }49
83RA29 RANGACHARYULU ET AL, CAN. J. PHYS. 61 (1983) }148
83SCZR SCHALLER ET AL, BULL. AM. PHYS. SOC. 28 (1983) }99
83SN03 SNOVER ET AL, PHYS. REV. C2 (1983) }183
83TRZZ TRAIL ET AL, BULL. AM. PHYS. SOC. 28 (1983) }65
83WA29 WATSON ET AL, NUCL. INSTRUM. METHODS PHYS. RES. 215 (1983) }41
83WO01 WOODWARD, TRIBBLE AND TANNER, PHYS. REV. C27 (1983) }2
84AJ01 AJZENBERG-SELOVE, NUCL. PHYS. A413 (1984) 1
84AM04 AMOS ET AL, NUCL. PHYS. A413 (1984) }25
84AS03 ASHER ET AL, J. PHYS. G10 (1984) 1079
84BA24 BARKER, AUST. J. PHYS. }37\mathrm{ (1984) }1
84BI03 BILLOWES ET AL, NUCL. PHYS. A413 (1984) 503
84BL17 BLILIE ET AL, PHYS. REV. C30 (1984) }198
84BR03 BRADY ET AL, J. PHYS. G10 (1984) 363
84CA39 CARDELLA ET AL, LETT. NUOVO CIM. }41\mathrm{ (1984) }42
84DA18 DARDEN ET AL, NUCL. PHYS. A429 (1984) }21
84DE1A DE BIEVRE ET AL, J. PHYS. CHEM. REF. DATA 13 (1984) }80
84GA1A GARVEY, PROC. INTL. SYMP. AT OSAKA, WORLD SCIENTIFIC (1984)}19
84HO17 HOSONO ET AL, PHYS. REV. C30 (1984) 746
84NE1A NEMETS, RUDCHIK AND CHUVILSKI, PROC. 34TH MTG. NUCL. SPECTROSCOPY
STRUC. AT. NUCL., ALMA ATA, USSR, NAUKA (1984)}33
84ST10 STERRENBURG ET AL, NUCL. PHYS. A420 (1984) }25
84VA06 VAN HEES AND GLAUDEMANS, Z. PHYS. A315 (1984) 223
84WA07 WARBURTON, ALBURGER AND MILLENER, PHYS. REV. C29 (1984) 2281
85AD1A ADELBERGER AND HAXTON, ANN. REV. NUCL. PART. SCI. }35\mathrm{ (1985)501
85AJ01 AJZENBERG-SELOVE, NUCL. PHYS. A449 (1985) 1
85AN28 ANTONY ET AL, AT. DATA NUCL. DATA TABLES 33 (1985) 447
85BE1A BECKERMAN, PHYS. REP. 129 (1985) 145
85BE31 HEIDELBERG-SACLAY COLLABORATION, PHYS. LETT. B158 (1985) 19
85BLZZ BLAND ET AL, BULL. AM. PHYS. SOC. 30 (1985) 1163
```

85BO1A
85CA41
85CU1A
85FI08
85GO1A GONCHAROVA, KISSENER AND ERAMZHYAN, SOV. J. PART. AND NUCL. 16 (1985) 337
85GR1A
85HA01
85HE08
85HY1A
85JA17
85JU02
85KH10
85KI1A
85KR1A
85LA03
85MO10
85PO10 POPPELIER, WOOD AND GLAUDEMANS, PHYS. LETT. B157 (1985) 120
85PU1A PUGH, MIT, PH.D. THESIS (1985)
85SH1A SHITIKOVA, SOV. J. PART. AND NUCL. 16 (1985) 364
85TA1A TAAM, ANN. REV. NUCL. PART. SCI. 35 (1985) 1
85VA1A VAN DER WERF, HARAKEH AND STERRENBURG, KVI-582 (1985)
85VO12 VON REDEN ET AL, PHYS. REV. C32 (1985) 1465
85WA02 WAPSTRA AND AUDI, NUCL. PHYS. A432 (1985) 1
85WA24 WATSON ET AL, PHYS. REV. LETT. 55 (1985) 1369
86AB06
86AJ01
86AJ04
86AL22
86AL25
86ALZN
86AN07
86AN08
86AN18
86AN1E
86AN1H
86AN30
86ANZM ANAGNOSTATOS, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) C170
86AR1A ARTEMOV ET AL, PROC. 36TH MTG
KHARKOV, USSR, NAUKA (1986) 376
86AV1A AVDEICHIKOV ET AL, SOV. J. NUCL. PHYS. 44 (1986) 282
86AY01 AYOUB, J. PHYS. G12 (1986) 859
86BA13 BAYMAN ET AL, NUCL. PHYS. A452 (1986) 513
86BA1C BAER AND MILLER, COMMENTS NUCL. PART. PHYS. 15 (1986) 269
86BA1D BARRETTE, J. PHYSIQUE 47 (1986) C4
86BA1E BAUR AND BERTULANI, PHYS. REV. C34 (1986) 1654
86BA1H BANDO, CZECH. J. PHYS. 36 (1986) 915
86BA1M BABA ET AL, NUCL. DATA FOR BASIC \& APPLIED SCIENCE, EDITED BY P.G. YOUNG, PUBL. GORDON \& BREACH (1986) 223
86BA1N BAUHOFF, AT. DATA NUCL. DATA TABLES 35 (1986) 429
86BA50 BAUR, BERTULANI AND REBEL, NUCL. PHYS. A458 (1986) 188
86BA69 BAYE, NUCL. PHYS. A460 (1986) 581
86BA78 BANG ET AL, PHYS. SCR. 34 (1986) 541
86BA80 BARBADORO ET AL, NUOVO CIM. A95 (1986) 197

86BE1F
86BE22
86BE23
86BE35
86BE42
86BI1A
86BL04
86BL08
86BO1A
86BO1B
86BO1C
86BR11
86BR23
86BR25
86BR26
86BU02
86CA19
86CA24
86CA27
86CE04
86CH1I
86CH1J
86CH20
86CH27
86CH38
86CH39
86 CH 41
86CH44
86CL03
86CO15
86CO1B COHEN, PRICE AND WALKER, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) D5

86CO28
86CU01
86CU02
86DE11
86DE15
86DE1E
86DE33
86DE40
86DI07
86DO06
86DO1B
86DR03
86DR11
86DR1B DRUMM ET AL, PROC. 11TH AINSE NUCL. PHYS. CONF. AT MELBOURNE (1986)
86DU07
86DU10
86DU15
86ED03
86EK1A EKUNI ET AL, REP. JOINT SEMINAR ON HEAVY-ION NUCL. PHYS. AND NUCL. CHEM., JAERI (1986) 48

86ESZV
86FA1A
86FI1A
86FI1B
86FR04
86FR10
86FR20
86FU1B
86FU1C

86FUZV
86GA10
86GA13
86GA14
86GA1H
86GA1I
86GA24
86GA31
86GI13
86GI15
86GL1A
86GM02
86GO16
86GU05
86GU1C
86HA13
86HA1B
86 HA 1 E
86HA1F
86HA26
86НА30
86HA39
86HE1A
86HE26
86HI07
86HO18
86HO33
86HU1A
86IK03
86IS04
86IS09

86JE1A
86KA1A
86KA1B

86KI05
86KI10
86KI1C
86KI1D
86KL06
86KO1E

86KE15 KENNETT, PRESTWICH AND TSAI, NUCL. INSTRUM. METHODS PHYS. RES. A247 1986) 420

86KH1A KHUBEIS, BULL. AM. PHYS. SOC. 31 (1986) 1285
ESWARAN ET AL, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) 271
FAESSLER ET AL, J. PHYSIQUE 47 (1986) C4
FILIMONOV, CZECH. J. PHYS. 36 (1986) 431
FILIPPONE, ANN. REV. NUCL. PART. SCI. 36 (1986) 717
FREEMAN ET AL, PHYS. REV. C33 (1986) 1275
FRIEDMAN AND LICHTENSTADT, NUCL. PHYS. A455 (1986) 573
FRIEDMAN, KALBERMANN AND BATTY, PHYS. REV. C34 (1986) 2244
FURNSTAHL, AIP CONF. PROC. 142 (1986) 376
FUJITA ET AL, REP. JOINT SEMINAR ON HEAVY-ION NUCL. PHYS. AND NUCL.
CHEM. JAERI (1986) 63
FUJITA ET AL, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) 317
GAUL AND BICKEL, PHYS. REV. C34 (1986) 326
GAZIS ET AL, PHYS. REV. C34 (1986) 872
GAL AND KLIEB, PHYS. REV. C34 (1986) 956
GAL, AIP CONF. PROC. 150 (1986) 127
GAARDE, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) 173
GAY, DENNIS AND FLETCHER, PHYS. REV. C34 (1986) 2144
GAREEV ET AL, IZV. AKAD. NAUK SSSR SER. FIZ. 50 (1986) 865
GILMAN ET AL, PHYS. REV. C34 (1986) 1895
GILAD ET AL, PHYS. REV. LETT. 57 (1986) 2637
GLAUDEMANS, AIP CONF. PROC. 142 (1986) 316
GMITRO AND OVCHINNIKOVA, CZECH. J. PHYS. 36 (1986) 390
CONCHAR ET AL, SOV. J. NUCL. PHYS. 43 (1986) 907
GULKAROV AND VAKIL, SOV. J. NUCL. PHYS. 43 (1986) 515
GUPTA, MALIK AND SULTANA, IN HEIDELBERG (1986) 55
HAIDER AND MALIK, J. PHYS. G12 (1986) 537
HARVEY, J. PHYSIQUE 47 (1986) C4-29
HARNEY, RICHTER AND WEIDENMULLER, REV. MOD. PHYS. 58 (1986) 607
HAAS ET AL, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) C184
HAUSMANN AND WEISE, Z. PHYS. A324 (1986) 355
HARAKEH ET AL, PHYS. LETT. B176 (1986) 297
HALDERSON, NING AND PHILPOTT, NUCL. PHYS. A458 (1986) 605
HE ET AL, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) C51
HEFTER AND MITROPOLSKY, NUOVO CIM. A95 (1986) 63
HINO, J. PHYS. G12 (1986) L255
HODGSON, CAN. J. PHYS. 64 (1986) 653
HORIUCHI, WADA AND YABANA, PROG. THEOR. PHYS. 76 (1986) 837
HUBERT ET AL, J. PHYSIQUE 47 (1986) C4-229
IKEZOE ET AL, NUCL. PHYS. A456 (1986) 298
ISERI AND KAWAI, PHYS. REV. C34 (1986) 38
ISHKHANOV, KAPITONOV AND MOKEEV, IZV. AKAD. NAUK SSSR SER. FIZ. 50 (1986) 1974

JEAN ET AL, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) C179
KAWAI, KAMIMURA AND TAKESAKO, PROG. THEOR. PHYS. SUPPL. 89 (1986) 118
KAMIMURA ET AL, PROG. THEOR. PHYS. SUPPL. 89 (1986) 1

KIRCHBACH, CZECH. J. PHYS. 36 (1986) 372
KIM, PHYS. LETT. B174 (1986) 233
KIM, PHYS. REV. LETT. 57 (1986) 2508
KISHIMOTO, AIP CONF. PROC. 150 (1986) 921
KLEINWACHTER AND ROTTER, J. PHYS. G12 (1986) 821
KOCH, AIP CONF. PROC. 150 (1986) 490

86KO22
86KU11
86KU15
86KY1A
86KY1B
86LA15
86LA1C
86LE16
86LE1A
86LE22
86LI13
86LI1B
86LI1C
86LU1A
86MA13
86MA16 MARTOFF ET AL, CZECH. J. PHYS. 36 (1986) 378
86MA19 MATEJA ET AL, PHYS. REV. C33 (1986) 1649
86MA1C MAJLING ET AL, NUCL. PHYS. A450 (1986) 189C
86MA1E MATTEUCCI, ASTROPHYS. J. 305 (1986) L81
86MA1J MAJLING ET AL, CZECH. J. PHYS. 36 (1986) 446
86MA1O MACDONALD ET AL, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) C214
86MA32 MATSUOKA ET AL, NUCL. PHYS. A455 (1986) 413
86MA35 MAHAUX, NGO AND SATCHLER, NUCL. PHYS. A456 (1986) 134
86MA46 MAHALANABIS, NUCL. PHYS. A457 (1986) 477
86MA48 MANLEY ET AL, PHYS. REV. C34 (1986) 1214
86MAZE MAVROMATIS, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) 191
86MC10 MC DONALD ET AL, NUCL. PHYS. A456 (1986) 577
86MC13 MCNEIL ET AL, PHYS. REV. C34 (1986) 746
86ME06 MERMAZ ET AL, NUCL. PHYS. A456 (1986) 186
86ME1A MELENEVSKII ET AL, PROC. 36TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL., KHARKOV, USSR, NAUKA (1986) 535
86MEZX MEIRAV ET AL, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) A2
86MI22
86MI24 MIKULAS ET AL, NUOVO CIM. A93 (1986) 135
86MO1A MOTOBA, CZECH. J. PHYS. 36 (1986) 435
86MO27 MOTOBAYASHI ET AL, PHYS. REV. C34 (1986) 2365
86MU1A MUSKET, BULL. AM. PHYS. SOC. 31 (1986) 1294
86NA14 NAVARRO AND KRIVINE, NUCL. PHYS. A457 (1986) 731
86NA1B NAMBOODIRI ET AL, J. PHYSIQUE 47 (1986) C4-101
86NU01 NURZYNSKI ET AL, J. PHYS. G12 (1986) 383
86NU1A NURZYNSKI ET AL, PROC. 11TH AINSE NUCL. PHYS. CONF. AT MELBOURNE (1986) 26

86OR03 ORLANDINI, TRAINI AND ERICSON, PHYS. LETT. 179B (1986) 201
86OR1A O'REILLY AND THOMPSON, 11TH AINSE NUCL. PHYS. CONF. IN MELBOURNE (1986) 56

86OR1C ORYU, FEW-BODY SYST. SUPPL 1 (1986) 198
86OS03 OSET AND VICENTE-VACAS, NUCL. PHYS. A454 (1986) 637
86OS08 OSTROUMOV, LOSHCHAKOV AND VDOVIN, IZV. AKAD. NAUK SSSR SER. FIZ. 50 (1986) 916

86OU01 OUICHAOUI ET AL, NUOVO CIM. A94 (1986) 133
86PA10 PAPADOPOULOS ET AL, PHYS. REV. C34 (1986) 196
86PA23 PASSOJA, PHYS. SCR. 34 (1986) 634
86PE13 PEARCE ET AL, J. PHYS. G12 (1986) 979
86PE1E PETROVICH, CARR AND MC MANUS, ANN. REV. NUCL. PART. SCI. 36 (1986) 29

86PE1G
86PE22
86PL02
86PO06
86PO14
86PO1D

86QU1A
86RAZI
86RO1C
86RO1F

86RO23
86RO26
86RYZZ
86SA1D
86SA24
86SA25
86SA30
86SC28
86SC29
86SCZX
86SH10
86SH1F
86SH25
86SHZY
86SI11
86SM10
86SM1A
86SN1B
86SO10
86ST13
86ST1A
86SU06
86SU13
86SU15
86SU16
86SU1G
86TH01
86 TH 1 A
86 TK 01
86 TO 13
86 TO 14
86TO16
86TO1A
86TO1D
86TOZQ
86TR1C
86UM02
86VA18
86VA23

PETRASCU ET AL, STUD. CERCET. FIZ. 38 (1986) 825
PERRY, PHYS. LETT. B182 (1986) 269
PLANETA ET AL, PHYS. REV. C34 (1986) 512
POENARU ET AL, AT. DATA NUCL. DATA TABLES 34 (1986) 423
POTOKAR AND RAMSAK, PHYS. REV. C34 (1986) 2338
POYARKOV AND SIZOV, PROC. 36TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL., KHARKOV, USSR, NAUKA (1986) 275
QIU, ZHANG AND HUANG, SCI. SIN. A29 (1986) 1283
RAE, KEELING AND ALLCOCK, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) 227

RONDON ET AL, NUCL. DATA FOR BASIC \& APPLIED SCIENCE, EDITED BY P.G. YOUNG, PUBL. GORDON \& BREACH (1986) 763
ROMERO, BRADY AND SUBRAMANIAN, NUCL. DATA FOR BASIC \& APPLIED SCIENCE, EDITED BY P.G. YOUNG, PUBL. GORDON \& BREACH (1986) 687
ROHMANN ET AL, Z. PHYS. A325 (1986) 261
ROTTER, J. PHYS. G12 (1986) 1407
RYBARCYK ET AL, BULL. AM. PHYS. SOC. 31 (1986) 1209
SAKURAGI, YAHIRO AND KAMIMURA, PROG. THEOR. PHYS. SUPPL. 89 (1986)
136
SAMANTA ET AL, PHYS. REV. C34 (1986) 1610
SANDERS ET AL, PHYS. REV. C34 (1986) 1746
SATO AND OKUHARA, PHYS. REV. C34 (1986) 2171
SCHOLZ, RICKEN AND KUHLMANN, Z. PHYS. A325 (1986) 203
SCHMIDT ET AL, PHYS. LETT. B180 (1986) 9
SCHUMACHER ET AL, BULL. AM. PHYS. SOC. 31 (1986) 1220
SHIMOURA ET AL, NUCL. PHYS. A452 (1986) 123
SHEN ET AL, CHIN. PHYS. 6 (1986) 80
SHIVAKUMAR ET AL, PHYS. REV. LETT. 57 (1986) 1211
SHIVAKUMAR ET AL, BULL. AM. PHYS. SOC. 31 (1986) 1111
SICILIANO ET AL, PHYS. REV. C34 (1986) 267
SMITHSON, WATSON AND FORTUNE, J. PHYS. G12 (1986) 985
SMITH AND LAMBERT, ASTROPHYS. J. 311 (1986) 843
SNOVER, ANN. REV. NUCL. PART. SCI. 36 (1986) 545
SOBOTKA ET AL, PHYS. REV. C34 (1986) 917
STOITSOV, PETKOV AND SIMITROVA, IZV. AKAD. NAUK SSSR SER. FIZ. 50 (1986) 2071
STEADMAN AND RHOADES-BROWN, ANN. REV. NUCL. PART. SCI. 36 (1986) 649
SUZUKI AND HECHT, NUCL. PHYS. A455 (1986) 315
SUZUKI AND OKAMOTO, PROG. THEOR. PHYS. 75 (1986) 1388
SUBRAMANIAN ET AL, PHYS. REV. C34 (1986) 1580
SUZUKI AND OKAMOTO, PROG. THEOR. PHYS. 76 (1986) 127
SUGIMITSU ET AL, JAERI (1986) 74
THOMAS ET AL, PHYS. REV. C33 (1986) 1679
THOMAS ET AL, 11TH AINSE NUCL. PHYS. CONF. AT MELBOURNE (1986) 41
TKACHEV, IZV. AKAD. NAUK SSSR SER. FIZ. 50 (1986) 1949
TOMASELLI, BECK AND RICHTER, NUCL. PHYS. A459 (1986) 279
TOHYAMA AND MOSEL, NUCL. PHYS. A459 (1986) 711
TONDEUR, BERDICHEVSKY AND FARINE, Z. PHYS. A325 (1986) 405
TOWNER, CZECH. J. PHYS. 36 (1986) 360
TOWNER, ANN. REV. NUCL. PART. SCI. 36 (1986) 115
TOWNER, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) D6
TRURAN AND LIVIO, ASTROPHYS. J. 308 (1986) 721
UMAR, STRAYER AND REINHARD, PHYS. REV. LETT. 56 (1986) 2793
VAN ENGELEN ET AL, Z. PHYS. A324 (1986) 121
VAN ENGELEN ET AL, NUCL. PHYS. A457 (1986) 375

86VD04
86VD1C
86 VI 08
86 VO 07

86 VO 10
86WA1C
86WA1D
86WAZM WADA AND HORIUCHI, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986)
376
86WE1B WEIGMANN, NUCL. DATA FOR BASIC \& APPLIED SCIENCE, EDITED BY P.G. YOUNG, PUBL. GORDON \& BREACH (1986) 853
86WH03 WHISNANT, PHYS. REV. C34 (1986) 262
86WO1A WOOSLEY AND WEAVER, ANN. REV. ASTRON. ASTROPHYS. 24 (1986) 205
86WU03 WU, CHIN. J. NUCL. PHYS. 8 (1986) 147
86WU1B WU AND CHEN, INT. CONF. NUCL. PHYS., HARROGATE, UK, IOP (1986) C106
86YA16
86YA1B
86YE1A
86YE1B YE AND VAN SEN, J. PHYS. SOC. JPN. SUPPL. 55 (1986) 948
86ZA06 ZAVARZINA AND STEPANOV, SOV. J. NUCL. PHYS. 43 (1986) 543
86ZA1A ZAIKOV ET AL, NUCL. INSTRUM. METHODS PHYS. RES. B17 (1986) 97
86ZE1B ZELENSKAYA ET AL, PROC. 36TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL., KHARKOV, USSR, NAUKA (1986) 335
86ZI08 ZIJDERHAND AND VAN DER LEUN, NUCL. PHYS. A460 (1986) 181
87AB03 ABELE ET AL, Z. PHYS. A326 (1987) 373
87 AB 21 ABOUZI ET AL, NUOVO CIM. A97 (1987) 753
87AD04 ADACHI AND VON GERAMB, NUCL. PHYS. A470 (1987) 461
87AD1A ADAMS AND TYLKA, BULL. AM. PHYS. SOC. 32 (1987) 1066
87AG1A AGAKISHIEV ET AL, SOV. J. NUCL. PHYS. 45 (1987) 852
87AJ02 AJZENBERG-SELOVE, NUCL. PHYS. A475 (1987) 1
87AL1B ALTAS, ASTROPHYS. SPACE SCI. 134 (1987) 85
87AM1A AMANDRUZ ET AL, SIN NEWSL. 19 (1987) 45
87AN1A ANNE ET AL, NUCL. INSTRUM. METHODS PHYS. RES. A257 (1987) 215
87AN1B ANIKINA ET AL, SOV. J. NUCL. PHYS. 45 (1987) 1040
87AN1C ANTONCHIK ET AL, SOV. J. NUCL. PHYS. 46 (1987) 790
87AR1C ARNOULD, PHILOS. TRANS. R. SOC. 323 (1987) 251
87AR28 ARTEMOV ET AL, SOV. J. NUCL. PHYS. 46 (1987) 782
87AS05 ASSENBAUM, LANGANKE AND ROLFS, Z. PHYS. A327 (1987) 461
87AV08 AVERYANOV AND GOLUBEV, SOV. J. NUCL. PHYS. 46 (1987) 828
87AV1B AVDEEV ET AL, PROC. 37TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL., JURMALA, USSR, NAUKA (1987) 401
87AZZY AZIZ ET AL, BULL. AM. PHYS. SOC. 32 (1987) 1578
87AZZZ AZIZ ET AL, BULL. AM. PHYS. SOC. 32 (1987) 1062
87BA01 BANDYOPADHYAY ET AL, NUCL. PHYS. A462 (1987) 587
87BA02 BARZ, BONDORF AND SCHULZ, NUCL. PHYS. A462 (1987) 742
87BA10 BAI ET AL, Z. PHYS. A326 (1987) 269
87BA18 BATTY, PHYS. LETT. B189 (1987) 393
87BA1T BACHELIER ET AL, PROC. XI INT. CONF. PART. NUCL., KYOTO, (PANIC 87) 268
87BA1U BAHCALL, REV. MOD. PHYS. 59 (1987) 505
87BA21 BATTY, FIDECARO AND PROSPER, NUCL. PHYS. A466 (1987) 473
87BA31 BARZ ET AL, PHYS. LETT. B191 (1987) 232
87BA35 BAYE, PHYS. REV. LETT. 58 (1987) 2738
87BA38 BALSTER ET AL, NUCL. PHYS. A468 (1987) 93

87BA50
87BA71
87BA83
87BE02
87BE1C
87BE1D
87BE1F
87BE1G
87BE1H
87BE26
87BEZY
87BL18
87BL20
87BLZZ
87BO11
87BO16
87BO1B
87BO1K
87BO23
87BO42
87BO54
87BR20
87BR30
87BRZW
87BU06
87BU07
87BU1E
87BU20
87CA16
87CA1E
87CA27
87CA30
87CH10
87CH11
87CH1D
87CH1E
87 CO 07
87CO09
87CO1E
87CO1G
87CO24
87 CO 25
87 CO 26
87CO31
87CU1A
87CU1B
87DA02
87DA1D
87DA23
87DA34
87DE03
87DE21
87DE32

BAUER, NUCL. PHYS. A471 (1987) 604
BALAMUTH ET AL, PHYS. REV. C36 (1987) 2235
BALASHOVA ET AL, IZV. AKAD. NAUK SSSR SER. FIZ. 51 (1987) 1992
BERTRAND ET AL, PHYS REV. C35 (1987) 111
BELYAEVA AND ZELENSKAYA, PROC. 37TH MTG. NUCL. SPECTROSCOPY
STRUC. AT. NUCL., JURMALA, USSR, NAUKA (1987) 464
BERTSCH AND ESBENSEN, REP. PROG. PHYS. 50 (1987) 607
BERTHIER ET AL, PHYS. LETT. B193 (1987) 417
BERG AND KNEISSL, ANN. REV. NUCL. PART. SCI. 37 (1987) 33
BEZARD ET AL, ICARUS 72 (1987) 623
BENDISCIOLI ET AL, NUCL. PHYS. A469 (1987) 669
BECK ET AL, BULL. AM. PHYS. SOC. 32 (1987) 1078
BLUMEL AND DIETRICH, NUCL. PHYS. A471 (1987) 453
BLUNDEN AND IQBAL, PHYS. LETT. B196 (1987) 295
BLAND ET AL, BULL. AM. PHYS. SOC. 32 (1987) 1118
BOUYSSY ET AL, PHYS. REV. C36 (1987) 380
BORDES ET AL, NUCL. INSTRUM. METHODS PHYS. RES. B24-25 (1987) 722
BOND AND LUCK, ASTROPHYS. J. 312 (1987) 203
BOCK ET AL, MOD. PHYS. LETT. A2 (1987) 721
BOUGAULT ET AL, PHYS. REV. C36 (1987) 830
BOSCA, BUENDIA AND GUARDIOLA, PHYS. LETT. B198 (1987) 312
BOFFI ET AL, NUOVO CIM. A98 (1987) 291
BRZYCHCZYK ET AL, PHYS. LETT. B194 (1987) 473
BROWN AND WILDENTHAL, NUCL. PHYS. A474 (1987) 290
BRANDAN, BULL. AM. PHYS. SOC. 32 (1987) 1542
BUGROV ET AL, SOV. J. NUCL. PHYS. 45 (1987) 226
BURGEL ET AL, PHYS. REV. C36 (1987) 90
BURTEBAEV ET AL, IZV. AKAD. NAUK SSSR SER. FIZ. 51 (1987) 615
BURGOV ET AL, SOV. J. NUCL. PHYS. 45 (1987) 463
CAVINATO, MARANGONI AND SARUIS, Z. PHYS. A327 (1987) 193
CASTEL AND ZAMICK, PHYS. REP. 148 (1987) 217
CASAS ET AL, NUCL. PHYS. A473 (1987) 429
CARDELLA ET AL, PHYS. REV. C36 (1987) 2403
CHRIEN, HUNGERFORD AND KISHIMOTO, PHYS. REV. C35 (1987) 1589
CHOMAZ, VAN GIAI AND STRINGARI, PHYS. LETT. B189 (1987) 375
CHRIEN ET AL, BULL. AM. PHYS. SOC. 32 (1987) 1560
CHANFRAY AND PIRNER, PHYS. REV. C35 (1987) 760
COOK, NUCL. PHYS. A465 (1987) 207
COHEN, PRICE AND WALDER, PHYS. LETT. B188 (1987) 393
COHEN AND FURNSTAHL, PHYS. REV. C35 (1987) 2231
COHEN, PROC. XI INT. CONF. PART. NUCL., KYOTO, (PANIC 87) 584
CO', LALLENA AND DONNELLY, NUCL. PHYS. A469 (1987) 684
COOPER, HICKS AND JENNINGS, NUCL. PHYS. A470 (1987) 523
COHEN, VAN ORDEN AND PICKLESIMER, PHYS. REV. LETT. 59 (1987) 1267
COTTLE AND KEMPER, PHYS. REV. C36 (1987) 2034
CUMMINGS AND STONE, BULL. AM. PHYS. SOC. 32 (1987) 1066
CUGNON, JASSELETTE AND VANDERMEULEN, NUCL. PHYS. A470 (1987) 558
DA SILVEIRA AND LECLERCQ-WILLAIN, J. PHYS. G13 (1987) 149
DALKAROV AND KARMANOV, SOV. J. PART. NUCLEI 18 (1987) 599
DAO AND KNYAZAKOV, Z. PHYS. A328 (1987) 67
DATTA ET AL, FIZIKA 19 (1987) 445
DESPLANQUES, Z. PHYS. A326 (1987) 147
DESCOUVEMONT, NUCL. PHYS. A470 (1987) 309
DESCOUVEMONT AND BAYE, PHYS. REV. C36 (1987) 1249

87DE38
87DEZV
87DH01
87DJ01
87DM01
87DO1A
87DW1A
87EL14
87EN06
87ES06
87EV01
87FA09
87FA1A
87FA1C
87FE1A
87FU06
87FUZZ
87GE1A
87GI01
87GI05
87GI1C
87GM01
87GM02
87GM0
87GO05
87GO19

87GO1E
87GO30
87GR04
87GR16
87GR1I
87GR20
87GU04

87HA1D

87HA40
87HA42
87HI10
87HO1C
87HO1F
87HU11
87HU1C
87HY01
87IC02
87IK01
87IM1C
87IMZZ
87IS04
87JA1B

87GO1C GOLOVKOV AND GOLDBERG, PROC. 37TH MTG. NUCL. SPECTROSCOPY STRUC.
AT. NUCL., JURMALA, USSR, NAUKA (1987) 388

87HA1C HARRIS, LAMBERT AND GOLDMAN, MON. NOT. R. ASTRON. SOC. 224 (1987) 237

87HA1E HARRIS AND LAMBERT, ASTROPHYS. J. 318 (1987) 868
87HA1J HAAPAKOSKI, MOD. PHYS. LETT. A2 (1987) 359
87HA37 HASAN, KOHLER AND VARY, PHYS. REV. C36 (1987) 2180
DESCOUVEMONT, PHYS. REV. C36 (1987) 2206
DENNIS ET AL, BULL. AM. PHYS. SOC. 32 (1987) 1542
DHUGA ET AL, PHYS. REV. C35 (1987) 1148
DJALALI ET AL, PHYS. REV. C35 (1987) 1201
DMITRIEV ET AL, NUCL. PHYS. A464 (1987) 237
DOMINY AND WALLERSTEIN, ASTROPHYS. J. 317 (1987) 810
DWYER AND MEYER, ASTROPHYS. J. 322 (1987) 981
ELLEGAARD, CAN. J. PHYS. 65 (1987) 600
ENGLAND ET AL, NUCL. PHYS. A475 91987) 422
ESCUDERO, BARRANCO AND MADURGA, J. PHYS. G13 (1987) 1261
EVERS ET AL, NUCL. INSTRUM. METHODS PHYS. RES. A257 (1987) 91
FATYGA ET AL, PHYS. REV. LETT. 58 (1987) 2527
FAESSLER, NUCL. PHYS. B279 (1987) 335
FAHEY ET AL, ASTROPHYS. J. 323 (1987) L91
FENG ET AL, CHIN. PHYS. 7 (1987) 121
FURNSTAHL AND SEROT, NUCL. PHYS. A468 (1987) 539
FURNSTAHL, BULL. AM. PHYS. SOC. 32 (1987) 1031
GERBIER ET AL, PHYS. REV. LETT. 59 (1987) 2535
GIOVANETTI ET AL, PHYS. LETT. B186 (1987) 9
GILLIBERT ET AL, PHYS. LETT. B192 (1987) 39
GIBBS AND GIBSON, ANN. REV. NUCL. PART. SCI. 37 (1987) 411
GMITRO, KAMALOV AND OVCHINNIKOVA, NUCL. PHYS. A468 (1987) 404
GMITRO, KAMALOV AND MACH, PHYS. REV. C36 (1987) 1105
GMITRO, KAMALOV AND MACH, PROG. THEOR. PHYS. SUPPL. 91 (1987) 60
GOUWELOOS AND THIES, PHYS. REV. C35 (1987) 631
GODRE AND WAGHMARE, PRAMANA 28 (1987) 41

GOERLACH, PROC. INTER. EUROPHYS. CONF. IN SWEDEN (1987) 146
GODRE AND WAGHMARE, PHYS. REV. C36 (1987) 1632
GREGOIRE ET AL, PHYS. LETT. B186 (1987) 14
GREBEN, PHYS. LETT. B192 (1987) 287
GREEN AND NISKANEN, PROG. PART. NUCL. PHYS. 18 (1987) 93
GREEN AND WYCECH, NUCL. PHYS. A467 (1987) 744
GUPTA ET AL, J. PHYS. G13 (1987) L27
HARRIS ET AL, ASTROPHYS. J. 316 (1987) 294

HAUSMANN ET AL, PHYS. LETT. B199 (1987) 17
HASAN, KOHLER AND VARY, PHYS. REV. C36 (1987) 2649
HINNEFELD ET AL, PHYS. REV. C36 (1987) 989
HODGSON, CONTEMP. PHYS. 28 (1987) 365
HOFSTADTER, AUST. PHYS. 24 (1987) 236
HUSSEIN ET AL, J. PHYS. G13 (1987) 967
HUMANIC ET AL, BULL. AM. PHYS. SOC. 32 (1987) 1564
HYDE-WRIGHT ET AL, PHYS. REV. C35 (1987) 880
ICHII, BENTZ AND ARIMA, NUCL. PHYS. A464 (1987) 575
IKEZOE ET AL, NUCL. PHYS. A462 (1987) 150
IMANISHI AND VON OERTZEN, PHYS. REP. 155 (1987) 29
IMANISHI, PARK AND VON OERTZEN, BULL. AM. PHYS. SOC. 32 (1987) 1567
ISLAM, FINLAY AND PETLER, NUCL. PHYS. A464 (1987) 395
JACKSON AND BOGGILD, NUCL. PHYS. A470 (1987) 669

87JE02 JENNEWEIN, SCHOCH AND ZETTL, NUCL. PHYS. A468 (1987) 381
87KA04 KAPS ET AL, Z. PHYS. A326 (1987) 97
87KA13 KANAZAWA ET AL, PHYS. REV. C35 (1987) 1828
87KA39 KARAPIPERIS AND KOBAYASHI, ANN. PHYS. 177 (1987) 1
87KE1A KELLY, BULL. AM. PHYS. SOC. 32 (1987) 1120
87KH1A KHUBEIS AND ZIEGLER, NUCL. INSTRUM. METHODS PHYS. RES. B24-25 (1987)
691
87KH1B
87KI1C
87KI22
87 KO 12 KOX ET AL, PHYS. REV. C35 (1987) 1678
87 KO 15 KOZIK ET AL, Z. PHYS. A326 (1987) 421
87KO1E KOZMYR, PROC. 37TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL., JURMALA, USSR, NAUKA (1987) 332
87KO1F KOHNO ET AL, PROC. XI INT. CONF. PART. NUCL., KYOTO, (PANIC 87) 566
87 KO 30 KOHNO ET AL, NUCL. PHYS. A470 (1987) 609
87KR19 KRAMP ET AL, NUCL. PHYS. A474 (1987) 412
87KR1B KROTSCHECK, NUCL. PHYS. A465 (1987) 461
87KR1F KRUMOVA, PETKOV AND STOITSOV, BULG. J. PHYS. 14 (1987) 501
87KU02 KURONEN, KEINONEN AND TIKKANEN, PHYS. REV. C35 (1987) 591
87LA11 LANG ET AL, PHYS. REV. C35 (1987) 1214
87LA1C LANG AND WERNTZ, BULL. AM. PHYS. SOC. 32 (1987) 1036
87LE12 LE BRUN, NATHAN AND HOBLIT, PHYS. REV. C35 (1987) 2005
87LE1B LENZ, PROG. THEOR. PHYS. SUPPL. 91 (1987) 27
87LH01 L'HOTE ET AL, PHYS. LETT. B198 (1987) 139
87LI04 LILLEY ET AL, NUCL. PHYS. A463 (1987) 710
87LI1F LI, YAO AND ZHANG, HIGH ENERGY PHYS. NUCL. PHYS. 11 (1987) 397
87LI30 LINDGREN ET AL, CAN. J. PHYS. 65 (1987) 666
87LO01 LOZANO AND VITTURI, PHYS. REV. C35 (1987) 367
87LU02 LUMPE AND RAY, PHYS. REV. C35 (1987) 1040
87LU04 LUMPE AND RAY, PHYS. LETT. B186 (1987) 263
87LY04 LYNCH, NUCL. PHYS. A471 (1987) 309C
87MA04 MAHALANABIS, Z. PHYS. A326 (1987) 131
87MA09 MA AND AUSTERN, NUCL. PHYS. A463 (1987) 620
87MA1B MASUDA, NITTO AND UCHIYAMA, PROG. THEOR. PHYS. 78 (1987) 972
87MA1I MATTHEWS ET AL, PROC. XI INT. CONF. PART. NUCL., KYOTO, (PANIC 87) 360
87MA1K MATTHEWS, BULL. AM. PHYS. SOC. 32 (1987) 1575
87MA1M MA ET AL, KEXUE TONGBAO 32 (1987) 12
87MA22 MAGLIONE ET AL, PHYS. LETT. B191 (1987) 237
87MA30 MAVROMATIS ET AL, NUCL. PHYS. A470 (1987) 185
87MA40 MANLEY AND KELLY, PHYS. REV. C36 (1987) 1646
87MA52 MANLEY ET AL, PHYS. REV. C36 (1987) 1700
87MC1A MC KEEGAN, SCIENCE 237 (1987) 1468
87MC1B MC LERRAN, PROC. HADRONIC SESSION OF THE 22ND RENCONTRE DE MORIOND, VOL. 2, LES ARCS, FRANCE (1987) 399
87ME12 MEIRAV ET AL, PHYS. REV. C36 (1987) 1066
87ME1B MEWALDT AND STONE, BULL. AM. PHYS. SOC. 32 (1987) 1037
87MI1A MIAN, PHYS. REV. C35 (1987) 1463
87MI1B MITCHELL ET AL, BULL. AM. PHYS. SOC. 32 (1987) 1109
87MI25 MILLENER, PHYS. REV. C36 (1987) 1643
87MIZY MIDDLETON ET AL, BULL. AM. PHYS. SOC. 32 (1987) 1578
87MO27 MOON, PARK AND SCHEID, PHYS. REV. C36 (1987) 2341
87MU03 MUZYCHKA AND PUSTILNIK, SOV. J. NUCL. PHYS. 45 (1987) 57
87NA01 NAMBOODIRI ET AL, PHYS. REV. C35 (1987) 149

87NA04 NAVARRO AND ROIG, NUCL. PHYS. A465 (1987) 628
87NA13 NAGARAJAN andRES AND LOZANO, PHYS. LETT. B192 (1987) 297
87NA1C NADASEN ET AL, BULL. AM. PHYS. SOC. 32 (1987) 1076
87NA1D NAGATA ET AL, NUCL. INSTRUM. METHODS PHYS. RES.B18 (1987) 515
87NG01 VAN SEN ET AL, NUCL. PHYS. A464 (1987) 717
87NU02 NUHN, SCHEID AND PARK, PHYS. REV. C35 (1987) 2146
87OC01
87OH08
87OH1B
87OL1A
O'CONNELL ET AL, PHYS. REV. C35 (1987) 1063
OHKUBO AND BRINK, PHYS. REV. C36 (1987) 966

87OS01 OSIPOWICZ, LIEB AND BRUSSERMANN, NUCL. INSTRUM. METHODS PHYS. RES. B18 (1987) 232
87OS03 OSMAN, INDIAN J. PURE APPL. PHYS. 25 (1987) 1
87OT02 OTTENSTEIN, SABUTIS AND WALLACE, PHYS. REV. C35 (1987) 369
87PA01 PARKER, HOGAN AND ASHER, PHYS. REV. C35 (1987) 161
87PA1D PAUL, FINK AND HOLLOS, NUCL. INSTRUM. METHODS PHYS. RES.B29 (1987) 393
87PA24 PANTIS AND PEARSON, PHYS. REV. C36 (1987) 1408
87PI02 PIEKAREWICZ, PHYS. REV. C35 (1987) 675
87PI1B PILE ET AL, PROC. XI INT. CONF. PART. NUCL., KYOTO, (PANIC 87) 594
87PI1C PILE ET AL, BULL. AM. PHYS. SOC. 32 (1987) 1560
87PL03 PLAGA ET AL, NUCL. PHYS. A465 (1987) 291
87PO11 PONISCH AND KOONIN, PHYS. REV. C36 (1987) 633
87PO1C POYARKOV AND SIZOV, SOV. J. NUCL. PHYS. 45 (1987) 940
87PR03 PRICE AND WALKER, PHYS. REV. C36 (1987) 354
87PR1A PRAPKOS, ARNOULD AND ARCORAGI, ASTROPHYS. J. 315 (1987) 209
87QU02 QUESNE, PHYS. LETT. B188 (1987) 1
87RA01 RAMAN ET AL, AT. DATA NUCL. DATA TABLES 36 (1987) 1
87RA02 RAE, KEELING AND ALLCOCK, PHYS. LETT. B184 (1987) 133
87RA1D RAMATY AND MURPHY, SPACE SCI. REV. 45 (1987) 213
87RA22 RAE, KEELING AND SMITH, PHYS. LETT. B198 (1987) 49
87RA28 RAJASEKARAN, ARUNACHALAM AND DEVANATHAN, PHYS. REV. C36 (1987) 1860
87RA36
87RE02
RAHMAN ET AL, NUOVO CIM. A98 (1987) 513
REDDER ET AL, NUCL. PHYS. A462 (1987) 385
87RI03 RICHERT AND WAGNER, NUCL. PHYS. A466 (1987) 132
87RI1A RICHTER, BULL. AM. PHYS. SOC. 32 (1987) 1071
87RO04 ROUSSEL ET AL, PHYS. LETT. B185 (1987) 29
87RO06 ROWE, ROCHFORD AND LE BLANC, NUCL. PHYS. A464 (1987) 39
87RO10 ROYER ET AL, NUCL. PHYS. A466 (1987) 139
87RO1D ROLFS, TRAUTVETTER AND RODNEY, REP. PROG. PHYS. 50 (1987) 233
87RO1F ROMANOVSKII ET AL, PROC. 37TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL., JURMALA, USSR, NAUKA (1987) 286
87RU1A
87RY03
87SA01
RUFA ET AL, J. PHYS. G13 (1987) L143

SAMANTA ET AL, PHYS. REV. C35 (1987) 333
SAGAWA AND TOKI, J. PHYS. G13 (1987) 453
87SA1D SAWA, SOL. PHYS. 107 (1987) 167
87SA25 SAINT-LAURENT, NUCL. INSTRUM. METHODS PHYS. RES. B26 (1987) 273
87SA55 SAAD ET AL, NUOVO CIM. A98 (1987) 529
87SC11 SCHMIEDER ET AL, NUCL. INSTRUM. METHODS PHYS. RES. A256 (1987) 457
87SC34 SCALIA, NUOVO CIM. A98 (1987) 571
87SH1B SHVEDOV AND NEMETS, PROC. 37TH MTG. NUCL. SPECTROSCOPY STRUC. AT.
NUCL., JURMALA, USSR, NAUKA(1987) 390
87SH1C SHEN ET AL, PHYS. ENERG. FORTIS PHYS. NUCL. 11 (1987) 104
87SH21 SHEN ET AL, Z. PHYS. A328 (1987) 219

```
87SH23
    SHEN ET AL, NUCL. PHYS. A472 (1987) 358
87SHZS SHVEDOV, NEMETS AND RUDCHIK, PROC. 37TH MTG. NUCL. SPECTROSCOPY
    STRUC. AT. NUCL., JURMALA, USSR, NAUKA (1987) }38
87SK02 SKALSKI, Z. PHYS. A326 (1987) 263
87SN1A SNEPPEN, NUCL. PHYS. A470 (1987) }21
87SP05 SPARROW, PHYS. REV. C35 (1987) }141
87SP11 SPERBER, STRYJEWSKI AND ZIELINSKA-PFABE, PHYS. SCR. 36 (1987) }88
87SU03 SUGIMITSU ET AL, NUCL. PHYS. A464 (1987) 415
87SU07 SUOMIJARVI ET AL, PHYS. REV. C36 (1987) }18
87SU08 SUZUKI, OKAMOTO AND KUMAGAI, PROG. THEOR. PHYS. 77 (1987) 196
87SU12 SUZUKI, OKAMOTO AND KUMAGAI, PHYS. REV. C36 (1987) }80
87TA1C TANG, AIP CONF. PROC. 162 (1987) }17
87TE01 TELLEZ-ARENAS, LOMBARD AND MAILLET, J. PHYS. G13 (1987) }31
87TH03 THAYYULLATHIL, COHEN AND BRONIOWSKI, PHYS. REV. C35 (1987) }196
87TI01 TIERETH ET AL, NUCL. PHYS. A464 (1987) }12
87TO10 TOHYAMA, PHYS. REV. C36 (1987) }18
87TO1B TOWNER, PHYS. REP. }155\mathrm{ (1987) 263
87TR01 TROST, LEZOCH AND STROHBUSCH, NUCL. PHYS. A462 (1987) }33
87TZ1A TZENG AND KUO, CHIN. J. PHYS. 25 (1987) 326
87VA03 VAN ROOSMALEN, PHYS. REV. C35 (1987) 977
87VA26 VAN HEES, WOLTERS AND GLAUDEMANS, PHYS. LETT. B196 (1987)}1
87VAZY VAN VERST ET AL, BULL. AM. PHYS. SOC. 32 (1987) }154
87VD1A VDOVIN, GOLOVIN AND LOSCHAKOV, SOV. J. PART. NUCLEI 18 (1987) }57
87VE03 VESPER, DRECHSEL AND OHTSUKA, NUCL. PHYS. A466 (1987)}65
87VI02 VIDEBACK ET AL, PHYS. REV. C35 (1987) 2333
87VI04 VINH MAU, NUCL. PHYS. A470 (1987) 406
87VI1B VIOLA, NUCL. PHYS. A471 (1987) 53C
87VO05 VOIT AND VON OERTZEN, PHYS. REV. C35 (1987) 2321
87WA1B WADA AND HORIUCHI, PHYS. REV. LETT. 58 (1987) }219
87WA1F WANNIER AND SAHAI, ASTROPHYS. J. 319 (1987) }36
87WI11 WIESCHER ET AL, ASTROPHYS. J. 316 (1987) }16
87WU05 WUNSCH AND ZOFKA, PHYS. LETT. B193 (1987) 7
87XI01 XIA AND HE, PHYS. REV. C35 (1987) }178
87YA02 YAMAZAKI ET AL, PHYS. REV. C35 (1987) 355
87YA1B YAZICI AND IRVINE, J. PHYS. G13 (1987) }61
87YA1C YAMAMOTO, PROC. XI INT. CONF. PART. NUCL., KYOTO, (PANIC 87) }58
87YA1D YAMAZAKI ET AL, PROC. XI INT. CONF. PART. NUCL., KYOTO, (PANIC 87) }67
87YA1E YAVIN, CAN. J. PHYS. 65 (1987) 647
87YA1F YAKOVLEV, SOV. J. NUCL. PHYS. 46 (1987) 244
87YO04 YOKOYAMA AND HORIE, PHYS. REV. C36 (1987) }165
87YO1A YOUNG, BULL. AM. PHYS. SOC. 32 (1987) 1565
87ZA08 ZAVARZINA AND SERGEEV, SOV. J. NUCL. PHYS. 46 (1987) }26
87ZE05 ZELEVINSKII AND MAZEPUS, IZV. AKAD. NAUK SSSR SER. FIZ. 51 (1987) }88
87ZU1A ZUR LOYE ET AL, SCIENCE 238 (1987) 1558
88AD07 ADAMS ET AL, PHYS. REV. C38 (1988) }277
88AD08 ADACHI AND LIPPARINI, NUCL. PHYS. A489 (1988) 445
88AH04 AHRENS ET AL, NUCL. PHYS. A490 (1988) }65
88AI1C AIELLO ET AL, EUROPHYS. LETT. }6\mathrm{ (1988) }2
88AJ01 AJZENBERG-SELOVE, NUCL. PHYS. A490 (1988) 1
88AL06 ALHASSID, IACHELLO AND SHAO, PHYS. LETT. B201 (1988) }18
88AL08 ALEIXO ET AL, PHYS. REV. C37 (1988) }106
88AL1K AL-KOFAHI ET AL, BULL. AM. PHYS. SOC. 33 (1988) }173
88AL1N ALBERICO ET AL, PHYS. REV. C38 (1988) }180
88AM03 AMOS, DE SWINARSKI AND BERGE, NUCL. PHYS. A485 (1988) }65
```

88AN18 ANTONOV ET AL, NUOVO CIM. A100 (1988) 779
88AN1C ANNE ET AL, NUCL. INSTRUM. METHODS PHYS. RES. B34 (1988) 295
88AN1D ANDREANI, VANGIONIFLAM AND AUDOUZE, ASTROPHYS. J. 334 (1988) 698
88AR1D ARDITO ET AL, EUROPHYS. LETT. 6 (1988) 131
88AR1I ARIMA, HYPERFINE INTERACT. 43 (1988) 47
88AR22 ARTEMOV ET AL, SOV. J. NUCL. PHYS. 48 (1988) 596
88ARZU ARTEMOV ET AL, PROC. 38TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL., BAKU, USSR, NAUKA (1988) 381
88AS03 ASSENBAUM, LANGANKE AND SOFF, PHYS. LETT. B208 (1988) 346
88AU03 AUGER AND FERNANDEZ, NUCL. PHYS. A481 (1988) 577
88AU1A AUSHEV ET AL, PROC. 38TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL., BAKU, USSR, NAUKA (1988) 369
88AY03
88AZZZ
AYIK, SHAPIRA AND SHIVAKUMAR, PHYS. REV. C38 (1988) 2610
88BA15 BAYE AND DESCOUVEMONT, NUCL. PHYS. A481 (1988) 445
88BA1Y BAHCALL, DAVIS AND WOLFENSTEIN, NATURE 334 (1988) 487
88BA21 BADALA ET AL, NUCL. PHYS. A482 (1988) 511C
88BA39 BARRETTE ET AL, PHYS. LETT. B209 (1988) 182
88BA43
88BA55
88BE14
88BE15
BANDYOPADHYAY AND SAMADDAR, NUCL. PHYS. A484 (1988) 315
BARKER AND FERGUSON, PHYS. REV. C38 (1988) 1936
BERTRAND, BEENE AND HOREN, NUCL. PHYS. A482 (1988) 287C
BEENE, VARNER AND BERTRAND, NUCL. PHYS. A482 (1988) 407C
88BE1D BECCHETTI ET AL, 5TH INTL. CONF. ON CLUSTERING IN NUCLEI (KYOTO, JAPAN 1988)
88BE1J BELYAEVA AND ZELENSKAYA, PROC. 38TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL., BAKU, USSR, NAUKA (1988) 449
88BE1W
88BE24
BECKERMAN, REP. PROG. PHYS. 51 (1988) 1047
BEHERA AND ROUTRAY, J. PHYS. G14 (1988) 1073
88BE2A BESLIU AND JIPA, REV. ROUM. PHYS. 33 (1988) 409
88BE2B BELOSTOTSKY ET AL, PROC. INTL. SYMP. ON MODERN DEVELOPMENTS IN NUCL. PHYS., NOVOSIBIRSK, USSR 1987 (SINGAPORE: WORLD SCI. 1988) 191
88BE2O BEISE ET AL, AIP CONF. PROC. 176 (1988) 534
88BE49 BELJAEVA AND ZELENSKAJA, IZV. AKAD. NAUK SSSR 52 (1988) 942
88BE56 BELOZYOROV ET AL, IZV. AKAD. NAUK SSSR 52 (1988) 2171
88BE57 BEREZHNOY, MIKHAJLUK AND PILIPENKO, IZV. AKAD. NAUK SSSR 52 (1988) 2185
88BEYJ BELOZEROV ET AL, PROC. 38TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL., BAKU, USSR, NAUKA (1988) 380
88BL02 BLOCKI ET AL, NUCL. PHYS. A477 (1988) 189
88BL07 BLESZYNSKI ET AL, PHYS. REV. C37 (1988) 1527
88BL10 BLUNDEN AND MCCORQUODALE , PHYS. REV. C38 (1988) 1861
88BL1H BLANPAIN ET AL, NUCL. INSTRUM. METHODS PHYS. RES. B34 (1988) 459
88BL1I BLUNDEN, AIP CONF. PROC. 176 (1988) 636
88BO04 BOSCA AND GUARDIOLA, NUCL. PHYS. A476 (1988) 471
88BO10 BOZZOLO, CIVITARESE AND VARY, PHYS. REV. C37 (1988) 1240
88BO13 BORDERIE ET AL, PHYS. LETT. B205 (1988) 26
88BO1D BOGDANOWICZ, NUCL. PHYS. A479 (1988) 323C
88BO39 BORGE ET AL, NUCL. PHYS. A490 (1988) 287
88BO40
88BR04
88BR11
BOFFI, NICROSINI AND RADICI, NUCL. PHYS. A490 (1988) 585

BROWN ET AL, ANN. PHYS. 182 (1988) 191
88BR1N BRECHTMANN AND HEINRICH, Z. PHYS. A330 (1988) 407
88BR20 BRANDAN, FRICKE AND MCVOY, PHYS. REV. C38 (1988) 673
88BR29 BRANDAN AND SATCHLER, NUCL. PHYS. A487 (1988) 477
88BRZY BROWN, MIDDLETON AND AZIZ, BULL. AM. PHYS. SOC. 33 (1988) 1022

88 CA 07
88CA10
88CA1G
88CA1N
88CAZV
88CH08
88CH1H
88CH1T
88CH28
88CH30
88CH48
88CIZZ
88CL03
88CL04
88CL1C
88 CO 10
88 CO 15
88CO1D
88CO1G
88CS01
88CU1A
88DA11
88DE09
88DE1A
88DE22
88DE31
88DE35
88DH1A
88DI02
88DI07
88DO05
88DR02
88DU04
88DU09
88DU1B
88DU1G
88ER04
88FA1B
88FE1A
88FEZX
88FI01
88FO1E
88FR02
88FR06
88FR14
88FR15
88FR19
88FR23
88FU02
88FU04
88GA11
88GA12 GAZES ET AL, PHYS. REV. C38 (1988) 712
88GA1A GAL, NUCL. PHYS. A479 (1988) 97C
88GA1I GAL, AIP CONF. PROC. 163 (1988) 144

88GN1A
88GO11
88GO1G

88GO21
88GOZR
88GR1E
88GR32
88GU03
88GU13
88GU14
88GU1E

88HA03
88HA04
88HA08
88HA12
88HA1I
88HA22
88HA2A
88HA41
88HAZS
88HE06
88HE1G
88HE1I
88HO04
88HO10
88HO1K
88HO1L
88HU02
88HU06
88HYZY
88HYZZ
88IL1A
88IM02
88IS02
88IT02
88IT03
88JA09
88JA14
88JA1B
88JO1E
88JO1F
88JU02
88KA08
88KA13
88KA1G
88KA1Z
88KA39

88KE07
88KH01
88KH1B
88KI02

88KI1C KIPTILY, PROC. 38TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL., BAKU, USSR, NAUKA (1988) 534
88KO01
88KO02
88KO09
88 KO 17
88KO18
88KO1S KOWALSKI, PROC. INTL. SYMPOSIUM ON MODERN DEVELOPMENTS IN NUCL. PHYS., NOVOSIBIRSK, USSR, 1987 (WORLD SCI. 1988), P. 391
88KO1U KOVAR ET AL, PROC. TEXAS A\&M SYMPOSIUM ON HOT NUCLEI 1987 (SINGAPORE: WORLD SCI. 1988), P. 392
88KO23 KOHMURA, OHNAKA AND GILLET, NUCL. PHYS. A486 (1988) 253
88KO27 KOBOS, BRANDAN AND SATCHLER, NUCL. PHYS. A487 (1988) 457
88KR09 KRIVINE ET AL, NUCL. PHYS. A481 (1988) 781
88KR11 KRAUS ET AL, PHYS. REV. C37 (1988) 2529
88KR1E KREWALD, NAKAYAMA AND SPETH, PHYS. REP. 161 (1988) 103
88KU18 KUCHTA, PHYS. LETT. B212 (1988) 264
88KY1A KYLE, AIP CONF. PROC. 163 (1988) 289
88LA25
LAHLOU, CUJEC AND DASMAHAPATRA, NUCL. PHYS. A486 (1988) 189
88LE05 LEVAI AND CSEH, J. PHYS. G14 (1988) 467
88LE08 LESKO ET AL, PHYS. REV. C37 (1988) 1808
88LEZW LEUSCHNER ET AL, BULL. AM. PHYS. SOC. 33 (1988) 1097
88LI13 LIPPARINI AND STRINGARI, NUCL. PHYS. A482 (1988) 205C
88LI1O LI, HIGH ENERGY PHYS. NUCL. PHYS. 12 (1988) 501
88LI1P LI, HIGH ENERGY PHYS. NUCL. PHYS. 12 (1988) 509
88LI34 LIFSHITS, IZV. AKAD. NAUK SSSR 52 (1988) 979
88LO07 LOTZ AND SHERIF, PHYS. LETT. B210 (1988) 45
88LU03 LUMPE, PHYS. LETT. B208 (1988) 70
88LU1A LUNTZ ET AL, BULL. AM. PHYS. SOC. 33 (1988) 1080
88MA05 MACKINTOSH, COOPER AND IOANNIDES, NUCL. PHYS. A476 (1988) 287
88MA07 MATEJA ET AL, PHYS. REV. C37 (1988) 1004
88MA09 MATSUYAMA AND YAZAKI, NUCL. PHYS. A477 (1988) 673
88MA1G MAJLING ET AL, PHYS. LETT. B202 (1988) 489
88MA1O MAY AND SCHEID, NUCL. PHYS. A485 (1988) 173
88MA1W MACH ET AL, Z. PHYS. A331 (1988) 89
88MA1X MALFLIET, PROG. PART. NUCL. PHYS. 21 (1988) 207
88MA27 MA ET AL, NUCL. PHYS. A481 (1988) 793
88MA29 MASSEN, NASSENA AND PANOS, J. PHYS. G14 (1988) 753
88MA31 MACKINTOSH, IOANNIDES AND COOPER, NUCL. PHYS. A483 (1988) 195
88MA37 MASUTANI AND SEKI, PHYS. REV. C38 (1988) 867
88MA53 MAIRLE, KNOPFLE AND SEEGER, NUCL. PHYS. A490 (1988) 371
88MAZM MACK ET AL, BULL. AM. PHYS. SOC. 33 (1988) 1587
88MC03 MCDERMOTT ET AL, PHYS. REV. LETT. 61 (1988) 814
88MCZT MCLANE, DUNFOR AND ROSE, NEUTRON CROSS SECTIONS, VOL. 2, NEUTRON
CROSS SECTION CURVES (ACADEMIC PRESS, INC. 1988)
88ME09 MERCHANT AND ISIDRO FILHO, PHYS. REV. C38 (1988) 1911
88ME1H MENCHACA-ROCHA ET AL, PROC. TEXAS A \& M SYMPOSIUM ON HOT NUCLEI 1987 (SINGAPORE: WORLD SCI. 1988), P. 479
88MEZX MELLEMA ET AL, BULL. AM. PHYS. SOC. 33 (1988) 1570
88MI1I MISHRAM, SATPATHY AND SATPATHY, J. PHYS. G14 (1988) 1115
88MI1J MILLENER, AIP CONF. PROC. 163 (1988) 402
88MI1N MILLENER, DOVER AND GAL, PHYS. REV. C38 (1988) 2700
88MI25 MILEK AND REIF, SOV. J. NUCL. PHYS. 48 (1988) 237
88MO05 MOHRING ET AL, PHYS. LETT. B203 (1988) 210

88MO18
88MO1B
88MO23
88MU04 MUTHER, MACHLEIDT AND BROCKMANN, PHYS. LETT. B202 (1988) 483
88MU08 MUELLER ET AL, Z. PHYS. A330 (1988) 63
88MU20 MUTO, PHYS. LETT. B213 (1988) 115
88NA10 NAGARAJAN ET AL, NUCL. PHYS. A485 (1988) 360
88NI05 NISHIZAKI, KURASAWA AND SUZUKI, PHYS. LETT. B209 (1988) 6
88NO1B NOVIKOV ET AL, PROC. 38TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL.,
BAKU, USSR, NAUKA (1988) 561
88OS05 OSMAN, ANN. PHYS. 45 (1988) 379
88OS1C OSET, NUCL. PHYS. B304 (1988) 820
$880 T 04$ OTTENSTEIN, WALLACE AND TJON, PHYS. REV. C38 (1988) 2272
88OT05 OTTENSTEIN, WALLACE AND TJON, PHYS. REV. C38 (1988) 2289
88PA05 PACHECO, MAGLIONE AND BROGLIA, PHYS. REV. C37 (1988) 2257
88PA1H PACHECO AND MACHADO, ASTRON. J. 96 (1988) 365
88PA20 PAL, NUCL. PHYS. A486 (1988) 179
88PA21 PAPP, PHYS. REV. C38 (1988) 2457
88PAZZ PATE ET AL, BULL. AM. PHYS. SOC. 33 (1988) 978
88PE09 PETROVICH ET AL, PHYS. LETT. B207 (1988) 1
88PE12 PERNG ET AL, PHYS. REV. C38 (1988) 514
88PE1F PENG, AIP CONF. PROC. 163 (1988) 160
88PE1H PENG, AIP CONF. PROC. 176 (1988) 39
88PI1E PILE, AIP CONF. PROC. 176 (1988) 719
88PO1A POULIOT ET AL, BULL. AM. PHYS. SOC. 33 (1988) 1179
88PO1E POPPELIER ET AL, AIP CONF. PROC. 164 (1988) 334
88PO1G POYARKOV, PROC. 38TH MTG. NUCL. SPECTROSCOPY STRUC. AT. NUCL., BAKU, USSR, NAUKA (1988) 457
88PO1H POVH, PROG. PART. NUCL. PHYS. 20 (1988) 353
88PR05 PRICE AND WALKER, PHYS. REV. C38 (1988) 2860
88RA02 RAY ET AL, PHYS. REV. C37 (1988) 224
88RA15 RACKERS ET AL, PHYS. REV. C37 (1988) 1759
88RA1G RAE, INTL J. MOD. PHYS. A3 (1988) 1343
88RE1A REINHARD ET AL, PHYS. REV. C37 (1988) 1026
88RE1E REAMES, ASTROPHYS. J. 330 (1988) L71
88RO01 ROUSSEL-CHOMAS ET AL, NUCL. PHYS. A477 (1988) 345
88RO09 ROTTER, J. PHYS. G14 (1988) 857
88RO11 ROSENTHAL ET AL, ANN. PHYS. 184 (1988) 33
88RO1L ROLFS, BULL. AM. PHYS. SOC. 33 (1988) 1712
88RO1M ROOS, AIP CONF. PROC. 163 (1988) 210
88RO1R ROTTER, FORTSCHR. PHYSIK 36 (1988) 781
88RU01 RUBCHENYA AND YAVSHITS, Z. PHYS. A329 (1988) 217
88RU04 RUFA ET AL, PHYS. REV. C38 (1988) 390
88RY03 RYCKEBUSCH ET AL, NUCL. PHYS. A476 (1988) 237
88SA03 SARACENO ET AL, PHYS. REV. C37 (1988) 1267
88SA04 SAMUEL ET AL, PHYS. REV. C37 (1988) 1314
88SA19 SATO, PHYS. REV. C37 (1988) 2902
88SA1B SALTZBERG ET AL, BULL. AM. PHYS. SOC. 33 (1988) 988
88SA24 SALCEDO ET AL, NUCL. PHYS. A484 (1988) 557
88SA31 SANOUILLET ET AL, NUOVO CIM. A99 (1988) 875
88SAZY SAHA ET AL, BULL. AM. PHYS. SOC. 33 (1988) 1022
88SC14 SCHUMACHER ET AL, PHYS. REV. C38 (1988) 2205
88SE11 SEVERIJNS ET AL, HYPERFINE INTERACT. 43 (1988) 415
88SE1E SEMJONOV ET AL, PHYS. REV. C38 (1988) 765

88SEZU
88SH03
88SH05
88SH07
88SH1E

88SH1F
88SH1H
88SI01
88SO03
88SZ02
88TA09
88TA1N
88TA1P
88TA21
88TE03
88TH02
88THZZ
88 TO 09
88TO1C
88TRZY
88TRZZ
88UM1A
88UT02
88VA03
88VAZP
88VI1A

88WA18
88WA1B
88WA1E

88WA31
88WE17
88WI16
88WI1B
88WI1F
88WI1I
88WO04
88WO09
88WU1A
88YA08
88YE1A
88ZA06
88ZH07
88ZH1G
89AB1J
89AD1B
89AL1D
89AN10
89AR02
89BA06
89BA1E BANDO ET AL, NUCL. PHYS. A501 (1989) 900

89BA2N
89BA2P
89BA2S
89BA60
89BA63
89BE02
89BE11
89BE14
89BE17
89BE2H
89BEZC
89BI1A
89BLZZ
89BO01
89BOYU
89BR14
89BU15
89CA04
89CA11
89CA13
89CA14
89CA15
89CA1L
89CA25
89CEZZ
89CH04
89CH13
89CH1X
89CH24
89CH31
89CH32
89CU03
89CU1E
89DA1C
89DE02
89DE1P
89DE22
89DO04
89DO05
89DO1I
89DR1C
89EL01
89EL02
89ES06
89ES07
89FE07
89FE1F
89FEZV
89FI03
89FI04
89FI05
89FO07
89FO1D
89FR02

BANDO, NUOVO CIM. A102 (1989) 627
BAHCALL, NEUTRINO ASTROPHYS. (PUBL. CAMBRIDGE UNIV. PRESS 1989)
BAUR AND WEBER, NUCL. PHYS. A504 (1989) 352
BARKER AND WOODS, AUST. J. PHYS. 42 (1989) 233
BATUSOV ET AL, SOV. J. NUCL. PHYS. 49 (1989) 777
BENNHOLD AND WRIGHT, PHYS. REV. C39 (1989) 927
BENNHOLD, PHYS. REV. C39 (1989) 1944
BEISE ET AL, PHYS. REV. LETT. 62 (1989) 2593
BECK ET AL, PHYS. REV. C39 (1989) 2202
BENCIVENNI ET AL, ASTROPHYS. J. 71 (1989) 109
BEHR ET AL, BULL. AM. PHYS. SOC. 34 (1989) 1832
BINI ET AL, WEIN 89 (1989) PAPER PG04
BLUMENTHAL ET AL, BULL. AM. PHYS. SOC. 34 (1989) 1155
BOGAERT ET AL, PHYS. REV. C39 (1989) 265
BORZOV AND TERTICHNY, TASHKENT (1989) 427
BRANCUS ET AL, Z. PHYS. A333 (1989) 71
BULGAC, PHYS. REV. C40 (1989) 1073
CAUVIN, GILLET AND KOHMURA, PHYS. LETT. B219 (1989) 35
CAPLAR, KOROLIJA AND CINDRO, NUCL. PHYS. A495 (1989) 185C
CAVINATO, MARANGONI AND SARUIS, NUCL. PHYS. A496 (1989) 108
CARLIN FILHO ET AL, PHYS. REV. C40 (1989) 91
CAVALLARO ET AL, PHYS. REV. C40 (1989) 98
CARSTOIU ET AL, REV. ROUM. PHYS. 34 (1989) 1165
CATFORD ET AL, NUCL. PHYS. A503 (1989) 263
CEBRA ET AL, BULL. AM. PHYS. SOC. 34 (1989) 1221
CHANT AND ROOS, PHYS. REV. C39 (1989) 957
CHOUDHURY AND GUO, PHYS. REV. C39 (1989) 1883
CHEN AND LI, ASTROPHYS. SPACE SCI. 158 (1989) 153
CHIAPPARINI AND GATTONE, PHYS. LETT. B224 (1989) 243
CHUMBALOV, ERAMZHYAN AND KAMALOV, CZECH. J. PHYS. 39 (1989) 853
CHRIEN, CZECH. J. PHYS. 39 (1989) 914
CUJEC, HUNYADI AND SZOGHY, PHYS. REV. C39 (1989) 1326
CUMMINGS, STONE AND WEBBER, BULL. AM. PHYS. SOC. 34 (1989) 1171
DABROWSKI, ACTA PHYS. POL. B20 (1989) 61
DEYOUNG ET AL, PHYS. REV. C39 (1989) 128
DEMKOV AND KARPESHIN, TASHKENT (1989) 438
DE BOER ET AL, J. PHYS. G15 (1989) L177
DOBES, PHYS. LETT. B222 (1989) 315
DONNELLY, KRONENBERG AND VAN ORDEN, NUCL. PHYS. A494 (1989) 365
DOVER ET AL, PHYS. REP. 184 (1989) 1
DRECHSEL AND GIANNINI, REP. PROG. PHYS. 52 (1989) 1083
EL-SHABSHIRY, FAESSLER AND ISMAIL, J. PHYS. G15 (1989) L59
ELSTER AND TANDY, PHYS. REV. C40 (1989) 881
ESWARAN ET AL, PHYS. REV. C39 (1989) 1856
ESBENSEN AND VIDEBAEK, PHYS. REV. C40 (1989) 126
FERNANDEZ, LOPEZ-ARIAS AND PRIETO, Z. PHYS. A334 (1989) 349
FELDMEIER, SCHONHOFEN AND CUBERO, NUCL. PHYS. A495 (1989) 337C
FELDMAN ET AL, BULL. AM. PHYS. SOC. 34 (1989) 1232
FILHO ET AL, PHYS. REV. C39 (1989) 884
FINK ET AL, PHYS. LETT. B218 (1989) 277
FIELDS ET AL, PHYS. LETT. B220 (1989) 356
FONTE ET AL, NUCL. PHYS. A495 (1989) 43C
FOWLER, NATURE 339 (1989) 345
FRIEDRICH AND VOEGLER, PHYS. LETT. B217 (1989) 220

89FR04
89FU01
89FU02
89FU05
89FU10
89FU1J
89FU1N
89GA04
89GA05
89GA09
89GA26
89GE1A
89GO1F
89GR05
89GR06
89GR13
89GR1J

89GU06
89GU1I
89GU1J
89GU1Q
89HA07
89HA24
89HA29
89HA32
89HAZY
89HE04
89HE21
89HO10
89HU1C
89HY1B
89JE07
89.JI1A

89JI1D JIANG ET AL, PHYS. REV. C40 (1989) R1857
89JO1B JOHNSON, CZECH. J. PHYS. 39 (1989) 822
89KA02 KALEN ET AL, PHYS. REV. C39 (1989) 340
89KA24
89KA28
89KA35
89KA37
89KE03
89KE05
89KEZZ
89KH01
89KH1E
89KO10
89KO23 KONDO, ROBSON AND SMITH, PHYS. LETT. B227 (1989) 310
89KO29 KOVASH ET AL, PHYS. REV. C40 (1989) R1093
89KO2A KOLDE, SAO PAULO (1989) 326
89KO37 KOUTROULOS, J. PHYS. G15 (1989) 1659
89KO55 KOZYR AND SOKOLOV, BULL. ACAD. SCI. USSR 53 (1989) 194
89KRZX KRYGER AND KOLATA, BULL. AM. PHYS. SOC. 34 (1989) 1156

89KU30
89KU31
89LA19
89LA1G
89LA1I
89LE12
89LE16
89LE23
89LE24
89LH02
89LI01
89LI1G
89LI1H
89LI1I
89MA06
89MA08
89MA23
89MA30
89MA41
89MA45
89MC0
89ME1
MEWALDT AND STONE, ASTROPHYS. J. 337 (1989) 959
89MI0
89MI1
89MO1
89NA01
89NE02
89OB1B
89OR02
89OR07
89PI01
89PI07
89PI11
89PI1F
89PLZU
89PO05
89PO06
89PO07
89PO1K
89RA02
89RA15
89RA16
89RA17
89RE08
89RE1C
89RI1E
89RY01
89RY06
89SA10
89SA14
89SAZZ SAWAFTA ET AL, BULL. AM. PHYS. SOC. 34 (1989) 1141
89SC1I SCHMIDT ET AL, PHYS. LETT. B229 (1989) 197

89SE06
89SE07
89SH13
89SH27
89SI09
89SP01
89SP1G
89ST08
89SU01
89SU05
89SU1I
89TA04
89TA16
89 TA 17
89TA19
89TA1T
89TA1Y
89TA24
89TA26
89TE02
89TE06
89TH1B
89 TH 1 C
89TH1D 89 TO 11
89VA04
89VA09
89VI09
89VI1D
89VI1E
89 VO 19
89VO1F
89WA0
89WA16
89WA2
89WAZZ
89WE1E
89WE1I
89WI1E
89WI20
89WU1C WU, YANG AND LI, HIGH ENERGY PHYS. NUCL. PHYS. 13 (1989) 75
89WUZZ WUOSMAA AND ZURMUHLE, BULL. AM. PHYS. SOC. 34 (1989) 1187
89YA15
89YI1A
89YO02
89YO09
89ZHZY ZHOU ET AL, BULL. AM. PHYS. SOC. 34 (1989) 1800
89ZO1A ZOFKA, CZECH. J. PHYS. 39 (1989) 925
89ZUZZ ZURMUHLE ET AL, BULL. AM. PHYS. SOC. 34 (1989) 1810
90AB07 ABBONDANNO ET AL, J. PHYS. G16 (1990) 1517
90AB10 ABBONDANNO ET AL, PHYS. LETT. B249 (1990) 396
90AB1D ABRAAMYAN ET AL, SOV. J. NUCL. PHYS. 51 (1990) 94
90AB1E ABIA, CANAL AND ISERN, ASTROPHYS. AND SPACE SCI. 170 (1990) 361

90AB1G
90ADZT
90ADZU
90AJ01
90AL05
90AM06
90AR03
90AR11
90AS06
90AZZY
90BA1M
90BA1Z
90BL16
90BL1H
90BL1K
90BO01
90BO1X
90BO31
90BR1Q
90BRZY
90BU27
90CA09
90CA32
90CA34
90CH13
90CO19
90CO29
90CR02
90DA03
90DA14
90DA1Q
90DE16
90DE1M
90DE35
90EL01
90ER09
90FEZY
90FU06
90GL02
90GL09
90GOZN
90HA35
90HA38
90HJ02
90HO1I
90HO1Q
90HO24
90IM01
90IR01

90JI02
90JI1C
90KE03

ABEL ET AL, NUCL. INSTRUM. METHODS PHYS. RES. B45 (1990) 100
ADODIN ET AL, LENINGRAD (1990) 321
ADODIN ET AL, LENINGRAD (1990) 320
AJZENBERG-SELOVE, NUCL. PHYS. A506 (1990) 1
ALAM AND MALIK, PHYS. LETT. B237 (1990) 14
AMUSYA ET AL, SOV. J. NUCL. PHYS. 52 (1990) 796
ARELLANO, BRIEVA AND LOVE, PHYS. REV. C41 (1990) 2188
ARELLANO, BRIEVA AND LOVE, PHYS. REV. C42 (1990) 652
ASHEROVA, SMIRNOV AND FURSA, BULL. ACAD. SCI. USSR 54 (1990) 131
AZZONZ AND BENDJABALLAH, BULL. AM. PHYS. SOC. 35 (1990) 1720
BARTHE ET AL, NUCL. INSTRUM. METHODS PHYS. RES. B45 (1990) 105
BARONI ET AL, NUCL. PHYS. A516 (1990) 673
BLOKHINTSEV ET AL, BULL. ACAD. SCI. USSR 54 (1990) 190
BLECHER ET AL, NUCL. PHYS. B PROC. SUPPL. 13 (1990) 322
BLAES ET AL, ASTROPHYS. J. 363 (1990) 612
BOHNE ET AL, PHYS. REV. C41 (1990) R5
BONETTI AND CHIESA, MOD. PHYS. LETT. A5 (1990) 619
BOFFI ET AL, NUCL. PHYS. A518 (1990) 639
BROWN, BULL. AM. PHYS. SOC. 35 (1990) 940
BRIGHT AND COTANCH, BULL. AM. PHYS. SOC. 35 (1990) 927
BUBALLA ET AL, NUCL. PHYS. A517 (1990) 61
CANNATA, DEDONDER AND GIBBS, PHYS. REV. C41 (1990) 1637
CARSTANJEN ET AL, NUCL. INSTRUM. METHODS PHYS. RES. B51 (1990) 152
CASTEL, OKUHARA AND SAGAWA, PHYS. REV. C42 (1990) R1203
CHIANG, OSET AND DE CORDOBA, NUCL. PHYS. A510 (1990) 591
COKER AND RAY, PHYS. REV. C42 (1990) 659
COOPER AND MACKINTOSH, NUCL. PHYS. A517 (1990) 285
CRESPO, JOHNSON AND TOSTEVIN, PHYS. REV. C41 (1990) 2257
DASMAHAPATRA ET AL, NUCL. PHYS. A509 (1990) 393
DAWSON AND FURNSTAHL, PHYS. REV. C42 (1990) 2009
DARWISH ET AL, APPL. RADIAT. ISOT. 41 (1990) 1177
DE WITT HUBERTS, J. PHYS. G16 (1990) 507
DEGTYARENKO ET AL, Z. PHYS. A335 (1990) 231
DE PAULA AND CANTO, PHYS. REV. C42 (1990) 2628
ELSTER ET AL, PHYS. REV. C41 (1990) 814
ERMER ET AL, COLLOQ. PHYS. C6 (1990) 431
FELDMAN ET AL, BULL. AM. PHYS. SOC. 35 (1990) 1038
FUJIMOTO, NUCL. INSTRUM. METHODS PHYS. RES. B45 (1990) 49
GLEISSL ET AL, ANN. PHYSIQUE 197 (1990) 205
GLASHAUSSER, J. PHYS. VI COLLOQ. C6 (1990) 577
GOVOROV ET AL, LENINGRAD (1990) 254
HAXTON AND JOHNSON, PHYS. REV. LETT. 65 (1990) 1325
HARA, HECHT AND SUZUKI, PROG. THEOR. PHYS. 84 (1990) 254
HJORVARSSON AND RYDEN, NUCL. INSTRUM. METHODS PHYS. RES. B45 (1990)
36
HOLLOWELL AND IBEN, ASTROPHYS. J. 349 (1990) 208
HODGSON, CONTEMP. PHYS. 31 (1990) 99
HOCH AND MANAKOS, Z. PHYS. A337 (1990) 383
IMANISHI, MISONO AND VON OERTZEN, PHYS. LETT. B241 (1990) 13
IRMSCHER, BUCHAL AND STRITZKER, NUCL. INSTRUM. METHODS PHYS. RES.
B51 (1990) 442
JI ET AL, PHYS. REV. C41 (1990) 1736
JIN ET AL, NUCL. PHYS. A506 (1990) 655
KELLY ET AL, PHYS. REV. C41 (1990) 2504

90KH04
90KH05
90 KO 18
90KO1X
90KO2C
90KO36
90KR14
90KR16
90KR1D
90LA1J
90LI10
90LI1Q
90LO11
90LO20
90MA63
90MC06
90MEZV
90MO1K
90MO36
90MU15
90NA15
90NE12
90OH04
90OL01
900P01
90PAZW
90PH02
90PI05
90PO04
90RA12
90RE16
90RE1E
90RO1C
90SA1O

90SA27
90SE04
90SE11
90SE1H
90SH10
90SH1D SHIBATA ET AL, REPORT JAERI-M 90-012, JPN. ATOMIC ENERGY RES INST., TOKAI, IBARAKI, JPN, FEB. 1990
90SL01 SLAVOV ET AL, J. PHYS. G16 (1990) 395
90SN1A SNOVER, BULL. AM. PHYS. SOC. 35 (1990) 1032
90TA21 TANG, SRINIVASAN AND AZZIZ, PHYS. REV. C42 (1990) 1598
90TA31 ZHENQIANG AND YUNTING, CHIN. J. NUCL. PHYS. 12 91990) 201
90TH1D THIEL, J. PHYS. G16 (1990) 867
90TJ01 TJON, J. PHYS. IV COLLOQ. C6 (1990) 111
$90 T O 09$ TONG ET AL, NUCL. INSTRUM. METHODS PHYS. RES. B45 (1990) 30
90 TR 02 TRCKA ET AL, PHYS. REV. C41 (1990) 2134
90VA07 VAN HOOREBEKE ET AL, PHYS. REV. C42 (1990) R1179
90VA08 VANDERWERF, PHYS. SCR. T32 (1990) 43
90WA01 WADA, YAMAGUCHI AND HORIUCHI, PHYS. REV. C41 (1990) 160
90WE10 WEISS ET AL, NUCL. INSTRUM. METHODS PHYS. RES. A292 (1990) 359

90WO09 90WO10 90XE01
90YE02
90ZHZV 91AB1C 91AB1F 91AJ01 91AL02 91AN1E 91AR06 91AR11 91AR1K

91BA1K
91BA1M
91 BA 44
91BAZW
91BE01
91BE05
91BE1E
91BE45
91BL14
91 BO 02
91 BO 10
91 BO 26
91 BO 29
91BO39
91CA1C
91CE09
91CH28
91CH39
91CI08
91 CO 12
91CO13
91CR04
91CR06
91CR1A
91CS01
91DA05
91DE11
91DE15
91DU04
91ER03
91ES1B
91FE06
91FI08
91FL01
91GA03
91GA07
91GL03
91GM02
91 GO 12
91GO1F GOKALP AND YILMAZ, DOGA TURK FIZ. ASTROFIZ. DERG. 15 (1991) 402

```
91GO1G GOKALP, YALCIN AND YILMAZ, DOGA TURK FIZ. ASTROFIZ. DERG. }15\mathrm{ (1991)
    374
91GO25 GONCHAROV ET AL, SOV. J. NUCL. PHYS. 54 (1991) 552
91HA15 HATSUDA, HOGAASEN AND PRAKASH, PHYS. REV. LETT. }66\mathrm{ (1991) }285
91HE16 HERNDL ET AL, PHYS. REV. C44 (1991) R952
91HI05 HICKS ET AL, PHYS. REV. C43 (1991) }255
91HO03 HOIBRATEN ET AL, PHYS. REV. C43 (1991) }125
91HU10 HUMBLET, FILIPPONE AND KOONIN, PHYS. REV. C44 (1991) }253
91IS1D ISKRA, XXTH INT. SYMP. ON NUCL. PHYS., CASTLE GAUSSIG, WORLD SCIEN-
    TIFIC (1991) }5
91KA09 KAWAHIGASHI AND ICHIMURA, PROG. THEOR. PHYS. 85 (1991) }82
91KA12 KARADZHEV ET AL, SOV. J. NUCL. PHYS. 53 (1991) }20
91KA19 KANEKO, LEMERE AND TANG, PHYS. REV. C44 (1991) }158
91KA22 KAKI, NUCL. PHYS. A531 (1991) 478
91KE02 KELLY ET AL, PHYS. REV. C43 (1991) }127
91KH08 KHOA ET AL, PHYS. LETT. B260 (1991) }27
91KI08 KING ET AL, PHYS. REV. C44 (1991) }107
91KN03 KNIEST ET AL, PHYS. REV. C44 (1991) 491
91KN04 KNOBLES AND UDAGAWA, NUCL. PHYS. A533 (1991) }18
91KO18 KOEPF AND RING, Z. PHYS. A339 (1991) }8
91KO1C KONG AND LIU, CHIN. PHYS. }11\mathrm{ (1991) }34
91KO1P KOEHLER AND O'BRIEN, AIP CONF. PROC. 238 (1991)}89
91KO23 KOEPF, SHARMA AND RING, NUCL. PHYS. A533 (1991) }9
91KO31 KOEHLER AND GRAFF, PHYS. REV. C44 (1991) }278
91KO40 KOZYR, IZV. AKAD. NAUK SSSR 55 (1991) }14
91LA02 LAGU AND SINGH, NUCL. PHYS. A528 (1991) }52
91LE06 LEMAIRE ET AL, PHYS. REV. C43 (1991) }271
91LE13 LEBEDEV AND TRYASUCHEV, J. PHYS. G17 (1991) }119
91LE14 LEIDEMANN, ORLANDINI AND TRAINI, PHYS. REV. C44 (1991)}170
91LI25 LICHTENHALER ET AL, PHYS. REV. C44 (1991)}115
91LI28 LIU ET AL, NUCL. PHYS. A534 (1991) }2
91LI29 LIU ET AL, NUCL. PHYS. A534 (1991) }4
91LI41 LI, ZHAO AND FANG, CHIN. J. NUCL. PHYS. 13 (1991) }22
91MA29 MAJUMDAR, SAMANTA AND SAMADDAR, J. PHYS. G17 (1991)}138
91MA33 MAVROMATIS, ELLIS AND MUTHER, NUCL. PHYS. A530 (1991) }25
91MA39 MACGREGOR ET AL, NUCL. PHYS. A533 (1991) }26
91MC08 MCGLONE AND JOHNSON, NUCL. INSTRUM. METHODS PHYS. RES. B61 (1991)
    201
91MO1B MOTAROU ET AL, PHYS. REV. C44 (1991) }36
91MU04 MUTHER AND SKOURAS, J. PHYS. G17 (1991) L27
91NA05 NAVILIAT-CUNCIC ET AL, J. PHYS. G17 (1991) }91
91NI02 NIEVES ET AL, PHYS. REV. C43 (1991) }193
91OM03 OMAR, SAAD AND DARWISH, APPL. RADIAT. ISOT. 42 (1991) }82
91OR01 ORR ET AL, PHYS. LETT. B258 (1991) }2
91OR02 ORYU ET AL, NUCL. PHYS. A534 (1991) }22
91OW01 OWENS, MATTHEWS AND ADAMS, J. PHYS. G17 (1991) }26
91PA06 PACATI AND RADICI, PHYS. LETT. B257 (1991) }26
91PA1C PAVLENKO, ASTRON. ZH. 68 (1991) 431
91PH01 PHAM, NUOVO CIM. A104 (1991) }145
91PI07 PILE ET AL, PHYS. REV. LETT. 66 (1991) }258
91RA14 RASHDAN, FAESSLER AND WADIA, J. PHYS. G17 (1991) }140
91RA1C RAITERI ET AL, ASTROPHYS. J. }371\mathrm{ (1991) }66
91RE02 REEDER ET AL, PHYS. REV. C44 (1991) }143
91RU1B RUAN, CHIN. J. NUCL. PHYS. }13\mathrm{ (1991) }37
91SA1F SAGE, MAUERSBERGER AND HENKEL, ASTRON. ASTROPHYS. 249 (1991) }3
```

91SA20
91SC26
91 SE 12
91SH08
91SH1F
91SK02
91 TA11
91TE03
91TH04
91TO03
91UM01
91VA1F
91VO02
91YA08
91ZH05
91ZH06
91ZH16
91ZH17
92AV1B
92BA31
92BA50
92BE03
92BE21
92BO04
92BO07
92BR05
92CA04
92 CH 1 E
92CL04
92CR05
92DA19
92DE06
92EN02
92FA04
92FR05
92GO07
92IG01
92JA04
92JA13
92KA1K
92KA21
92KW01
92LA01
92LA08
92LI1D
92LU01
92MA09
92MA45
92MI01
92MI1H
92NA04
92OL02
92PH01
92PY1A

SAMANTA AND MUKHERJEE, PHYS. REV. C44 (1991) 2233
SCHMID, MUTHER AND MACHLEIDT, NUCL. PHYS. A530 (1991) 14
SEMENOV ET AL, SOV. J. NUCL. PHYS. 54 (1991) 429
SHEN, FENG AND ZHUO, PHYS. REV. C43 (1991) 2773
SHELINE, SOOD AND RAGNARSSON, INT. J. MOD. PHYS. A6 (1991) 5057
SKOURAS AND MUTHER, NUCL. PHYS. A534 (1991) 128
TAZAWA AND ABE, PROG. THEOR. PHYS. 85 (1991) 567
TERUYA, DE TOLEDO PIZA AND DIAS, PHYS. REV. C44 (1991) 537
THIEL, PARK AND SCHEID, J. PHYS. G17 (1991) 1237
TOKI ET AL, NUCL. PHYS. A524 (1991) 633
UMAR ET AL, PHYS. REV. C44 (1991) 2512
VARIAMOV ET AL, BULL. ACAD. SCI. 55 (1991) 137
VOEGLER ET AL, PHYS. REV. C43 (1991) 2172
YAMAGUCHI, PHYS. REV. C44 (1991) 1171
ZHU, MANG AND RING, PHYS. LETT. B254 (1991) 325
ZHANG AND ONLEY, NUCL. PHYS. A526 (1991) 245
ZHANG AND ONLEY, PHYS. REV. C44 (1991) 1915
ZHANG AND ONLEY, PHYS. REV. C44 (1991) 2230
AVOTINA, EROKHINA AND LEMBERG, SOV. J. NUCL. PHYS. 55 (1992) 1777
BAUER ET AL, PHYS. REV. C46 (1992) R20
BAYE AND TIMOFEYUK, PHYS. LETT. B293 (1992) 13
BEREZHNOY, MIKHAILYUK AND PILIPENKO, J. PHYS. G18 (1992) 85
BERHEIDE ET AL, Z. PHYS. A343 (1992) 483
BORROMEO ET AL, NUCL. PHYS. A539 (1992) 189
BOFFI ET AL, NUCL. PHYS. A539 (1992) 597
BRUNE AND KAVANAGH, PHYS. REV. C45 (1992) 1382
CARRASCO AND OSET, NUCL. PHYS. A536 (1992) 445
CHEN AND MA, HIGH ENERGY PHYS. NUCL. PHYS. 16 (1992) 123
CLARKE, J. PHYS. G18 (1992) 917
CRESPO, JOHNSON AND TOSTEVIN, PHYS. REV. C46 (1992) 279
D'ARRIGO ET AL, NUCL. PHYS. A549 (1992) 375
DE BLASIO ET AL, PHYS. REV. LETT. 68 (1992) 1663
ENDISCH ET AL, NUCL. INSTRUM. METHODS PHYS. RES. B62 (1992) 513
FALLAVIER ET AL, NUCL. INSTRUM. METHODS PHYS. RES. B64 (1992) 83
FRITSCH ET AL, PHYS. REV. LETT 68 (1992) 1667
GOKALP AND YILMAZ, NUOVO CIM. 105 (1992) 695
IGASHIRA, KITAZAWA AND TAKAURA, NUCL. PHYS. A536 (1992) 285
JAIN, PHYS. REV. C45 (1992) 2387
JAQUA ET AL, PHYS. REV. C46 (1992) 2333
KANEKO AND TANG, PHYS. LETT. B296 (1992) 285
KANEKO, LEMERE AND TANG, PHYS. REV. C46 (1992) 298
KWASNIEWICZ AND JARCZYK, NUCL. PHYS. A541 (1992) 193
LAYMON, BROWN AND BALAMUTH, PHYS. REV. C45 (1992) R576
LANE, NUCL. INSTRUM. METHODS PHYS. RES. B64 (1992) 448
LI AND ZHOU, HIGH ENERGY PHYS. NUCL. PHYS. 16 (1992) 229
LUDWIG ET AL, PHYS. LETT. B274 (1992) 275
MACK ET AL, PHYS. REV. C45 (1992) 1767
MARCOS, VAN GIAI AND SAVUSHKIN, NUCL. PHYS. A549 (1992) 143
MILLENER, HAYES AND STROTTMAN, PHYS. REV. C45 (1992) 473
MINAMISONO ET AL, HYPERFINE INTERACT. 73 (1992) 347
NAQVI AND DRAAYER, NUCL. PHYS. A536 (1992) 297
OLKHOVSKY AND DOROSHKO, EUROPHYS. LETT. 18 (1992) 483
PHAM ET AL, PHYS. REV. C46 (1992) 621
PYYKKÖ, Z. NATURFORSCH. A47 (1992) 189

```
92QI02 QI ET AL, CHIN. J. NUCL. PHYS. 14 (1992) }1
92RY02 RYCKEBUSCH ET AL, PHYS. LETT. B291 (1992) }21
92SA1F SARANGI AND SATPATHY, PRAMANA 39 (1992) 279
92SH11 SHOPPA AND KOONIN, PHYS. REV. C46 (1992) }38
92SI01 SIMS ET AL, PHYS. REV. C45 (1992) 479
92SU02 SUZUKI, SAGAWA AND ARIMA, NUCL. PHYS. A536 (1992) }14
92TO04 TOWNER, NUCL. PHYS. A542 (1992) }63
92WA1L WARBURTON, BROWN AND TOWNER, PRIVATE COMMUNICATION
92WA22 WARBURTON AND BROWN, PHYS. REV. C46 (1992) }92
92WA25 WARBURTON, BROWN AND MILLENER, PHYS. LETT. B293 (1992)}
92WI13 WILKERSON ET AL, NUCL. PHYS. A549 (1992) 223
92ZH07 ZHENG, SPRUNG AND ZAMICK, NUCL. PHYS. A540 (1992) 57
92ZU01 ZUBANOV ET AL, PHYS. REV. C45 (1992) }17
92ZU1B ZUBANOV ET AL, PHYS. REV. C 46 (1992) 1147
93CH1A CHOU, WARBURTON AND BROWN, PHYS. REV. C47 (1993) }16
```


[^0]: ${ }^{1}$ We are very grateful to Dr. John Millener for providing these comments on the shell model for the $A=16$ system.

[^1]: Reviews:
 86CH1I Summary - hypernuclear sessions of "Interactions Between Particle \& Nuclear Physics"
 86CO1B (e, $\left.\mathrm{e}^{\prime} \mathrm{K}^{+}\right)$\& low-lying hypernuclear states using relativistic field theory (A)
 86GA1H Hypernuclear interactions
 88CH48 Studies of hypernuclei by associated production
 88GA1A Recent developments in hypernuclear spectroscopy
 88GA1I Issues in hypernuclear physics
 88HA41 Nuclear physics with strange probes
 88PO1H Flavour and the structure of hadrons and nuclei
 88WA1B Production of hypernuclei in the (K, p) reaction
 89CH32 Recent experiments in novel nuclear excitations at the BNL AGS
 89DO1I On the production \& spectroscopy of hypernuclei
 89RE1C Relativistic mean-field description of nuclei and nuclear dynamics
 89ZO1A Hypernuclear physics
 Other articles:
 86BA1H Pionic decay of hypernuclei
 86GA14 Calc. of $\left(\mathrm{K}^{-}, \pi\right)$ hypernuclear yields for stopped kaons in ${ }^{12} \mathrm{C} \& 1 \mathrm{p}_{\Lambda}$ states in ${ }_{\Lambda}^{16} \mathrm{O}$

