# Energy Levels of Light Nuclei A = 18

D.R. Tilley<sup>a,b</sup>, H.R. Weller<sup>a,c</sup>, C.M. Cheves<sup>a,c</sup>, and R.M. Chasteler<sup>a,c</sup>

Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 Department of Physics, Duke University, Durham, NC 27708-0305

Abstract: Our evaluation of A = 18-19 was published in *Nuclear Physics A595* (1995), p. 1. This version of A = 18 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. References, figures, and the A = 19 evaluation are available elsewhere on this web site.

(References closed as of October 31, 1994)

This work is supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University). Not observed: See (82AV1A, 83ANZQ).

### <sup>18</sup>Li

 $^{18}{\rm Li}$  has not been observed. Shell model calculations described in (88PO1E) predict the ground state magnetic dipole moment and charge and matter radii.

### <sup>18</sup>Be

<sup>18</sup>Be has not been observed. It is predicted to have a mass excess of 78.43 MeV: see (78AJ03). <sup>18</sup>Be is then unstable with respect to breakup into <sup>16</sup>Be+2n, <sup>15</sup>Be+3n, <sup>14</sup>Be+4n, <sup>13</sup>Be+5n, <sup>12</sup>Be+6n, <sup>11</sup>Be+7n and <sup>10</sup>Be+8n by, respectively 3.01, 3.04, 6.26, 2.92, 4.93, 1.76, and 1.26 MeV, using the masses for the residual nuclei adopted by (91AJ01, 93AU05, 93TI07). See also (83ANZQ, 89OG1B).

### $^{18}B$

<sup>18</sup>B has not been observed in the bombardment of Ta by 44 MeV/A Ar ions (85DE1A, 85LA03, 86PO13) or in the bombardment of Be by 12 MeV/A <sup>56</sup>Fe ions (84MU27). <sup>18</sup>B has been predicted to have a mass excess of 52.3 MeV (93AU05). It would then be unstable with respect to <sup>17</sup>B + n by 0.5 MeV: see (78AJ03, 93AU05). <sup>18</sup>B is calculated to have  $J^{\pi} = 4^{-}$  and to have excited states at 0.62, 0.86 and 1.59 MeV with  $J^{\pi} = 1^{-}$ ,  $2^{-}$  and  $2^{-}$  (85PO10). The shell model calculations of (92WA22) predict  $J^{\pi} = 2^{-}$  for the ground state with the first three excited states at 0.45, 0.52 and 0.839 MeV with  $J^{\pi} = 4^{-}$ ,  $2^{-}$ ,  $3^{-}$ . See also (87AJ02, 88GU1A).

### $^{18}C$

### GENERAL: See Table 18.1.

Mass of <sup>18</sup>C: The atomic mass excess of <sup>18</sup>C adopted by (93AU05) is  $24.920\pm0.030$  MeV, based on the *Q*-value of the <sup>48</sup>Ca(<sup>18</sup>O, <sup>18</sup>C)<sup>48</sup>Ti reaction. <sup>18</sup>C is then bound by 4.188 MeV with respect to breakup into <sup>17</sup>C + n. See (82FI10, 87AJ02, 92WA22).

| Tał          | ole | 18.1   |
|--------------|-----|--------|
| ${}^{18}C$ - | - G | eneral |

| Reference  | Description                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------|
| Reviews:   |                                                                                                        |
| 87GI1C     | Pion-nucleus interactions                                                                              |
| 89AJ1A     | Summary of recent work involving light nuclei (Sec. $4.2$ covers $^{18}$ C)                            |
| 89DE1X     | Exotic light nuclei: production, mass meas., decay, & complex reactions                                |
| 89VO1F     | History of & future prospects for production of nuclei far from stability                              |
| 94BO1H     | Summary of recent research employing radioactive nuclear beams                                         |
| Other Arti | cles:                                                                                                  |
| 87BL18     | Gogny's effective interaction used to calc. ground & excited states of light nuclei                    |
| 87SN1A     | Partitioning of 2 component particle syst. & isotope distrib. in nucl. fragmentation                   |
| 88PO1E     | Shell-model calcs. of exotic light nucl. ground state props. compared to exp. data                     |
| 89RA16     | Predxns. from systematics & tabulation of B(E2; $0^+_1 \rightarrow 2^+_1$ ) values for even-even nucl. |
| 89SA10     | Total cross sections of reactions induced by neutron-rich light nuclei                                 |
| 90LO11     | Self-consistent calcs. of light neutron-rich nuclei using density-functional method                    |
| 90 ST08    | 2nd-generation microscopic predictions of $\beta$ -decay half-lives of neutron-rich nuclei             |
| 91RE02     | Meas. half-lives & neutron emission probabilities of neutron-rich Li-Al nuclei                         |
| 92LA13     | Influence of separation energy on the radius of neutron-rich nuclei                                    |
| 92WA22     | Effective interactions for the 0p1s0d nuclear shell-model space                                        |
| 93PA14     | Relativistic mean field theory; calc. binding energy, rms radii, deformation parameters                |

Table 18.2 Energy Levels of  $^{18}C$ 

| $E_{\rm x}$ in $^{18}{\rm C}$ | $J^{\pi}; T$ | $	au_{1/2}$ | Decay         | Reactions |
|-------------------------------|--------------|-------------|---------------|-----------|
| $({\rm MeV}\pm {\rm keV})$    |              | (msec)      |               |           |
| 0                             | $(0^+); 3$   | $95\pm10$   | $(\beta^{-})$ | 2, 3      |
| $1.62\pm20$                   | $(2^+); 3$   |             |               | 2,  3     |

1. 
$${}^{18}C(\beta^{-}){}^{18}N$$
  $Q_{\rm m} = 11.807$ 

The half-life of <sup>18</sup>C has been measured to be  $66^{+25}_{-18}$  ms (88MU08),  $78^{+20}_{-15}$  ms (89LE16),  $94 \pm 27$  ms (91RE02),  $(95 \pm 10)$  ms (91PR03).

Branching to states in <sup>18</sup>N has been measured by (91PR03) and is presented here in Table 18.6. These authors also measured the total branching probability to gamma emitting states plus the ground state of <sup>18</sup>N to be  $P_{\gamma} = (81 \pm 5)\%$ . The  $\beta$ -delayed neutron emission probability is  $P_n = 1 - P_{\gamma} = (19 \pm 5)\%$ . Other values reported for  $P_n$  are  $(25\pm4.5)\%$  (88MU08),  $(50\pm10)\%$  (89LE16),  $(43.3\pm6.5)\%$  (91RE02). The <sup>18</sup>C( $\beta^-$ ) decay is also discussed in the analysis of Gamow-Teller rates presented in (93CH06). Experimental Gamow-Teller matrix elements are compared with results of shell-model calculations.

2. <sup>18</sup>O(
$$\pi^-, \pi^+$$
)<sup>18</sup>C  $Q_{\rm m} = -25.706$ 

The angular distribution of the  $\pi^+$  to the ground state of <sup>18</sup>C has been measured at  $E_{\pi^-} = 164$  MeV by (84GI10) [see also for excitation function at  $\theta = 5^{\circ}$  for  $E_{\pi^-} \approx 140$  to 240 MeV]. There is also some indication of the population of an excited state at  $E_x = 1.55$  MeV (84GI10). See also (83AJ01).

3. 
$${}^{48}\text{Ca}({}^{18}\text{O}, {}^{18}\text{C}){}^{48}\text{Ti}$$
  $Q_{\rm m} = -21.434$ 

At  $E(^{18}\text{O}) = 112$  MeV the ground state and an excited state at  $1.62 \pm 0.024$  MeV are observed by (82FI10). See also (83AJ01).

### $^{18}N$

### GENERAL: See Table 18.3.

*Mass of* <sup>18</sup>*N*: The atomic mass excess derived from the *Q*-value of the <sup>18</sup>O(<sup>7</sup>Li, <sup>7</sup>Be)<sup>18</sup>N reaction and adopted by (93AU05) is  $13.117 \pm 0.020$  MeV (83PU01). <sup>18</sup>N is then stable with respect to breakup into <sup>17</sup>N + n by 2.825 MeV. See (83AJ01) for the earlier work.

1. 
$${}^{18}N(\beta^{-}){}^{18}O$$
  $Q_m = 13.899$ 

The half-life of <sup>18</sup>N is  $0.624 \pm 0.012$  sec (82OL01). The decay branches are displayed in Table 18.18. The nature of the decay leads to  $J^{\pi} = 1^{-}$  for the <sup>18</sup>N ground state (82OL01). See also (83SN03), and see the measurements on beta branching reported in

Table 18.3 $^{18}\mathrm{N}$  – General

| Reference   | Description                                                                                      |
|-------------|--------------------------------------------------------------------------------------------------|
| Reviews:    |                                                                                                  |
| 88MI1J      | Shell model transition densities for electron and pion scattering                                |
| 90TH1E      | Summary of topics presented at Workshop on Primordial Nucleosynthesis                            |
| 94BO1H      | Summary of recent research employing radioactive nuclear beams                                   |
| Other Artic | eles:                                                                                            |
| 87AN1A      | Use of LISE spectrometer at GANIL for identification of exotic light nuclei                      |
| 87RI03      | Isotopic distributions of fragments in ${}^{40}\text{Ar} + {}^{68}\text{Zn}$ at 27.6 MeV/nucleon |
| 87SA25      | LISE spectrometer at GANIL: results of search for new exotic nuclei                              |
| 89SA10      | Total cross sections of reactions induced by neutron-rich light nuclei                           |
| 91RE02      | Meas. half-lives & neutron emission probabilities of neutron-rich Li-Al nuclei                   |
| 93PA14      | Relativistic mean field theory; calc. binding energy, rms radii, deformation parameters          |

| $E_{\rm x}({\rm MeV}\pm{\rm keV})$ | $J^{\pi}; T$     | $\tau_{1/2} \; (msec)$ | Decay     | Reactions         |
|------------------------------------|------------------|------------------------|-----------|-------------------|
| 0                                  | $1^{-}; 2$       | $624\pm12$             | $\beta^-$ | 1,  3,  5,  6,  7 |
| $0.11490 \pm 0.18 \ ^{\rm a})$     | $(2^{-})^{b})$   |                        | $\gamma$  | 3,  4,  5,  7     |
| $0.58756 \pm 0.24$                 | $(2^{-})^{b})$   |                        | $\gamma$  | 3,4,7,8           |
| $0.747 \pm 10$                     | $(3^{-})^{b})$   |                        |           | 7                 |
| c)                                 |                  |                        |           |                   |
| $1.73485 \pm 0.22$ <sup>a</sup> )  | $(2^+)^{\rm d})$ |                        | $\gamma$  | 4                 |
| 2.21                               |                  |                        |           | 7                 |
| 2.42                               |                  |                        |           | 7                 |
| $2.61445 \pm 0.23$ <sup>a</sup> )  | $1^{+ a,d}$ )    |                        | $\gamma$  | 4                 |

Table 18.4 Energy Levels of  $^{18}N$ 

<sup>a</sup>) Level energies determined from γ energies reported in (91PR03).
<sup>b</sup>) Suggested by (84BA24). See also (82OL01).
<sup>c</sup>) See (84BA24) for a calculation suggesting additional states in this energy region.
<sup>d</sup>) (93CH06).

| $E_{\rm i}~({\rm MeV})$ | $J_{ m i}^{\pi}$ | $E_{\rm f}~({\rm MeV})$ | Branch (%) |
|-------------------------|------------------|-------------------------|------------|
| 0.115                   | $(2^{-})$        | 0                       | 100        |
| 0.587                   | $(2^{-})$        | 0.115                   | $100\pm16$ |
| 1.735                   | $(2^+)$          | 0                       | $33\pm8$   |
|                         |                  | 0.115                   | $38\pm9$   |
|                         |                  | 0.587                   | $29\pm10$  |
| 2.614                   | $1^{+}$          | 0                       | $49\pm8$   |
|                         |                  | 0.115                   | $22\pm 6$  |
|                         |                  | 0.587                   | $3\pm 2$   |
|                         |                  | 1.735                   | $26\pm6$   |

Table 18.5 Radiative decays in  $^{18}\mathrm{N}$   $^{\mathrm{a}})$ 

<sup>a</sup>) (91PR03).

(89ZH04) which indicate a total branching ratio to alpha-particle-emitting states in <sup>18</sup>O of at least 12.2%. A delayed-neutron emission probability  $P_n = (14.3 \pm 2.0)\%$  was measured by (91RE02). More recently a study reported by (94SC01) gave  $P_n = (2.2 \pm 0.4)\%$  for transitions to neutron unstable states in <sup>18</sup>O above  $E_x = 9.0$  MeV. See also reaction 22 under <sup>18</sup>O.

2. <sup>14</sup>C(<sup>7</sup>Li, <sup>3</sup>He)<sup>18</sup>N 
$$Q_{\rm m} = -10.121$$

The preliminary work described in (83AJ01) has not been published.

3. <sup>14</sup>C(<sup>18</sup>O, <sup>14</sup>N)<sup>18</sup>N 
$$Q_{\rm m} = -13.740$$

At  $E(^{18}\text{O}) = 92.2$  MeV groups are observed to the ground state of  $^{18}\text{N}$  (unresolved) and to an excited state at  $E_x = 575 \pm 25$  keV (80NA14).

4. 
$${}^{18}C(\beta^{-}){}^{18}N$$
  $Q_{\rm m} = 11.807$ 

See reaction 1 under <sup>18</sup>C. Branching to states in <sup>18</sup>N was measured by (91PR03) and is presented here in Table 18.6. These authors measured the total branching probability to gamma emitting states of <sup>18</sup>N to be  $P_{\gamma} = 81 \pm 5$  %. Measurements of  $\gamma$ -ray energies and branching lead to the level energies displayed in Table 18.4 and <sup>18</sup>N radiative decays in Table 18.5.

| Decay to $^{18}N^*$ | Branch <sup>a</sup> ) | $\log ft^{\rm b})$ |
|---------------------|-----------------------|--------------------|
| $({ m MeV})$        | (%)                   |                    |
| 0.115               |                       |                    |
| 0.587               | $\leq 1$              | $\geq 6.4$         |
| 1.735               | $9\pm7$               | $5.2\pm0.4$        |
| 2.614               | $72\pm10$             | $4.08\pm0.08$      |

| Tab        | ole | 18.6                                      |
|------------|-----|-------------------------------------------|
| Branchings | in  | $^{18}\mathrm{C}(\beta^-)^{18}\mathrm{N}$ |

<sup>a</sup>) (91PR03), calculated with the hypothesis that there is no direct  $\beta\text{-feeding}$  of the 0.115 MeV level. The total probability of  $\beta$  decay to gamma emitting states plus to the ground state is  $P_{\gamma} = (81 \pm 5)\%$ . The  $\beta$ -delayed neutron probability is  $P_n = 1 - P_{\gamma}$ .

<sup>b</sup>)  $\log ft$ 's were recalculated by evaluators and are slightly different from those in (91PR03) due to use of level energies from Table 18.4 and Q-values from (93AU05).

| $E_{\gamma} \; (\text{keV})$ | $E_{\rm i}~({\rm keV})$ | $E_{\rm f}~({\rm keV})$ | $I_{\gamma}^{\rm b})$ |
|------------------------------|-------------------------|-------------------------|-----------------------|
| $114.9\pm0.2$                | 115                     | 0                       | $36.5\pm7.5$          |
| $472.7\pm0.2$                | 587                     | 115                     | $10.2\pm4.0$          |
| $879.7\pm0.2$                | 2614                    | 1735                    | $18.7\pm5.0$          |
| $1147.8\pm0.4$               | 1735                    | 587                     | $8.0\pm3.7$           |
| $1619.9\pm0.3$               | 1735                    | 115                     | $10.5\pm4.1$          |
| $1734.8\pm0.4$               | 1735                    | 0                       | $9.1\pm3.6$           |
| $2025.3\pm0.8$               | 2614                    | 587                     | $2.2\pm1.5$           |
| $2499.3\pm0.4$               | 2614                    | 115                     | $15.8\pm4.8$          |
|                              |                         |                         |                       |

0

 $35.3\pm7.6$ 

Table 18.7  $\gamma$ -ray intensities in  ${}^{18}C(\beta^-){}^{18}N^{a}$ )

 $2614.2\pm0.4$ 

\_ \_

<sup>a</sup>) (91PR03). <sup>b</sup>)  $\gamma$ -ray intensities are per 100 parent decays.

2614

5. <sup>18</sup>O( $\pi^-, \pi^0$ )<sup>18</sup>N  $Q_{\rm m} = -9.305$ 

See (83AS01, 84AS05).

6. <sup>18</sup>O(t, <sup>3</sup>He)<sup>18</sup>N  $Q_{\rm m} = -13.880$ 

See (83AJ01).

7. <sup>18</sup>O(<sup>7</sup>Li, <sup>7</sup>Be)<sup>18</sup>N  $Q_{\rm m} = -14.761$  $Q_0 = -14761 \pm 20 \text{ keV} (83\text{PU01})$ 

At  $E(^{7}\text{Li}) = 52$  MeV, <sup>7</sup>Be groups are observed corresponding to the excitation of the states displayed in Table 18.4 (83PU01).

8. <sup>18</sup>O(<sup>11</sup>B, <sup>11</sup>C)<sup>18</sup>N 
$$Q_{\rm m} = -15.881$$

See (83PU01).

### 180

GENERAL: See Table 18.8.

Isotopic abundance = 
$$(0.200 \pm 0.012)\%$$
 (84DE1A).  
 $\langle r^2 \rangle^{1/2} = 2.784 \pm 0.020$  fm: see reaction 25.

 $^{18}O^{*}(1.98)$ 

 $g = -0.287 \pm 0.015$  [see (83AJ01)]

 $Q = -0.042 \pm 0.008$  b. [weighted mean of  $-0.036 \pm 0.009$  and  $-0.058 \pm 0.015$  b: see (83GR28); see also (83AJ01)].

$$B(E2; 0^+ \to 2^+) = 39.0 \pm 1.8 \ e^2 \cdot \text{fm}^4 \ [(79\text{FE06}, 83\text{GR10}); \text{ see also } (83\text{AJ01})];$$
  
= 44.8 ± 1.3  $e^2 \cdot \text{fm}^4 \ (82\text{NO04});$   
= 47.6 ± 1.0  $e^2 \cdot \text{fm}^4 \ (82\text{BA06}); \text{ see also } (87\text{RA01}).$ 

For a discussion of the hexadecapole deformation see (83GR10). See also (87RA01).

| Tal               | ole | 18.8  |   |
|-------------------|-----|-------|---|
| <sup>18</sup> O - | - G | enera | 1 |

### Shell Model

Review:

88BR1P Status of the nuclear shell model

Other Articles:

| 87CH1J | Nucl. struc. calcs. using mixed-config. shell model: effective & surface $\delta$ -interactions                   |
|--------|-------------------------------------------------------------------------------------------------------------------|
| 87LE1L | Low-lying non-normal parity states of ${}^{18}$ O & ${}^{18}$ F calculated in shell model + tensor force          |
| 87MU16 | Relativistic effects in the low-energy spectra of 1s0d-shell nuclei                                               |
| 87SH1O | Validity of M-3Y force equivalent G-matrix element for sd-shell nucl. struc. calcs.                               |
| 88BR11 | Semi-empirical effective interactions for the 1s-0d shell                                                         |
| 88FI01 | Effective interactions for sd-shell-model calculations                                                            |
| 88HI05 | Effect on Gamow-Teller strength of config. mixing and p-n correl. in e-e sd-shell nucl.                           |
| 89GU06 | Hartree-Fock & shell-model charge densities calc. for <sup>16,18</sup> O, <sup>32,34</sup> S, <sup>40,48</sup> Ca |
| 89HJ03 | Effective interactions through 3rd order for $A = 18$ nuclei with the Paris potential                             |
| 89OR02 | Empirical isospin-nonconserving Hamiltonians for shell-model calculations                                         |
| 90HJ01 | 3rd order number-conserving sets & effective interactions calc. with Bonn-Jülich potential                        |
| 90HJ03 | Choice of single-particle potential & the convergence of the effective interaction                                |
| 90MI01 | Shell model states in the <sup>18</sup> O three-body wave function from Faddeev formalism                         |
| 90SK04 | Study of $A = 18$ nuclei and the effective interaction in the sd shell                                            |
| 92FR01 | Nuclear charge radii systematics in the sd shell from muonic atom measurements                                    |
| 92HJ01 | Folded-diagram effective interactions with the Bonn meson-exchange potential model                                |
| 92JI04 | Bonn potential used to evaluate energy spectra of some light sd-shell nuclei                                      |
| 92OS01 | Spin-tensor analysis of realistic shell model interactions                                                        |
| 94VE04 | Exp. meas. & calc. of spectroscopic factors from one-proton stripping rxns. on sd-shell nucl.                     |

### Cluster models

| 88KU17  | Microscopic boson descrip. of p-n systems applied to electron scat. from <sup>18</sup> O, <sup>20</sup> Ne |
|---------|------------------------------------------------------------------------------------------------------------|
| 89FU08  | Microscopic multichannel calc. of the molecular dipole degree of freedom in $^{18}O$                       |
| 89TR18  | 2-nucleon and 4-nucleon clusters in light & heavy nuclei                                                   |
| 0000002 | Cluster stripping positions in the beau ion collisions (includes $14C(61; d)$ )                            |

900S03 Cluster-stripping reactions in the heavy-ion collisions (includes  ${}^{14}C({}^{6}Li, d){}^{18}O)$ 

### Special States

Review:

88BR1P Status of the nuclear shell model

89RA17 Compilation of exp. data on nuclear moments for ground & excited states of nucl.

Other articles:

| 87BL18 | Gogny's effective inter. used to calc. gnd. & excited states of specific spin-isospin order               |
|--------|-----------------------------------------------------------------------------------------------------------|
| 87CH1J | Nucl. struc. calcs. using mixed-config. shell model: effective & surface $\delta$ -interactions           |
| 87LE1L | Non-normal parity states of ${}^{18}$ O & ${}^{18}$ F calculated in shell model + tensor force            |
| 87LI1F | Double delta & surface delta interactions used to calc. low-lying spectra of $^{17-22}O$                  |
| 87MU16 | Relativistic effects in the low-energy spectra of 1s0d-shell nuclei                                       |
| 87SH1O | Validity of M-3Y force equivalent G-matrix element for sd-shell nucl. struc. calcs.                       |
| 87VA19 | Microscopic analysis of excitation of first $2^+$ state of <sup>18</sup> O on <sup>64</sup> Ni            |
| 88KU17 | Microscopic boson descrip. of p-n systems applied to electron scat. from $^{18}{\rm O}$ & $^{20}{\rm Ne}$ |
|        |                                                                                                           |

## Table 18.8 (continued) ${}^{18}\text{O}$ – General

| Reference                                                                                                                                                                                                                                                                                                                                                                                                                                       | Description                                                                                                                                                                                                                                                                                             |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Special States (continued)                                                                                                                                                                                                                                                                              |  |  |
| 89FU08Microscopic multichannel calculation of the molecular dipole degree of freedom in<br>Effective interactions through 3rd order for $A = 18$ nuclei with the Paris potentia<br>Empirical isospin-nonconserving Hamiltonians for shell-model calculations<br>90MI0190MI01Shell model states in the <sup>18</sup> O three-body wave function from Faddeev formation<br>Study of $A = 18$ nuclei and the effective interaction in the sd shell |                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Electromagnetic                                                                                                                                                                                                                                                                                         |  |  |
| Review:<br>89RA17<br>93EN03                                                                                                                                                                                                                                                                                                                                                                                                                     | Compilation of exp. data on nuclear moments for ground & excited states of nucl. Strengths of $\gamma$ -ray transitions in $A = 5-44$ nuclei                                                                                                                                                            |  |  |
| Other artic                                                                                                                                                                                                                                                                                                                                                                                                                                     | eles:                                                                                                                                                                                                                                                                                                   |  |  |
| 87CH1J<br>89FU08<br>89RA16                                                                                                                                                                                                                                                                                                                                                                                                                      | Nucl. struc. calcs. using mixed-config. shell model: effective & surface $\delta$ -interactions<br>Microscopic multichannel calc. of the molecular dipole degree of freedom in <sup>18</sup> O<br>Predxns. from systematics & tabulation of B(E2; $0_1^+ \rightarrow 2_1^+)$ values for even-even nucl. |  |  |

Reduced electric-octupole transition probabilities,  $B(E3; 0_1^+ \rightarrow 3_1^-)$ , for even-even nucl. Calcs. of electric quadrupole excitations in relativistic nucleus-nucleus collisions 89SP01

90NO1A

93 EG04Calc. transition probs. with angular-momentum-projected wave functions & realistic forces

### Astrophysics

| D   | •         |  |
|-----|-----------|--|
| 80  | 171011701 |  |
| TIC | VIEWS.    |  |
|     |           |  |

\_

| 88HU1E      | Chrondrules: chemical, mineralogical & isotopic constraints on theories of their origin |
|-------------|-----------------------------------------------------------------------------------------|
| 89 GU1L     | Chemical analyses of cool stars (includes isotopic abundance ratios)                    |
| 89WH1B      | Abundance ratios as a function of metallicity                                           |
| 00  A  P 10 | Nuclear reactions in astronousies                                                       |

90AR10 Nuclear reactions in astrophysics

| 90TH1E | Summary | of topics | presented at | Workshop or | n Primordial | Nucleosynthesis |
|--------|---------|-----------|--------------|-------------|--------------|-----------------|
|--------|---------|-----------|--------------|-------------|--------------|-----------------|

93MA1M Review of primordial nucleosynthesis beyond the standard big bang

Other Articles:

| 87BE1H | $^{12}C/^{13}C \& ^{16}O/^{18}O$ ratios in Venus' atmosphere from high-res. 10- $\mu$ m spectroscopy             |
|--------|------------------------------------------------------------------------------------------------------------------|
| 87FA1C | <sup>16</sup> O excess in hibonites discredits late supernova injection origin of isotopic anomalies             |
| 87SO1E | Interstellar shock waves related to high ${}^{10}\text{Be}$ & ${}^{18}\text{O}$ concentrations in ice cores      |
| 87WA1F | Abundances in red giant stars: C & O isotopes in carbon-rich molecular envelopes                                 |
| 88BE1B | Past solar activity & geomagnetism info. from ${}^{10}\text{Be}$ & ${}^{18}\text{O}$ concentrations in ice cores |
| 88BU01 | Stellar reaction rates of $\alpha$ capture on light $N \neq Z$ nuclei & astrophysical implications               |
| 88CA1N | Analytic expressions for thermonuclear reaction rates involving $Z \leq 14$ nucl.                                |
| 89JI1A | Nucleosynthesis inside thick accretion disks around massive black holes                                          |
| 89ME1C | Isotope abundances of solar coronal material derived from solar energetic particle meas.                         |
| 90MA1Z | Nuclear reaction uncertainties in standard & non-standard cosmologies                                            |
| 90ST1G | High spatial resolution isotopic CO & CS observations of M17 SW                                                  |
| 90TO1F | $C^{18}O$ in the Chameleon 1 dark cloud (a nearby site of low-mass star formation)                               |
| 91KO31 | $^{17}O(n, \alpha)^{14}C$ cross section measured from 25 meV to approximately 1 MeV                              |
| 91SA1F | Extragalactic ${}^{18}O/{}^{17}O$ ratios imply high-mass stars preferred in starburst systems                    |
| 92GA11 | Implications of the ${}^{14}C(\alpha, \gamma){}^{18}O$ reaction for nonstandard big bang nucleosynthesis         |

Reference Description

### Astrophysics (continued)

| 92GO14 | Alpha capture on <sup>14</sup> C from $E_{\alpha} = 1.14$ to 2.33 MeV and its astrophysical implications |
|--------|----------------------------------------------------------------------------------------------------------|
| 93GA1G | Secondary radioactive beams used to measure cross sections of astrophysical importance                   |
| 94BE29 | Neutron capture rates of light isotopes for inhomogeneous Big Bang nucleosythesis                        |

### Applications

Reviews:

| 100110100 |                                                                     |
|-----------|---------------------------------------------------------------------|
| 87SE1D    | Progress in the field of accelerator mass spectrometry (1977–1987)  |
| 901/111D  | Due desetion and smallesting of stable special distance in the UCCD |

89KU1P Production and application of stable enriched isotopes in the USSR

Other articles:

| 87MC1A | O isotonos in refractory stratosphoric dust particles, proof of avtratorrestrial origin           |
|--------|---------------------------------------------------------------------------------------------------|
| OTWOIA | o isotopes in renactory stratospheric dust particles. proof of extrateries that origin            |
| 87ZUIA | Oxygen isotope effect in high-temperature oxide superconductors                                   |
| 88FA1A | Extreme <sup>18</sup> O depletion in calcite & chert clasts from Elephant Moraine (in Antarctica) |
| 88FI1C | Assessment of ${}^{18}\text{O}$ enriched water as a marker of total body water (A)                |
| 88HI1F | Design & uses of target systems used to produce positron emitters (A)                             |
| 88HI1G | The oxygen isotope effect in $Ba_{0.625}K_{0.375}BiO_3$ (a high-temp. superconducting oxide)      |
| 88KH06 | Threshold track detectors used to study interaction of $^{18}$ O ions w/ light & heavy targets    |
| 88MI1B | O-isotope analyses & deep-sea temp. changes: implications for rates of oceanic mixing             |
| 88NW1A | Measurement of oil reservoir rock dispersivity by nuclear reaction analysis (A)                   |
| 89GR1F | Brachiopod calcite record of oceanic C & O isotope shifts at Permian/Triassic transition          |
| 89NW1A | Assessment of <sup>18</sup> O enriched water as a marker of total body water                      |
| 89TA1Y | Separation of N & O isotopes by liquid chromatography                                             |
| 90CH1I | <sup>18</sup> O isotope studies on redistribution of O obtained in O ion implantation             |
| 90CO1K | Determination of <sup>18</sup> O concentrations in microsamples of biological fluids              |
| 90MI15 | Determination of absolute oxygen coverage by nuclear reaction analysis                            |
| 90SA1J | O isotope evidence for a stronger winter monsoon current during the last glaciation               |

#### **Complex Reactions**

| 86MA13 | Experimental | search f | or nonfusion | vield in | heavy | residues | emitted | from | $^{11}B + ^{1}$ | $^{-2}C$ |
|--------|--------------|----------|--------------|----------|-------|----------|---------|------|-----------------|----------|
|        |              |          |              | -/       | - /   |          |         |      |                 |          |

87BE11 Search for a nucleon-participant multiplicity effect on anomalous fragment production

87BU07 Projectile-like fragments from  ${}^{20}$ Ne +  ${}^{197}$ Au — counting simultaneously emitted neutrons

- 87HE1H Search for anomalously heavy isotopes of low Z nuclei
- 87VA19 Microscopic analysis of excitation of first  $2^+$  state of  ${}^{18}$ O on  ${}^{64}$ Ni
- 88BE56 Light nuclei formation in reactions of B & Ne ions with Ta & Th at E = 18-20 MeV/A
- 88BL11 Systematics of cluster-radioactivity-decay constants as suggested by microscopic calcs.
- 88KH06 Threshold track detectors used to study interaction of <sup>18</sup>O ions w/ light & heavy targets
- 88PR1C Target & projectile mass dependence of charge pickup reactions by  $\approx \text{GeV/N}$  nuclei (A)
- 88UT02 Extended Serber model applied to quasi-free stripping reactions
- 89GE1A Complex fragments emitted in excited states
- 89SA10 Total cross sections of reactions induced by neutron-rich light nuclei
- 89TE02 Dissipative mechanisms in the 120 MeV  ${}^{19}F + {}^{64}Ni$  reaction
- 89YO02 Quasi-elastic & deep inelastic transfer in  ${}^{16}\text{O} + {}^{197}\text{Au}$  for E < 10 MeV/u
- 90LE08 Statistical equilibrium in the  ${}^{40}\text{Ar} + {}^{12}\text{C}$  system at E/A = 8 MeV
- 90LI1J Z dependence of Coulomb dissociation cross sections in heavy ion reactions

### Table 18.8 (continued) ${}^{18}O$ – General

Reference Description

### Antimatter

| Reviews:<br>86KO1E | Search for $\bar{p}$ -atomic X-rays at LEAR                                                 |
|--------------------|---------------------------------------------------------------------------------------------|
| 87GR11             | Low energy antiproton physics in the early LEAR era                                         |
| 87VO1B             | Interaction and annihilation of anitprotons and nuclei                                      |
| 87YA1E             | Summary of scattering results at LEAR & unique features of the $(\bar{p},\bar{n})$ reaction |
| Other artic        | les:                                                                                        |
| 87AD04             | Microscopic analysis of antiproton-nucleus elastic scattering                               |
| 87GR20             | Widths of $4f$ antiprotonic levels in the oxygen region                                     |

| 87HA1J | Widths of $4f$ | antiprotonic | levels in the | O region | using | realistic nucl. | wavefunctions |
|--------|----------------|--------------|---------------|----------|-------|-----------------|---------------|
|--------|----------------|--------------|---------------|----------|-------|-----------------|---------------|

88LI10 Optical model analysis of antiproton-nucleus elastic scattering (in Chinese)

89CH13 Phenomenological model analysis of scattering of  $\approx 180$  MeV antiprotons from nuclei

89HE21 Microscopic analysis of antiproton elastic scattering on even-even nuclei

- 89MA24 Microscopic analysis of antiproton-nucleus inelastic scattering at 600 MeV/c
- 92TA08 Eikonal and Glauber calculations of scattering of antiprotons on <sup>18</sup>O at 180 MeV

### Other Topics

| <b>ъ</b> • |   |
|------------|---|
| ROVIOW     | • |
| TIC VIC W  | ٠ |

| 88BA82 | Use of reactions involving pions & kaons in the study of heavy hypernuclei                |
|--------|-------------------------------------------------------------------------------------------|
| 93PE19 | Overview of new experimental results in meson-nucleus interactions & future opportunities |

Other Articles:

| 87BL18 | Gogny's effective interaction used to calc. ground & excited states of light nuclei       |
|--------|-------------------------------------------------------------------------------------------|
| 88HI05 | Effect on Gamow-Teller strength of config. mixing & p-n correl. in e-e sd-shell nucl.     |
| 88KA39 | Coulomb effects in the 4-body model of simultaneous 2n transfer induced by heavy ions     |
| 88TR02 | Interacting boson scheme for light nuclei                                                 |
| 89BA2N | Evaluation of hypernucleus production cross-sections in relativistic heavy-ion collisions |
| 89OR02 | Empirical isospin nonconserving Hamiltonians for shell-model calculations                 |

- 89TA1T Schmidt diagrams & configuration mixing effects on hypernuclear magnetic moments
- 90BR13 Empir. p-n interactions: global trends, configuration sensitivity & N = Z enhancements
- 90HJ01 3rd order number-conserving sets & effective interactions calc. with Bonn-Jülich potential
- 90KA1F Theoretical aspects of nuclear parity violation
- 90SK04 Study of the A = 18 nuclei and the effective interaction in the sd shell
- 94CI02 Specific heat and shape transitions in light sd nuclei
- 94LU01 Deep pionic bound states in a nonlocal optical potential

### Ground State Properties

Review:

| 89RA17 | Compilation | of exp. | data on | nuclear | moments f | or ground | & | excited | states | of nuc | el. |
|--------|-------------|---------|---------|---------|-----------|-----------|---|---------|--------|--------|-----|
|--------|-------------|---------|---------|---------|-----------|-----------|---|---------|--------|--------|-----|

### Other articles:

| 87BL18 | Gogny's effective inter. used to calc. gnd. & excited states of specific spin-isospin order                           |
|--------|-----------------------------------------------------------------------------------------------------------------------|
| 88GU03 | Charge-density distribution of 1s-1p & 1d-2s shell nuclei & filling numbers of the states                             |
| 89CH1P | 1s-0d effective interxns. of isospin triplet & <sup>18</sup> Ne- <sup>18</sup> O Coulomb displacmt. energ. (in Chin.) |

| Reference | Description                                                                                     |
|-----------|-------------------------------------------------------------------------------------------------|
|           | Ground State Properties (continued)                                                             |
| 89GU06    | Hartree-Fock & shell-model charge densities calc. for $^{16,18}$ O, $^{32,34}$ S, $^{40,48}$ Ca |
| 89SA10    | Total cross sections of reactions induced by neutron-rich light nuclei                          |
| 89TR18    | 2-nucleon & 4-nucleon clusters in nuclei                                                        |
| 90GU10    | Charge densities of sp- and sd-shell nuclei & occupation numbers of 2s states                   |
| 90LO11    | Self-consistent calcs. of light neutron-rich nuclei using density-functional method             |
| 92FR01    | Behavior of nuclear charge radii systematics in the sd shell from muonic atom meas.             |
| 93PA14    | Relativistic mean field theory; calc. binding energy, rms radii, deformation parameters         |
| 93PA19    | Continuation of 93PA14: effects of pairing correlations                                         |

(A) denotes that only an abstract is available for this reference.

| $E_{\mathbf{x}}$          | $J^{\pi}; T$ | au b)                                                                                       | Decay    | Reactions                                                                                                                                                                                                |
|---------------------------|--------------|---------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $({\rm MeV}\pm{\rm keV})$ |              | or $\Gamma_{\rm c.m.}$                                                                      |          |                                                                                                                                                                                                          |
| 0                         | $0^+; 1$     |                                                                                             | stable   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                     |
| $1.98207 \pm 0.09$        | $2^{+}$      | $\tau_{\rm m} = 2.80 \pm 0.07 \text{ ps}$<br>(g = -0.287 ± 0.015)<br>(Q = -0.042 ± 0.008 b) | $\gamma$ | $\begin{array}{l}1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9,\ 10,\ 11,\ 15,\\ 17,\ 19,\ 20,\ 21,\ 22,\ 25,\ 26,\ 27,\ 28,\\ 29,\ 30,\ 32,\ 33,\ 39,\ 40,\ 42,\ 44,\ 45,\\ 47,\ 48,\ 49,\ 50,\ 51,\ 52\end{array}$ |
| $3.55484 \pm 0.40$        | $4^{+}$      | $\tau_{\rm m} = 24.8 \pm 1.2 \text{ ps}$<br>(g = -0.62 ± 0.10)                              | $\gamma$ | 3, 4, 7, 9, 10, 15, 16, 17, 19, 20, 21, 22, 25, 28, 33, 39, 40, 51, 52                                                                                                                                   |
| $3.63376 \pm 0.11$        | $0^{+}$      | $\tau_{\rm m} = 1.38 \pm 0.16~\rm ps$                                                       | $\gamma$ | 3, 4, 7, 9, 10, 15, 19, 22, 25, 28, 33, 39, 40, 50, 51, 52                                                                                                                                               |
| $3.92044 \pm 0.14$        | $2^{+}$      | $\tau_{\rm m} = 26.5 \pm 2.9~{\rm fs}$                                                      | $\gamma$ | 3, 4, 7, 9, 10, 15, 19, 22, 25, 28, 33, 39, 51                                                                                                                                                           |
| $4.45554 \pm 0.10$        | 1-           | $\tau_{\rm m} = 65 \pm 15 \ \rm fs$                                                         | $\gamma$ | 3, 4, 7, 9, 10, 15, 19, 22, 25, 28, 33, 39, 40, 50, 51                                                                                                                                                   |
| $5.09778 \pm 0.54$        | 3-           | $\tau_{\rm m} = 62 \pm 25 \ {\rm fs}$                                                       | $\gamma$ | 3, 4, 7, 9, 10, 15, 19, 22, 25, 26, 27, 28, 33, 39, 40, 45, 51, 52                                                                                                                                       |
| $5.2548\pm0.9$            | $2^{+}$      | $\tau_{\rm m} = 10.1 \pm 0.5~{\rm fs}$                                                      | $\gamma$ | 3, 4, 7, 9, 10, 15, 17, 19, 25, 28, 33, 50, 51                                                                                                                                                           |
| $5.3364\pm0.6$            | $0^{+}$      | $\tau_{\rm m} = 200 \pm 40~{\rm fs}$                                                        | $\gamma$ | 3, 4, 9, 15, 19, 25, 33, 51                                                                                                                                                                              |

Table 18.9 Energy Levels of  $^{18}$ O <sup>a</sup>)

| $E_{\mathbf{x}}$               | $J^{\pi}; T$    | au b)                                                       | Decay                  | Reactions                                                  |
|--------------------------------|-----------------|-------------------------------------------------------------|------------------------|------------------------------------------------------------|
| $({\rm MeV}\pm{\rm keV})$      |                 | or $\Gamma_{\rm c.m.}$                                      |                        |                                                            |
| $5.3778 \pm 1.2$               | $3^{+}$         | $\tau_{\rm m} < 30 ~{\rm fs}$                               | $\gamma$               | 3,  4,  15,  19,  20,  51                                  |
| $5.53024 \pm 0.29$             | $2^{-}$         | $\tau_{\rm m} < 25 \ {\rm fs}$<br>$\Gamma < 50 \ {\rm keV}$ | $\gamma$               | 3, 4, 15, 22, 25, 28, 33, 51                               |
| $6.19822\pm0.40$               | 1-              | $\tau_{\rm m}=3.7\pm0.6~{\rm fs}$                           | $\gamma$               | 3,  4,  9,  15,  19,  22,  24,  25,  33,  51               |
| $6.3513 \pm 0.6$               | $(2^{-})$       | $	au_{\rm m} < 35 \ {\rm fs}$<br>$\Gamma < 50 \ {\rm keV}$  | $\gamma$               | 3, 4, 15, 19, 22, 25, 33, 51, 52                           |
| $6.4044 \pm 1.2$               | $3^{-}$         | $\tau_{\rm m} = 30 \pm 15 \text{ fs}$                       | $\gamma$               | 3, 4, 15, 33, 51                                           |
| $6.88045 \pm 0.27$             | $0^{-}$         | $\tau_{\rm m} < 25~{\rm fs}$                                | $\gamma$               | 3, 4, 15, 22, 33, 50, 51                                   |
| $7.1169 \pm 1.2$               | $4^{+}$         | $\tau_{\rm m} < 25~{\rm fs}$                                | $\gamma, lpha$         | 3, 4, 7, 9, 10, 15, 17, 19, 20, 25, 28, 33, 37, 39, 40, 51 |
| $7.6159\pm0.7$                 | $1^{-}$         | $\Gamma < 2.5~{\rm keV}$                                    | $\gamma,  \alpha$      | 3, 4, 7, 9, 15, 22, 25, 33, 37, 39, 40, 51                 |
| $7.77107 \pm 0.50$             | $2^{-}$         | $\Gamma < 50 {\rm ~keV}$                                    | $\gamma$               | 3, 4, 15, 22, 25, 51                                       |
| $7.864\pm5$                    | $5^{-}$         |                                                             | $\gamma$               | 3, 4, 7, 9, 10, 15, 19, 20, 25, 33, 37, 39, 40, 51, 52     |
| $7.977\pm4$                    | $(3^+, 4^-)$    |                                                             | $\gamma$               | 3, 4, 15, 19, 51                                           |
| $8.0378\pm0.7$                 | 1-              | $\Gamma < 2.5~{\rm keV}$                                    | $\gamma,  \alpha$      | 3, 4, 7, 8, 15, 16, 17, 22, 25, 37, 39, 40, 51             |
| $8.125\pm2$                    | $5^{-}$         |                                                             | $\gamma,  \alpha$      | 3, 4, 7, 9, 10, 15, 25, 51                                 |
| $8.213\pm4$                    | $2^{+}$         | $\Gamma = 1.0 \pm 0.8 \ \rm keV$                            | $\gamma,$ n, $\alpha$  | 3, 4, 7, 8, 15, 25, 28, 33, 37, 39, 40, 51                 |
| $8.282\pm3$                    | 3-              | $\Gamma = 8 \pm 1 \text{ keV}$                              | $\gamma$ , n, $\alpha$ | 3, 4, 7, 8, 9, 10, 15, 25, 33, 51                          |
| $8.410\pm8$                    | $(2^{-})$       | $\Gamma = 8 \pm 6 \text{ keV}$                              | $\gamma$ , n, $\alpha$ | 8, 15, 25, 51                                              |
| $8.521\pm 6$                   | $(4^{-})$       | $\Gamma < 50 \text{ keV}$                                   | $\gamma$               | 15, 25, 51                                                 |
| $8.660\pm 6$                   |                 |                                                             |                        | 15, 51                                                     |
| $8.817 \pm 12$                 | $(1^+)$         | $\Gamma = 70 \pm 12 \text{ keV}$                            | n, $\alpha$            | 8, 20, 28, 33                                              |
| $8.955\pm4$                    | $(4^{+})$       | $\Gamma = 43 \pm 3 \text{ keV}$                             | $\gamma$ , n, $\alpha$ | 8, 15, 25, 33                                              |
| $(9.0 \pm 200)$ <sup>d</sup> ) | $(1^{-})$       |                                                             | α                      | 22                                                         |
| 9.03                           |                 |                                                             |                        | 15, 19, 33                                                 |
| (9.10)                         |                 |                                                             |                        | 33                                                         |
| $9.27 \pm 20^{\rm ~d})$        | $(0, 1, 2)^{-}$ |                                                             | n                      | 22                                                         |
| $9.361\pm 6$                   | $2^{+}$         | $\Gamma = 27 \pm 15 \ \mathrm{keV}$                         | $\gamma,n,\alpha$      | 8, 10, 15, 25, 33, 37, 39, 40                              |
| $9.414 \pm 18$                 |                 | $\Gamma\approx 120~{\rm keV}$                               | n, $\alpha$            | 8, 10, 15, 33                                              |
| $9.48\pm24$                    |                 | $\Gamma \approx 65~{\rm keV}$                               | n, $\alpha$            | 8, 15                                                      |
| $9.672\pm7$                    | $(3^{-})$       | $\Gamma = 60 \pm 30 \ \mathrm{keV}$                         | n, $\alpha$            | 8, 15, 33, 37, 39, 40                                      |
| $9.713\pm7$                    | $(5^{-})$       | $\Gamma < 50 {\rm ~keV}$                                    | $\gamma$               | 15, 25, 33                                                 |

Table 18.9 (continued) Energy Levels of  ${}^{18}O$  <sup>a</sup>)

| $E_{\mathbf{x}}$              | $J^{\pi}; T$    | au b)                                | Decay                   | Reactions                            |
|-------------------------------|-----------------|--------------------------------------|-------------------------|--------------------------------------|
| $({\rm MeV}\pm{\rm keV})$     |                 | or $\Gamma_{\rm c.m.}$               |                         |                                      |
| $9.890 \pm 11$                |                 | $\Gamma \approx 150 \text{ keV}$     | n, $\alpha$             | 8, 15, 33                            |
| $10.118 \pm 10$               | $3^{-}$         | $\Gamma = 16 \pm 4 \ \mathrm{keV}$   | n, $\alpha$             | 8, 9, 15, 33                         |
| $10.24 \pm 20$ <sup>d</sup> ) | $(0, 1, 2)^{-}$ |                                      | n                       | 22                                   |
| $10.295 \pm 14$               | 4+              | $\Gamma < 50~{\rm keV}$              | $\gamma,{\rm n},\alpha$ | 8, 9, 10, 15, 16, 25, 33, 37, 39, 40 |
| $10.396\pm9$                  | $3^{-}$         |                                      | n, $\alpha$             | 8, 15, 33                            |
| $10.43\pm40$                  | $(2^{-})$       | $\Gamma < 50 \ {\rm keV}$            | $\gamma$                | 25                                   |
| $10.595 \pm 15$               |                 |                                      | n, $\alpha$             | 8, 15                                |
| $10.67\pm20$                  | $(2^{-})$       | $\Gamma < 50~{\rm keV}$              | $\gamma$                | 25                                   |
| $10.82\pm20$                  |                 |                                      | n, $\alpha$             | 8                                    |
| $10.91\pm20$                  |                 |                                      | n, $\alpha$             | 8, 10                                |
| $10.99\pm20$                  | $(2^{-})$       | $\Gamma < 50~{\rm keV}$              | $\gamma,{\rm n},\alpha$ | 8, 25                                |
| 11.06                         | $(6^{-})$       |                                      |                         | 20                                   |
| $11.13\pm20$                  |                 |                                      | n, $\alpha$             | 8, 10, 50                            |
| $11.39\pm20$                  | $(2^+)$         |                                      | n, $\alpha$             | 8, 9                                 |
| $11.41\pm20$                  | $(4^{+})$       |                                      | n, $\alpha$             | 8, 9                                 |
| $11.49 \pm 30^{\rm d}$ )      | $(0, 1, 2)^{-}$ |                                      | n                       | 22                                   |
| $11.52\pm50$                  | $(2^{-})$       | $\Gamma < 50~{\rm keV}$              | $\gamma$                | 25                                   |
| $11.62\pm20$                  | $5^{-}$         |                                      | n, $\alpha$             | 8, 9, 10, 33, 37, 39, 40             |
| $11.67\pm20$                  | $(3^{-})$       | $\Gamma = 112 \pm 0.02 ~\rm keV$     |                         | 25                                   |
| $11.69\pm20$                  | $6^{+}$         |                                      | n, $\alpha$             | 8, 9, 10, 33                         |
| $11.82\pm20$                  | $(3^{-})$       |                                      | n, $\alpha$             | 8                                    |
| $11.90\pm30$                  | $(2^{-})$       | $\Gamma < 50 \ {\rm keV}$            | $\gamma$                | 25                                   |
| $12.04\pm20$                  | $(2^+)$         |                                      | n, $\alpha$             | 8, 9                                 |
| $12.09\pm20$                  | $(1^-, 2^+)$    | $\Gamma < 50~{\rm keV}$              |                         | 25                                   |
| $12.25\pm20$                  | $(1^{-})$       |                                      | n, $\alpha$             | 8, 9                                 |
| $12.33\pm20$                  | $5^{-}$         |                                      | n, $\alpha$             | 8, 9, 10                             |
| $12.41\pm20$                  | $(3^{-})$       | $\Gamma = 143 \pm 24 \ \mathrm{keV}$ | $\gamma$                | 25                                   |
| $12.50\pm20$                  | $4^{+}$         |                                      | n, $\alpha$             | 8, 37, 39, 40                        |
| $12.52\pm20$                  |                 | $\Gamma < 50~{\rm keV}$              | $\gamma$                | 25                                   |
| $12.53\pm20$                  | $6^{+}$         |                                      | n, $\alpha$             | 8, 9, 10, 37, 39, 40                 |
| $12.66\pm20$                  | $(2^{-})$       | $\Gamma < 50~{\rm keV}$              | $\gamma$                | 25                                   |
| $12.99\pm20$                  | $(4^{-})$       | $\Gamma = 68 \pm 18 \ {\rm keV}$     | $\gamma$                | 25                                   |
| $13.1^{\rm c})$               | $1^{-}$         | $\Gamma = 700 \text{ keV}$           | $\gamma,{\rm n}$        | 23                                   |
| $13.40\pm20$                  | $(2^{-})$       | $\Gamma = 108 \pm 20 \ \mathrm{keV}$ | $\gamma$                | 25                                   |
| 13.8                          | 1-              | $\Gamma = 600 \text{ keV}$           | $\gamma,\mathrm{n}$     | 23                                   |

Table 18.9 (continued) Energy Levels of  ${}^{18}O$  <sup>a</sup>)

| $E_{\mathbf{x}}$           | $J^{\pi}; T$          | au <sup>b</sup> )                   | Decay           | Reactions |
|----------------------------|-----------------------|-------------------------------------|-----------------|-----------|
| $({\rm MeV}\pm {\rm keV})$ |                       | or $\Gamma_{\rm c.m.}$              |                 |           |
| $13.85 \pm 13$             | $(6^{-})$             | $\Gamma\approx 200~{\rm keV}$       | $\gamma$        | 20, 25    |
| $14.17\pm40$               | $(6^{-})$             | $\Gamma = 140 \pm 50 \text{ keV}$   | $\gamma$        | 20, 25    |
| $14.45\pm50$               |                       | $\Gamma \approx 1070 \text{ keV}$   | $\gamma$        | 25        |
| 14.7                       | $1^{-}$               | $\Gamma = 800 \text{ keV}$          | $\gamma$ , n    | 23        |
| $15.23\pm40$               |                       | $\Gamma \approx 300 \text{ keV}$    | $\gamma$        | 25        |
| 15.8                       | $1^{-}$               | $\Gamma = 700 \text{ keV}$          | $\gamma$ , n    | 23        |
| $15.95\pm30$               |                       | $\Gamma < 50 \ {\rm keV}$           | $\gamma$        | 25        |
| $16.210\pm10$              | $1^{(-)}$             |                                     | $\gamma$        | 25        |
| $16.315\pm10$              | $(3,2)^{-}$           |                                     | $\gamma$        | 25        |
| $16.399 \pm 5$             | $2^{-}; 2$            | $\Gamma < 20~{\rm keV}$             | $\gamma$        | 25, 28    |
| $16.88\pm30$               | $(4^{-}, 2^{-}); (1)$ | $\Gamma < 50~{\rm keV}$             | $\gamma$        | 25        |
| $16.948 \pm 10$            | $(3,2)^{-}$           |                                     | $\gamma$        | 25        |
| $17.025 \pm 10$            | $(3^{-}); 2$          | $\Gamma = 20 \pm 6 \ \mathrm{keV}$  | $\gamma$        | 25        |
| 17.05                      | $(7^{-})$             | $\Gamma \approx 350 \text{ keV}$    |                 | 9         |
| $17.398 \pm 10$            | $1^{-};(2)$           | $\Gamma = 600 \text{ keV}$          | $\gamma$ , n, p | 23, 25    |
| $17.450 \pm 10$            | $(2, 1, 3)^{-}$       |                                     | $\gamma$        | 25        |
| $17.46\pm30$               | $(4^{-}); 1$          | $\Gamma \approx 600 \ {\rm keV}$    | $\gamma$        | 25        |
| 17.5                       |                       | $\Gamma\approx 150~{\rm keV}$       | $\gamma$        | 25        |
| $17.502 \pm 10$            | $(1, 2, 3)^-$         |                                     | $\gamma$        | 25        |
| $(17.6\pm200)$             | $(8^+)$               |                                     |                 | 9         |
| $17.635 \pm 10$            |                       |                                     | $\gamma$        | 25        |
| $18.049 \pm 10$            |                       |                                     | $\gamma$        | 25        |
| 18.2                       |                       | $\Gamma\approx 150~{\rm keV}$       | $\gamma$        | 25        |
| $18.45\pm20$               | $(3^{-});(1)$         | $\Gamma = 75 \pm 27 \ \mathrm{keV}$ | $\gamma$        | 25        |
| 18.5                       |                       | $\Gamma \approx 4300~{\rm keV}$     | $\gamma$        | 25        |
| $18.70\pm20$               | $(4^{-}); 2$          | $\Gamma < 20 \ {\rm keV}$           | $\gamma$        | 25        |
| $18.871 \pm 5$             | $1^+; 2$              |                                     | $\gamma$        | 25        |
| $18.927 \pm 10$            | $(1, 2^+)$            |                                     | $\gamma$        | 25        |
| 18.95                      | $(7^{-})$             | $\Gamma \approx 350 \text{ keV}$    |                 | 9         |
| $19.027 \pm 10$            | $(1,3)^{-}$           |                                     | $\gamma$        | 25        |
| $19.150\pm10$              | $(1^-, 2^+, 3^-)$     |                                     | $\gamma$        | 25        |
| $19.24\pm20$               | (>2); 2               | $\Gamma < 20 \text{ keV}$           | $\gamma$        | 25        |
| 19.4                       | $1^{-};(2)$           | $\Gamma = 900 \text{ keV}$          | $\gamma, p$     | 23        |
| 19.7                       |                       | $\Gamma \approx 200 \text{ keV}$    | $\gamma$        | 25        |
| 20.2                       | <i>.</i>              | $\Gamma \approx 180 \text{ keV}$    | $\gamma$        | 25        |
| $20.36\pm20$               | $(4^{-}); 2$          | $\Gamma < 20 \text{ keV}$           | $\gamma$        | 25        |
| $20.86\pm20$               |                       | $\Gamma = 97 \pm 41 \text{ keV}$    | $\gamma$        | 25        |

Table 18.9 (continued) Energy Levels of  $^{18}O^{a}$ )

| $E_{\mathbf{x}}$          | $J^{\pi}; T$  | $	au^{ m b})$                       | Decay                    | Reactions |
|---------------------------|---------------|-------------------------------------|--------------------------|-----------|
| $({\rm MeV}\pm{\rm keV})$ |               | or $\Gamma_{\rm c.m.}$              |                          |           |
| 21.0                      | $1^{-};(1)$   | $\Gamma\approx 150~{\rm keV}$       | $\gamma,n,p$             | 23, 25    |
| $21.42\pm20$              | $(4^{-});(2)$ | $\Gamma < 50 \ {\rm keV}$           | $\gamma$                 | 25        |
| $22.40\pm20$              | $4^{-}; 2$    | $\Gamma = 91 \pm 8 \ \mathrm{keV}$  | $\gamma$                 | 25        |
| 22.7                      | 1-            |                                     | $\gamma$ , n, p          | 23        |
| $23.10\pm20$              |               | $\Gamma = 49 \pm 24 \ \mathrm{keV}$ | $\gamma$                 | 25        |
| 23.8                      | $1^{-};(1)$   | $\Gamma \approx 1500 \ {\rm keV}$   | $\gamma,{\rm n},{\rm p}$ | 23, 25    |
| 27                        | $1^{-};(2)$   |                                     | $\gamma$ , n, p          | 23        |
| 30                        |               |                                     | $\gamma,\mathrm{n}$      | 23        |
| 36                        |               |                                     | $\gamma$                 | 23        |

Table 18.9 (continued) Energy Levels of  $^{18}O^{a}$ )

<sup>a</sup>) See also Tables 18.10 and 18.21 here and 18.12 in (83AJ01). <sup>b</sup>) See Table 18.14 in (78AJ03) for a display of  $\tau_{\rm m}$  measurements. <sup>c</sup>) For additional states with  $12.9 \leq E_{\rm x} \leq 23.1$  MeV see (83CU03) [reaction 9]. <sup>d</sup>) See reaction 22 in <sup>18</sup>O and Table 18.18 for discussion of this level.

| $E_{\rm i}~({\rm MeV})$ | $J_{\mathrm{i}}^{\pi}$ | $E_{\rm f}~({\rm MeV})$ | Branch (%)                  | δ             |
|-------------------------|------------------------|-------------------------|-----------------------------|---------------|
| 1.98                    | $2^{+}$                | 0                       | 100                         |               |
| 3.55                    | $4^{+}$                | 1.98                    | 100                         |               |
| 3.63                    | $0^{+}$                | 0                       | $0.30 \pm 0.06 \ ^{\rm b})$ |               |
|                         |                        | 1.98                    | $99.70\pm0.06$              |               |
| 3.92                    | $2^{+}$                | 0                       | $12.4\pm0.7$                |               |
|                         |                        | 1.98                    | $87.6\pm0.7$                | c)            |
| 4.46                    | 1-                     | 1.98                    | $27.1\pm2.6$                | c)            |
|                         |                        | 3.63                    | $70.4\pm1.7$                |               |
|                         |                        | 3.92                    | $2.5\pm0.9$                 |               |
| 5.10                    | $3^{-}$                | 1.98                    | $76.1\pm0.8$                | c)            |
|                         |                        | 3.55                    | $6.3\pm0.8$                 | c)            |
|                         |                        | 3.92                    | $17.6\pm0.7$                | c)            |
| 5.26                    | $2^{+}$                | 0                       | $30.3\pm0.9$                |               |
|                         |                        | 1.98                    | $55.9 \pm 1.0$              | $0.15\pm0.04$ |
|                         |                        | 3.55                    | $1.1\pm0.6$                 |               |
|                         |                        | 3.63                    | $1.0\pm0.6$                 |               |

Table 18.10 Radiative decays in  $^{18}{\rm O}$   $^{\rm a})$ 

| $E_{\rm i}~({\rm MeV})$ | $J_{\mathrm{i}}^{\pi}$ | $E_{\rm f}~({\rm MeV})$ | Branch $(\%)$      | δ                   |
|-------------------------|------------------------|-------------------------|--------------------|---------------------|
|                         |                        | 3.92                    | $8.7\pm0.4$        |                     |
|                         |                        | 4.46                    | $3.0\pm0.3$        |                     |
| 5.34                    | $0^{+}$                | 0                       | $^{\mathrm{d}})$   |                     |
|                         |                        | 1.98                    | $58 \pm 2$         |                     |
|                         |                        | 4.46                    | $42 \pm 2$         |                     |
| 5.38                    | $3^{+}$                | 1.98                    | $86.5\pm2.2$       | с)                  |
|                         |                        | 3.92                    | $13.5\pm2.2$       | с)                  |
| 5.53                    | $2^{-}$                | 1.98                    | $49\pm2$           | с)                  |
|                         |                        | 3.92                    | $24\pm2$           |                     |
|                         |                        | 4.46                    | $27\pm2$           | с)                  |
| 6.20                    | $1^{-}$                | 0                       | $88.7\pm0.9$       |                     |
|                         |                        | 3.63                    | $2.5\pm0.3$        |                     |
|                         |                        | 4.46                    | $4.1\pm0.4$        |                     |
|                         |                        | 5.26                    | $3.6\pm0.4$        |                     |
|                         |                        | 5.34                    | $1.1\pm0.3$        |                     |
| 6.35                    | $(2^{-})$              | 1.98                    | $32 \pm 2$         | с)                  |
|                         |                        | 3.92                    | $55 \pm 2$         | с)                  |
|                         |                        | 4.46                    | $12\pm2$           | с)                  |
| 6.40                    | $3^{-}$                | 1.98                    | $68.1 \pm 1.8$     | с)                  |
|                         |                        | 3.55                    | $7.4\pm1.2$        |                     |
|                         |                        | 3.92                    | $6.3\pm1.0$        | с)                  |
|                         |                        | 4.46                    | $2.8\pm1.0$        |                     |
|                         |                        | 5.10                    | $9.8\pm0.9$        |                     |
|                         |                        | 5.26                    | $5.6\pm0.9$        |                     |
| 6.88                    | $0^{-}$                | 4.46                    | 100                | с)                  |
| $7.12^{\rm e})$         | $4^{+}$                | 1.98                    | $27.1\pm0.4$       | $-(0.052\pm 0.035)$ |
|                         |                        | 3.55                    | $69.2\pm0.7$       |                     |
|                         |                        | 3.92                    | $2.1\pm0.2$        |                     |
|                         |                        | 5.10                    | $1.3\pm0.2$        |                     |
|                         |                        | 5.26                    | $0.30\pm0.06$      |                     |
| 7.62                    | $1^{-}$                | 0                       | $23\pm2$           |                     |
|                         |                        | 1.98                    | $62\pm3~^{\rm f})$ | $-(0.027\pm 0.008)$ |
|                         |                        | 4.46                    | $8\pm1$            | $-(0.21 \pm 0.03)$  |
|                         |                        | 5.34                    | $6\pm1$            |                     |
|                         |                        | 6.20                    | $1\pm1$            |                     |
| 7.77                    | $2^{-}$                | 1.98                    | $53\pm3$           |                     |
|                         |                        | 4.46                    | $11\pm2$           |                     |
|                         |                        | 5.10                    | $36\pm3$           |                     |
| 7.86                    | $5^{-}$                | 3.55                    | > 75               |                     |

Table 18.10 – continued Radiative decays in  $^{18}$ O  $^{a}$ )

| $E_{\rm i}~({\rm MeV})$ | $J^{\pi}_{\mathrm{i}}$ | $E_{\rm f}~({\rm MeV})$ | Branch (%)           | δ |
|-------------------------|------------------------|-------------------------|----------------------|---|
| 7.98                    | $(3^+, 4^-)$           | 3.55                    | $67\pm2$             |   |
|                         |                        | 5.10                    | $12\pm2$             |   |
|                         |                        | 5.38                    | $21\pm2$             |   |
| 8.04                    | 1-                     | 0                       | $16 \pm 1$           |   |
|                         |                        | 1.98                    | $70 \pm 2$ g)        |   |
|                         |                        | 3.63                    | $10 \pm 1$           |   |
|                         |                        | 5.26                    | $4\pm1$              |   |
| 8.13                    | $5^{-}$                | 3.55                    | $99\pm1$ $^{\rm h})$ |   |
|                         |                        | 5.10                    | $1\pm 1$             |   |
| 8.21                    | $2^{+}$                | 0                       | $19 \pm 4$           |   |
|                         |                        | 1.98                    | $29\pm3$             |   |
|                         |                        | 3.55                    | $3\pm1$              |   |
|                         |                        | 3.92                    | $3\pm1$              |   |
|                         |                        | 4.46                    | $29\pm3$             |   |
|                         |                        | 5.10                    | $17 \pm 1$           |   |
| 8.28                    | $3^{-}$                | 3.55                    | $61 \pm 3$           |   |
|                         |                        | 4.46                    | $3\pm3$              |   |
|                         |                        | 5.26                    | $36 \pm 3$           |   |

Table 18.10 – continued Radiative decays in  $^{18}$ O<sup>a</sup>)

<sup>a</sup>) For references and additional information see Tables 18.3 in (78AJ03, 83AJ01). Upper limits for other transitions are not shown.

<sup>b</sup>)  $\Gamma_{\pi}/\Gamma = (3.0 \pm 0.6) \times 10^{-3}$  (75SO05). <sup>c</sup>)  $\delta$  is consistent with 0. <sup>d</sup>)  $\Gamma_{\pi}/\Gamma \leq 2.3 \times 10^{-3}$ . <sup>e</sup>)  $\Gamma_{\gamma}/\Gamma = 0.561 \pm 0.013$  (94ME02).

f)  $\Gamma_{\alpha}\Gamma_{\gamma}/\Gamma = 0.34 \text{ eV}.$ g)  $\Gamma_{\alpha}\Gamma_{\gamma}/\Gamma = 0.89 \text{ eV}.$ 

<sup>s)</sup> 
$$\Gamma_{\alpha}\Gamma_{\gamma}/\Gamma = 0.89 \text{ eV}.$$
  
<sup>h)</sup>  $\Gamma_{\alpha}\Gamma_{\gamma}/\Gamma = 0.22 \text{ eV}.$ 

1. (a)  ${}^{7}\text{Li}({}^{11}\text{B}, \text{nn}){}^{16}\text{O}$   $Q_{\rm m} = 12.171$ (b)  ${}^{9}\text{Be}({}^{9}\text{Be}, \text{nn}){}^{16}\text{O}$   $Q_{\rm m} = 11.291$ 

Reactions (a) and (b) have been studied by (93CU01, 93DA17) in low energy heavy-ion fusion reactions. It is reported that the  $\approx 3$  MeV wide resonance observed at  $E_{\rm x}(^{18}{\rm O}) \approx 28$  MeV in the <sup>7</sup>Li + <sup>11</sup>B  $\rightarrow$  <sup>18</sup>O  $\rightarrow$  <sup>16</sup>O + nn and <sup>9</sup>Be + <sup>9</sup>Be  $\rightarrow$  <sup>18</sup>O  $\rightarrow$  <sup>16</sup>O + nn reactions overlaps with the higher part of the T<sub><</sub> = 1, <sup>18</sup>O GDR observed in photonuclear excitation.

| 2. (a) ${}^{10}B({}^{9}Be, p){}^{18}O$ | $Q_{\rm m} = 16.892$ |
|----------------------------------------|----------------------|
| (b) ${}^{11}B({}^{9}Be, d){}^{18}O$    | $Q_{\rm m} = 7.662$  |

See (86CU02) for production cross sections of 1.98 MeV  $\gamma$ -rays.

3. 
$${}^{12}C({}^{7}Li, p){}^{18}O$$
  $Q_m = 8.401$ 

Observed proton groups are displayed in Table 18.5 of (87AJ02).

In a recent experiment, the 4<sup>+</sup> state at 7117 keV in <sup>18</sup>O was studied by (94ME02) and an E2 strength for the 7117–5060 branches of  $B(E2) = 6.4 \pm 1.6$  W.u. was deduced in agreement with results of (89GA01). It was concluded that it is highly improbable that the 7117 keV state is energetically degenerate with a state of different decay properties.

4. <sup>13</sup>C(<sup>6</sup>Li, p)<sup>18</sup>O 
$$Q_{\rm m} = 10.704$$

See (86SM01) and Table 18.5 in (87AJ02). It is noted there that existing data indicate that when  $\sigma_{tot}$  to a particular state in <sup>18</sup>O is large in this reaction, it is also large in the <sup>12</sup>C(<sup>7</sup>Li, p) reaction. More recent data are reported in (88SM01). (See Table 18.11 here). Differential cross sections were measured and compared with results of Hauser-Feshbach calculations. The results suggest the presence of an additional non-statistical mechanism.

5.  ${}^{13}C({}^{9}Be, \alpha){}^{18}O$   $Q_{\rm m} = 12.830$ 

See (83AJ01, 87AJ02).

6.  ${}^{13}C({}^{17}O, {}^{12}C){}^{18}O$   $Q_{\rm m} = 3.098$ 

See (83AJ01, 87AJ02).

7.  ${}^{14}C(\alpha, \gamma){}^{18}O$   $Q_{\rm m} = 6.227$ 

Resonances in the yield of capture  $\gamma$ -rays are observed at  $E_{\alpha} = 1.14, 1.79, 2.09, 2.33, 2.44, 2.55, and 2.64 MeV: see Tables 18.12 here and 18.5 in (78AJ03). Gamma-ray angular distribution and correlation measurements lead to <math>J^{\pi} = 4^+, 1^-, 1^-, \text{ and } 5^-$  for <sup>18</sup>O\*(7.11, 7.62, 8.04, 8.13), as well as to  $J^{\pi}$  assignments for lower states involved in the cascade decay. See also references in (87AJ02) and see the cross section measurements of (93DA17). The speculated presence of enhanced E1  $\gamma$  de-excitation in <sup>18</sup>O (83GA02) was followed by further experimental and theoretical investigations of collective band structure in <sup>18</sup>O (89FU08, 93RE03). See however (86HA1J). See also (89FU1H, 89KAZH). The  $4_2^+ \rightarrow 2_2^+$  (7117  $\rightarrow$  5260) keV  $\gamma$  branching ratio of 0.30  $\pm$  0.08% was measured by (89GA01) and

| $E_{\mathbf{x}}^{\mathbf{a}}$ ) | $\sigma_{ m tot}$ <sup>a,b</sup> ) | $E_{\mathbf{x}}^{\mathbf{a}}$ ) | $\sigma_{ m max}$ a) |
|---------------------------------|------------------------------------|---------------------------------|----------------------|
| $({\rm MeV}\pm{\rm keV})$       | $(\mu b)$                          | $({\rm MeV}\pm{\rm keV})$       | $(\mu b/sr)$         |
| 0                               | $6.1\pm0.3$                        | $8.667 \pm 13$                  | $20.8\pm1.0$         |
| $1.987\pm8$                     | $39 \pm 1$                         | $8.82\pm20$                     | $13.0\pm0.9$         |
| $3.555 \pm 10$                  | $56\pm1$                           | $8.96\pm20$                     | $16.3\pm1.0$         |
| $3.632 \pm 15$                  | $13 \pm 1$                         | $9.72\pm30$                     | $26.3\pm1.3$         |
| $3.926\pm 6$                    | $36 \pm 1$                         | $10.09\pm30$                    | $30.6\pm1.5$         |
| $4.455\pm8$                     | $46\pm1$                           | $10.28\pm30$                    | $100\pm5$            |
| $5.095 \pm 11$                  | $74 \pm 1$                         | $10.63\pm30$                    | $31.3\pm1.6$         |
| $5.256 \pm 9$                   | $44\pm1$                           | $10.90\pm30$                    | $42.7\pm2.1$         |
| $5.374\pm8$                     | $35\pm1$                           | $10.99\pm20$                    | $84.8\pm4.2$         |
| $5.532\pm8$                     | $45\pm1$                           | $11.12\pm20$                    | $17.7\pm0.9$         |
| $6.199\pm8$                     | $37 \pm 1$                         | $11.26\pm20$                    | $33.9 \pm 1.7$       |
| $6.383 \pm 11$ <sup>c</sup> )   | $131\pm2$                          | $11.42\pm30$                    | $46.6\pm2.3$         |
| $6.882 \pm 19$                  | $5.3\pm0.4$                        | $11.61\pm30$                    | $34.1\pm1.7$         |
| $7.117\pm5$ $^{\rm d})$         | $208\pm2$                          | $11.70\pm30$                    | $75.4\pm3.8$         |
| $7.618 \pm 10$                  | $33 \pm 1$                         | $11.85\pm30$                    | $81.9\pm4.1$         |
| $7.764 \pm 14$                  | $37 \pm 1$                         | $12.07\pm30$                    | $34.2\pm1.7$         |
| $7.850 \pm 13$                  | $101\pm1$                          | $12.23\pm30$                    | $32.1\pm1.6$         |
| $7.962 \pm 12$                  | $84\pm1$                           | $12.33\pm30$                    | $50.4\pm2.5$         |
| $8.026 \pm 14$                  | $19\pm1$                           | $12.44\pm30$                    | $96.0\pm4.8$         |
| $8.120 \pm 12$                  | $140\pm2$                          | $12.54\pm30$                    | $90.2\pm4.5$         |
| $8.200 \pm 17$                  | $48\pm1$                           | $13.08\pm30$                    | $48.4\pm2.4$         |
| $8.274 \pm 15$                  | $103\pm2$                          | $13.23\pm30$                    | $99.3\pm5.0$         |
| $8.401 \pm 12$                  | $45\pm1$                           | $13.48\pm30$                    | $24.6\pm1.2$         |
| $8.496 \pm 15$                  | $75\pm1$                           | $13.60\pm30$                    | $29.0\pm1.5$         |
|                                 |                                    | $13.81\pm30$                    | $159\pm8$            |
|                                 |                                    | $14.14\pm30$                    | $92.7\pm4.6$         |
|                                 |                                    | $15.80\pm30$                    | $136\pm7$            |

Table 18.11 States of  $^{18}{\rm O}$  from  $^{13}{\rm C}(^{6}{\rm Li},~{\rm p})$   $^{\rm a})$ 

<sup>a</sup>) (88SM01). The maximum value of the differential cross section results were compared with a Hauser-Feshbach calculation. The comparison suggests the

presence of an additional nonstatistical mechanism. The comparison suggests the presence of an additional nonstatistical mechanism. <sup>b</sup>) See Table 18.5 in (87AJ02), which shows a comparison with  $\sigma_{tot}$  from  $^{12}C(^{7}\text{Li}, \text{ p})$  for  $E_x \leq 8.3 \text{ MeV}$ . <sup>c</sup>) Unresolved doublet (88SM01). <sup>d</sup>) See discussion of  $\Gamma_{\gamma}/\Gamma$  results from (94ME02) under reaction 3 here.

| $E_{\alpha} (\text{MeV} \pm \text{keV})$ | $\Gamma_{\rm lab}~({\rm keV})$ | Particles out            | $E_{\rm x}(^{18}{\rm O})~({\rm MeV})$ | $J^{\pi}$    |
|------------------------------------------|--------------------------------|--------------------------|---------------------------------------|--------------|
| $1.140 \pm 2^{\text{ b}})$               |                                | $\gamma$                 | 7.114                                 | $4^{+}$      |
| $1.790 \pm 2$ <sup>b</sup> )             | < 3                            | $\gamma$                 | $7.619^{\rm h})$                      | $1^{-}$      |
| 2.10 <sup>b</sup> )                      |                                | $\gamma$                 | 7.86                                  | $5^{-}$      |
| $2.330 \pm 2$ <sup>b</sup> )             | < 3                            | $\gamma,  lpha_0$        | 8.039 <sup>b,h</sup> )                | 1-           |
| $2.440 \pm 2$ <sup>b</sup> )             |                                | $\gamma$                 | 8.125                                 | $5^{-}$      |
| $2.554 \pm 4$ <sup>b</sup> )             | $1.3 \pm 1$                    | $\gamma$ , n, $\alpha_0$ | 8.213                                 | $2^{+}$      |
| $2.643 \pm 3$ <sup>b</sup> )             | $10 \pm 1$                     | $\gamma$ , n, $\alpha_0$ | 8.282                                 | $3^{-}$      |
| $2.800\pm7$                              | $10\pm7$                       | n                        | 8.404                                 |              |
| $3.330 \pm 12$                           | $90\pm15$                      | n, $\alpha_0$            | 8.817                                 |              |
| $3.508 \pm 4$                            | $55 \pm 3$                     | n, $\alpha_0$            | 8.955                                 |              |
| $4.030 \pm 15$                           | $35\pm20$                      | n, $(\alpha_0)$          | 9.361                                 |              |
| $4.07\pm40$                              | $\approx 150$                  | n, $(\alpha_0)$          | 9.39                                  |              |
| $4.17\pm40$                              | $\approx 70$                   | n, $(\alpha_0)$          | 9.47                                  |              |
| $4.434 \pm 10$                           | $80 \pm 40$                    | n, $(\alpha_0)$          | 9.675                                 |              |
| $4.70\pm40$                              | $\approx 200$                  | n, $(\alpha_0)$          | 9.88                                  |              |
| $5.004 \pm 10$                           | $21\pm5$                       | n, $\alpha_0$            | 10.118                                | $3^{-}$      |
| $5.23^{\rm c})$                          | <sup>d</sup> )                 | n, $\alpha_0$            | 10.29                                 | $4^{+}$      |
| 5.34                                     | d)                             | n, $\alpha_0$            | 10.38                                 | $3^{-}$      |
| 5.60                                     | e)                             | n, $\alpha_0$            | 10.58                                 |              |
| 5.90                                     | $^{\mathrm{f}})$               | n, $\alpha_0$            | 10.82                                 |              |
| 6.02                                     | $^{\mathrm{f}})$               | n, $\alpha_0$            | 10.91                                 |              |
| 6.13                                     | $^{\mathrm{f}})$               | n, $\alpha_0$            | 10.99                                 |              |
| 6.30                                     | e)                             | n, $\alpha_0$            | 11.13                                 |              |
| 6.64                                     | d)                             | n, $\alpha_0$            | 11.39                                 | $(2^+)$      |
| 6.67                                     | <sup>d</sup> )                 | n, $\alpha_0$            | 11.41                                 | $(4^{+})$    |
| 6.93                                     | <sup>d</sup> )                 | n, $\alpha_0$            | 11.62                                 | $5^{-}$      |
| 7.03                                     | <sup>d</sup> )                 | n, $\alpha_0$            | 11.69                                 | $6^{+}$      |
| 7.19                                     | f)                             | n, $\alpha_0$            | 11.82                                 | $(3^{-})$    |
| 7.47                                     | f)                             | n, $\alpha_0$            | 12.04                                 | $(2^{+})$    |
| 7.75                                     | g)                             | n, $\alpha_0$            | 12.25                                 | $(0^+, 1^-)$ |
| 7.85                                     | d)                             | n, $\alpha_0$            | 12.33                                 | $5^{-}$      |
| 8.06                                     | d)                             | n, $\alpha_0$            | 12.50                                 | $4^{+}$      |
| 8.10                                     | <sup>d</sup> )                 | n, $\alpha_0$            | 12.53                                 | $6^{+}$      |

Table 18.12 Resonances in  $^{14}{\rm C}(\alpha,\,\gamma)^{18}{\rm O},\,^{14}{\rm C}(\alpha,\,n)^{17}{\rm O}$  and  $^{14}{\rm C}(\alpha,\,\alpha)^{14}{\rm C}$   $^{\rm a})$ 

<sup>a</sup>) See also Table 18.10. For references see Table 18.5 in (78AJ03). <sup>b</sup>) (87GA15):  $\Gamma_{\gamma} = 0.095 \pm 0.020$ ,  $0.41 \pm 0.08$ ,  $0.043 \pm 0.009$ ,  $1.07 \pm 0.22$ ,  $0.27 \pm 0.05$ ,  $0.41 \pm 0.09$ , and  $0.49 \pm 0.13$  eV, respectively for <sup>18</sup>O\* (7.11, 7.62, 7.86, 8.04, 8.13, 8.21, 8.28 MeV). <sup>c</sup>)  $\pm 10$ –20 keV for this and all higher resonances (G.E. Mitchell, private comm.). <sup>d</sup>)  $\Gamma_{\alpha}$ , large;  $\Gamma_{n}$ , large. <sup>e</sup>)  $\Gamma_{\alpha}$ , small;  $\Gamma_{n}$ , small.

Table 18.12 (continued) Resonances in  $^{14}{\rm C}(\alpha,\,\gamma)^{18}{\rm O},\,^{14}{\rm C}(\alpha,\,n)^{17}{\rm O}$  and  $^{14}{\rm C}(\alpha,\,\alpha)^{14}{\rm C}$   $^{\rm a})$ 

<sup>f</sup>)  $\Gamma_{\alpha}$ , small;  $\Gamma_{n}$ , large. <sup>g</sup>)  $\Gamma_{\alpha}$ , large;  $\Gamma_{n}$ , small. <sup>h</sup>) Recent <sup>14</sup>C( $\alpha, \gamma$ ) measurements for these two 1<sup>-</sup> states by (93HA17) gave  $E_{x} = 7.6159 \pm 0.0007$ and  $8.0378 \pm 0.0007$  keV.

| $E_{\rm i}~({\rm MeV})$ | $J_{\mathrm{i}}^{\pi}$ | $E_{\rm f}~({\rm MeV})$ | $J_{ m f}^{\pi}$ | Branching ratio (%) |
|-------------------------|------------------------|-------------------------|------------------|---------------------|
| $7.620 \pm 0.002$       | 1-                     | 0                       | $0^{+}$          | $23 \pm 2$          |
|                         |                        | 1.98                    | $2^{+}$          | $62 \pm 3$          |
|                         |                        | 3.63                    | $0^{+}$          | < 1                 |
|                         |                        | 3.92                    | $2^{+}$          | < 3                 |
|                         |                        | 4.46                    | $1^{-}$          | $8\pm 2$            |
|                         |                        | 5.26                    | $2^{+}$          | < 3                 |
|                         |                        | 5.34                    | $0^{+}$          | $6 \pm 1$           |
|                         |                        | 5.53                    | $2^{-}$          | < 5                 |
|                         |                        | 6.20                    | $1^{-}$          | $1\pm 1$            |
| $7.859 \pm 0.005$       | $5^{-}$                | 3.56                    | $4^{+}$          | > 75                |
| $8.040 \pm 0.002$       | $1^{-}$                | 0                       | $0^{+}$          | $17 \pm 1$          |
|                         |                        | 1.98                    | $2^{+}$          | $71\pm2$            |
|                         |                        | 3.63                    | $0^{+}$          | $9\pm1$             |
|                         |                        | 3.92                    | $2^{+}$          | < 1                 |
|                         |                        | 4.46                    | $1^{-}$          | < 1.5               |
|                         |                        | 5.10                    | $3^{-}$          | < 1                 |
|                         |                        | 5.26                    | $2^{+}$          | $3.2\pm0.9$         |
|                         |                        | 5.34                    | $0^{+}$          | < 1                 |
|                         |                        | 5.53                    | $2^{-}$          | < 2                 |
|                         |                        | 6.20                    | $1^{-}$          | < 2                 |
| $8.125 \pm 0.002$       | $5^{-}$                | 3.55                    | $4^{+}$          | $99 \pm 1$          |
|                         |                        | 5.10                    | $3^{-}$          | $1\pm 1$            |
|                         |                        | 7.12                    | $4^{+}$          | < 2                 |
| $8.214 \pm 0.004$       | $2^{+}$                | 0                       | $0^{+}$          | $19\pm4$            |
|                         |                        | 1.98                    | $2^{+}$          | $29\pm3$            |
|                         |                        | 3.55                    | $4^{+}$          | $3\pm1$             |
|                         |                        | 3.63                    | $0^{+}$          | < 3                 |
|                         |                        | 3.92                    | $2^{+}$          | $3\pm1$             |
|                         |                        | 4.46                    | $1^{-}$          | $29\pm3$            |

Table 18.13Gamma-ray branching ratios in  ${}^{14}C(\alpha, \gamma){}^{18}O^{a})$ 

| $E_{\rm i}~({\rm MeV})$ | $J^{\pi}_{\mathrm{i}}$ | $E_{\rm f}~({\rm MeV})$ | $J_{ m f}^{\pi}$ | Branching ratio $(\%)$ |
|-------------------------|------------------------|-------------------------|------------------|------------------------|
|                         |                        | 5.10                    | $3^{-}$          | $17 \pm 1$             |
|                         |                        | 5.26                    | $2^{+}$          | < 3                    |
|                         |                        | 5.34 - 6.35             |                  | < 1                    |
| $8.283 \pm 0.003$       | $3^{-}$                | 0                       | $0^{+}$          | < 7                    |
|                         |                        | 1.98                    | $2^{+}$          | < 3                    |
|                         |                        | 3.55                    | $4^{+}$          | $61\pm3$               |
|                         |                        | 3.92                    | $2^{+}$          | < 3                    |
|                         |                        | 4.46                    | $1^{-}$          | $3\pm3$                |
|                         |                        | 5.10                    | $3^{-}$          | < 8                    |
|                         |                        | 5.26                    | $2^{+}$          | $36\pm3$               |
|                         |                        | 5.38                    | $3^{+}$          | < 4                    |
|                         |                        | 5.53                    | $2^{-}$          | < 8                    |
|                         |                        | 6.40                    | $3^{-}$          | < 5                    |

Table 18.13 (continued) Gamma-ray branching ratios in  $^{14}{\rm C}(\alpha,~\gamma)^{18}{\rm O}$  ^ )

<sup>a</sup>) 87GA15. See also table 18.12 for measured  $\Gamma_{\gamma}$  for these levels.

an E2 transition strength B(E2) =  $5.7 \pm 1.9$  W.u. was deduced. This result is confirmed by the  $(\Gamma_{\alpha x}\Gamma_{\gamma})/(\Gamma_{\alpha} + \Gamma_{\gamma})$  and  $(7117 \rightarrow 5260)$  keV  $\gamma$  branching  $(0.24 \pm 0.08\%)$  measurements of (92GO14) and the  $\Gamma_{\gamma}/\Gamma_{\alpha}$  measurement of (94ME02).

The <sup>14</sup>C( $\alpha$ ,  $\gamma$ ) reaction is important in astrophysical processes and the details of the cross section are relevant to the process of heavy element formation in inhomogeneous big bang nucleosynthesis (88AP1A, 89FU06, 90WIZP, 92GA11, 92GO14). See also (88BU01, 88MA1U, 89KA1K, 89NO1A, 89TH1C) and the review of thermonuclear reaction rates in (88CA1N).

8. (a)  ${}^{14}C(\alpha, \alpha'){}^{14}C$ (b)  ${}^{14}C(\alpha, n){}^{17}O$   $Q_m = -1.817$  $E_b = 6.227$ 

Observed anomalies in the scattering [reaction (a)] for  $E_{\alpha} = 2$  to 8.2 MeV and the resonances in the relative neutron yield [reaction (b)] for  $E_{\alpha} = 2.3$  MeV are displayed in Table 18.12. See also (78AJ03).

The  $\alpha$ -cluster structure of <sup>18</sup>O has been investigated in the theoretical work of (89FU08, 93RE03) based on <sup>14</sup>C( $\alpha$ ,  $\alpha$ ) scattering, and the results do not support the existence of proposed negative-parity molecular dipole states. See (89GA01).

| 9. (a) ${}^{14}C({}^{6}Li, d){}^{18}O$    | $Q_{\rm m} = 4.752$  |
|-------------------------------------------|----------------------|
| (b) ${}^{14}C({}^{6}Li, d\alpha){}^{14}C$ | $Q_{\rm m} = -1.475$ |

At  $E(^{6}\text{Li}) = 34$  MeV angular distributions have been measured for the deuteron groups to many states of <sup>18</sup>O (81CU07) [see also (83AJ01)] including <sup>18</sup>O\*(17.6 ± 0.2) (82CU01).  $J^{\pi} = 4^{+}, 2^{+}, 2^{+}, (4^{+}), \text{ and } (4^{+})$  are suggested for <sup>18</sup>O\*(7.86, 8.9, 12.04, 14.6, 17.0) (81CU07). The 2<sup>+</sup>, 4<sup>+</sup>, 6<sup>+</sup> and 8<sup>+</sup> members of the  $K^{\pi} = 0^{+}_{2}$  rotational band based on <sup>18</sup>O\* (3.62) are <sup>18</sup>O\* (5.26, 7.12, 11.69, 17.6) (82CU01).

Angular correlations have been measured at  $E(^{6}\text{Li}) = 34$  MeV; these lead to the assignment of  $J^{\pi} = 8^{+}$  to  $^{18}\text{O}^{*}$  (17.6) (82CU01) and to the assignment of  $J^{\pi} = 4^{+}$ , 5<sup>-</sup>, 6<sup>+</sup>, 7<sup>-</sup> and 8<sup>+</sup> to sixteen states in  $^{18}\text{O}$  with  $11.4 \leq E_x \leq 23.1$  MeV (83CU03) [also see (83CU03) for assignment of  $^{18}\text{O}$  states to bands]. At  $E(^{6}\text{Li}) = 32$  MeV (83AR1B) find that the strongest groups are those to (unresolved) structures at  $E_x = 17.05$  and 18.95 MeV [each  $\Gamma \approx 0.35$  MeV] dominated by  $J^{\pi} = 7^{-}$ .  $^{18}\text{O}^{*}$  (11.6, 12.6) with  $J^{\pi} = (6^{+}, 5^{-})$  and  $5^{-}$  are also observed (83AR1B). [See, however, the density of states]. See also (87AJ02, 90OS03).

10. 
$${}^{14}C({}^{7}Li, t){}^{18}O$$
  $Q_m = 3.760$ 

At  $E(^{7}\text{Li}) = 20.4$  MeV, triton groups are observed corresponding to a number of states of <sup>18</sup>O with  $E_x < 12.6$  MeV. Angular distributions were obtained for some of these, including <sup>18</sup>O\* (0, 1.98, 7.12, 11.69) with  $J^{\pi} = 0^+$ ,  $2^+$ ,  $4^+$ ,  $6^+$ . The latter two are the most strongly populated in this reaction: they appear to be part of the ground-state rotational band: see (72AJ02). See also (87AJ02).

In more recent work at  $E(^{7}\text{Li}) = 15$  MeV, <sup>18</sup>O gamma de-excitation modes for all natural parity states up to the alpha-particle threshold at  $E_x = 6.227$  MeV were studied (91GA08). See Table 18.14.

11.  ${}^{14}C({}^{14}C, {}^{10}Be){}^{18}O$   $Q_m = -5.785$ 

See (85KO04).

12.  ${}^{14}C({}^{16}O, {}^{12}C){}^{18}O$   $Q_m = -0.935$ 

See (78AJ03).

13. 
$${}^{15}N(\alpha, p){}^{18}O$$
  $Q_m = -3.980$ 

Several states in <sup>18</sup>O at  $E_x = 10-25$  MeV were observed in <sup>15</sup>N( $\alpha$ , p) experiments reported in (87MI1C, 88BRZY, 89BR1J).

14. <sup>15</sup>N(<sup>13</sup>C, <sup>10</sup>B)<sup>18</sup>O 
$$Q_{\rm m} = -8.042$$

| $E_{\rm i}~({\rm MeV})$ | $J_{\mathrm{i}}^{\pi}$ | $E_{\rm f}~({\rm MeV})$ | $J_{\mathrm{f}}^{\pi}$ | Branching ratio (%) |
|-------------------------|------------------------|-------------------------|------------------------|---------------------|
| 1.98                    | $2_{1}^{+}$            | 0.00                    | $0^{+}$                | 100                 |
| 3.55                    | $4_{1}^{+}$            | 1.98                    | $2^{+}$                | 100                 |
| 3.63                    | $0^{+}_{2}$            | 1.98                    | $2^{+}$                | 100                 |
| 3.92                    | $2^{+}_{2}$            | 0.00                    | $0^+$                  | $11.1\pm1.0$        |
|                         |                        | 1.98                    | $2^{+}$                | $88.9 \pm 1.0$      |
| 4.45                    | $1^{-}_{1}$            | 0.00                    | $0^{+}$                | < 0.2               |
|                         | -                      | 1.98                    | $2^{+}$                | $29.5\pm1.0$        |
|                         |                        | 3.63                    | $0_{2}^{+}$            | $68.9 \pm 1.0$      |
|                         |                        | 3.92                    | $2^{+}_{2}$            | $1.6\pm0.2$         |
| 5.10                    | $3^{-}_{1}$            | 1.98                    | $2^{+}$                | $76.5\pm1.0$        |
|                         |                        | 3.55                    | $4^{+}$                | $5.6\pm1.0$         |
|                         |                        | 3.92                    | $2^{+}_{2}$            | $17.9\pm0.8$        |
|                         |                        | 4.45                    | $1^{-}$                | < 0.14              |
| 5.26                    | $2^{+}_{3}$            | 0.00                    | $0^{+}$                | $30.3\pm0.9$        |
|                         |                        | 1.98                    | $2^{+}$                | $55.9 \pm 1.0$      |
|                         |                        | 3.55                    | $4^{+}$                | $1.1\pm0.6$         |
|                         |                        | 3.63                    | $0^{+}_{2}$            | $1.0\pm0.6$         |
|                         |                        | 3.92                    | $2^{+}_{2}$            | $8.7\pm0.4$         |
|                         |                        | 4.45                    | $1^{-}$                | $3.0\pm0.3$         |
| 5.34                    | $0^{+}_{3}$            | 1.98                    | $2^{+}$                | $45.2\pm5.0$        |
|                         |                        | 3.92                    | $2^{+}_{2}$            | < 12.0              |
|                         |                        | 4.45                    | $1^{-}$                | $54.8\pm5.0$        |
| 6.20                    | $1_{2}^{-}$            | 0.00                    | $0^+$                  | $88.7\pm0.9$        |
|                         |                        | 1.98                    | $2^{+}$                | < 1.3               |
|                         |                        | 3.63                    | $0_{2}^{+}$            | $2.5\pm0.3$         |
|                         |                        | 3.92                    | $2^{+}_{2}$            | < 0.9               |
|                         |                        | 4.45                    | $1^{-}$                | $4.1\pm0.4$         |
|                         |                        | 5.09                    | $3^{-}$                | < 0.7               |
|                         |                        | 5.26                    | $2^{+}_{3}$            | $3.6\pm0.4$         |
|                         |                        | 5.34                    | $0^{+}_{3}$            | $1.1\pm0.3$         |
| 6.40                    | $3^{-}_{2}$            | 1.98                    | $2^{+}$                | $68.1\pm1.8$        |
|                         |                        | 3.55                    | $4^{+}$                | $7.4\pm1.2$         |
|                         |                        | 3.92                    | $2^{+}_{2}$            | $6.3\pm1.0$         |
|                         |                        | 4.45                    | $1^{-}$                | $2.8\pm1.0$         |
|                         |                        | 5.09                    | $3^{-}$                | $9.8\pm0.9$         |
|                         |                        | 5.26                    | $2^{+}_{3}$            | $5.6\pm0.9$         |
| 7.12                    | $4_{2}^{+}$            | 1.98                    | $2^{+}$                | $27.0\pm0.5$        |
|                         |                        | 3.55                    | $4^{+}$                | $70.0\pm1.0$        |
|                         |                        | 3.92                    | $2^{+}_{2}$            | $1.8 \pm 0.4$       |

Table 18.14 Gamma decay branching ratios for  $^{18}{\rm O}$  from  $^{14}{\rm C}(^{7}{\rm Li},\,{\rm t}\gamma)^{18}{\rm O}$   $^{\rm a})$ 

| Table 18.14                                                                                                             |  |
|-------------------------------------------------------------------------------------------------------------------------|--|
| Gamma decay branching ratios for $^{18}{\rm O}$ from $^{14}{\rm C}(^{7}{\rm Li},{\rm t}\gamma)^{18}{\rm O}$ $^{\rm a})$ |  |

| $E_{\rm i}~({\rm MeV})$ | $J_{\mathrm{i}}^{\pi}$ | $E_{\rm f}~({\rm MeV})$ | $J_{\mathrm{f}}^{\pi}$ | Branching ratio $(\%)$ |
|-------------------------|------------------------|-------------------------|------------------------|------------------------|
|                         |                        | 5.09                    | $3^{-}$                | $1.2\pm0.3$            |
|                         |                        | 5.26                    | $2^{+}_{3}$            | < 0.6                  |
|                         |                        | 6.40                    | $3^{-}_{2}$            | < 0.2                  |

 $^{\rm a})$  (91GA08). See Table 1 of (91GA08) for additional information including transition strengths. See also Table 18.10 here.

See (83AJ01).

15. 
$${}^{16}O(t, p){}^{18}O$$
  $Q_m = 3.706$ 

Proton groups corresponding to states of <sup>18</sup>O are displayed in Table 18.15 (81CO13). See (76LA13) for a general discussion of the properties of the states of <sup>18</sup>O. Lifetime measurements are reported in Table 18.4 of (78AJ03). See also reaction 19 and (82AN12, 85AN17, 85BA1A).

16. 
$${}^{16}O(\alpha, 2p){}^{18}O$$
  $Q_m = -16.108$ 

At  $E_{\alpha} = 65$  MeV, the angular distribution to <sup>18</sup>O\*(3.55)  $[J^{\pi} = 4^+]$  has been studied. <sup>18</sup>O\* (8.04, 9.15, 10.3) are also populated: see (83AJ01).

17. (a)  ${}^{16}O({}^{10}B, {}^{8}B){}^{18}O$   $Q_m = -14.825$ (b)  ${}^{16}O({}^{13}C, {}^{11}C){}^{18}O$   $Q_m = -11.480$ 

At  $E({}^{10}\text{B}) = 100 \text{ MeV}$ ,  ${}^{18}\text{O}^*(3.55)$  [first  $(d_{5/2})_{4^+}^2$  state] is preferentially populated.  ${}^{18}\text{O}^*(1.98, 5.26, 7.12, 8.0, 8.3, 9.1)$  are also observed. The angular distribution to  ${}^{18}\text{O}^*(3.55)$  has been measured at  $E({}^{13}\text{C}) = 105 \text{ MeV}$ . See (83AJ01, 83OS07).

18. (a)  ${}^{17}O(n, \gamma){}^{18}O$   $Q_m = 8.044$ (b)  ${}^{17}O(n, n'){}^{17}O$   $E_b = 8.044$ (c)  ${}^{17}O(n, \alpha){}^{14}C$   $Q_m = 1.817$ 

| $E_{\rm x}~({\rm keV})$ | L    | $J^{\pi}$                   | $E_{\rm x}~({\rm keV})$ | $E_{\rm x}~({\rm keV})$ |  |
|-------------------------|------|-----------------------------|-------------------------|-------------------------|--|
| 0                       | 0    | $0^{+}$                     | $7623 \pm 18$           | $9713\pm7$              |  |
| $1986 \pm 4$            | 2    | $2^{+}$                     | $7782\pm6$              | $9890 \pm 11$           |  |
| $3556\pm2$              | 4    | $4^{+}$                     | $7871\pm2$ $^{\rm d})$  | $10120\pm40$            |  |
| 3634 <sup>b</sup> )     | 0    | $0^{+}$                     | $7983\pm3$ $^{\rm d})$  | $10300\pm20$            |  |
| $3915\pm2$              | 2    | $2^{+}$                     | $8046\pm7$              | $10400\pm10$            |  |
| $4458\pm3$              | 1    | $1^{-}$                     | $8140\pm10$             | $10610\pm20$            |  |
| $5105\pm2$              | 3    | 3-                          | $8233 \pm 9$            |                         |  |
| $5258\pm6$              | 2    | $2^{+}$                     | $8294 \pm 5^{-d})$      |                         |  |
| $5340\pm4$              | 0    | $0^{+}$                     | $8430\pm12$             |                         |  |
| $5382\pm4$              |      |                             | $8521\pm3$ $^{\rm d})$  |                         |  |
| $5530\pm4$              |      |                             | $8660\pm 6$             |                         |  |
| $6197\pm3$              | 1    | 1-                          | $9030 \pm 15$ °)        |                         |  |
| $6356\pm7$              | 1, 2 | $(1^-, 2^+)$ <sup>c</sup> ) | $9362\pm5~{\rm ^d})$    |                         |  |
| $6399\pm3$              | 3    | 3-                          | $9420\pm20$             |                         |  |
| $6885\pm9$              |      |                             | $9480\pm30$             |                         |  |
| $7123\pm7$              | 4    | $4^{+}$                     | $9671\pm8$              |                         |  |

Table 18.15 States in <sup>18</sup>O from <sup>16</sup>O(t, p) <sup>a</sup>)

<sup>a</sup>) (81CO13):  $E_{\rm t} = 15$  MeV; DWBA analysis. See also Table 18.6 in (78AJ03).

<sup>b</sup>) Nominal energy.
<sup>c</sup>) See, however, Table 18.18.

<sup>d</sup>) Comparisons of  $E_x$  shown here with those displayed in Table 18.9 for <sup>18</sup>O<sup>\*</sup> (3.92, 5.10, 6.40, 7.77) suggest that the uncertainty shown may be low:  $\pm 6$  keV was arbitrarily used in calculating the best value for  $E_{\rm x}$  for this state in Table 18.3 of (87AJ02).

<sup>e</sup>) This is the "average" of several unresolved levels. (85FO11) states that the main components are at 8.96 and 9.03 MeV. [Comment: It is not clear whether these states are actually resolved (87AJ02).]

| $E_{\rm x} \ ({\rm MeV} \pm {\rm keV})^{\rm b})$ | $l_{\rm n}$ <sup>b</sup> ) | $J^{\pi b}$ ) | $S^{ m b})$ |
|--------------------------------------------------|----------------------------|---------------|-------------|
| 0                                                | 2                          | $0^{+}$       | 1.22        |
| $1.982\pm10$                                     | 0 + 2                      | $2^{+}$       | 0.21 + 0.83 |
| $3.552\pm10$                                     | 2                          | $4^{+}$       | 1.57        |
| 3.63                                             | 2                          | $0^{+}$       | 0.28        |
| 3.92                                             | 0 + 2                      | $2^{+}$       | 0.35 + 0.66 |
| 4.46                                             | 1                          | $1^{-}$       | 0.03        |
| 5.10                                             | 3                          | $3^{-}$       | 0.03        |
| $5.255 \pm 10$                                   | 0                          | $2^{+}$       | 0.35        |
| 5.34                                             | 2                          | $0^{+}$       | 0.16        |
| $5.375 \pm 10$                                   | 0                          | $3^{+}$       | 1.01        |
| 6.20                                             | 1                          | $1^{-}$       | 0.03        |
| 6.35                                             | 1                          | $(2^{-})$     | 0.03        |
| $7.110 \pm 15$                                   | 2                          | $4^{+}$       |             |
| $7.855\pm20$                                     |                            |               |             |
| $7.962\pm20$                                     |                            |               |             |
| $9.0^{\rm c})$                                   |                            |               |             |

Table 18.16 States of  ${
m ^{18}O}$  from  ${
m ^{17}O(d, p)}$  <sup>a</sup>)

<sup>a</sup>) See references in Tables 18.7 of (72AJ02, 78AJ03).

<sup>b</sup>)  $E_{\rm x}$  values without uncertainties are nominal. J are consistent with

 $l_{\rm n}$  and are used to calculate S.

<sup>c</sup>) (85FO11). See text.

For reaction (a) see (83AJ01). [The work reported there has not been published.] The scattering amplitude (bound)  $a = 5.62 \pm 0.45$  fm;  $\sigma_{\text{free}} = 3.55 \pm 0.25$  b. The thermal cross section for reaction (c) is  $235 \pm 10$  mb. See (83AJ01) for references. See also (88MCZT).

In more recent work, the cross section for  ${}^{17}O(n, \alpha)$  has been measured from  $E_n = 25 \times 10^{-3}$  eV to 1 MeV (91KO31). An evaluation of the cross sections from  $E_n = 10^{-5}$  eV to 20 MeV has been carried out by (91HI15). Results are given in tabular and graphical form. See also (91KO1P).

19. <sup>17</sup>O(d, p)<sup>18</sup>O 
$$Q_{\rm m} = 5.820$$

Observed proton groups are displayed in Table 18.16. A strong asymmetric peak is observed at  $E_d = 12$  MeV corresponding to  $E_x = 9.0$  MeV. On the basis of this work and the measurement of the cross section at a peak at about the same energy observed in the <sup>16</sup>O(t, p) reaction, (85FO11) assign  $J^{\pi} = 4^+$  and a (1d<sub>5/2</sub>) (1d<sub>3/2</sub>) configuration to <sup>18</sup>O\*(9.0). Proton- $\gamma$  coincidence measurements are shown in Table 18.10.

20. <sup>17</sup>O(
$$\alpha$$
, <sup>3</sup>He)<sup>18</sup>O  $Q_{\rm m} = -12.533$ 

| $E_{\rm x}~({\rm MeV})^{\rm b})$ | $J^{\pi b}$ )  | $\sigma_{\rm int} \ ({\rm mb})^{\ c})$ |
|----------------------------------|----------------|----------------------------------------|
| 0.0                              | $0^{+}$        | 0.22                                   |
| 1.98                             | $2^{+}$        | 0.64                                   |
| 3.55                             | $4^{+}$        | 1.59                                   |
| 5.38                             | $3^{+}$        | 0.12                                   |
| 7.12                             | $4^{+}$        | 0.09                                   |
| 7.86                             | $5^{-}$        | 0.14                                   |
| 8.12                             | $5^{-}$        | 0.06                                   |
| 8.82                             | $(1^+)$        | 0.04                                   |
| $11.06^{\ a})$                   | $(6^{-})^{a})$ | 0.18                                   |
| 13.85                            | $(6^{-})^{d})$ | 0.02                                   |
| 14.17                            | $(6^{-})^{d})$ | 0.01                                   |

Table 18.17 Some states in  $^{18}{\rm O}$  from  $^{17}{\rm O}(\alpha,\,^{3}{\rm He})$   $^{\rm a})$ 

<sup>a</sup>) (92YA08);  $E_{\alpha} = 65$  MeV.

<sup>b</sup>)  $E_x$  and  $J^{\pi}$  values from Table 18.9.

<sup>c</sup>) Integrated cross section. See Tables III and IV in

(92YA08) for spectroscopic factors.

<sup>d</sup>) (90SEZZ).

Differential cross sections were measured at  $E_{\alpha} = 65$  MeV (92YA08) for <sup>18</sup>O states up to  $E_x = 15$  MeV. DWBA analysis led to proposed spin, parity and isospin assignments, and spectroscopic factors. See Table 18.17.

21. 
$${}^{17}O({}^{12}C, {}^{11}C){}^{18}O$$
  $Q_{\rm m} = -10.677$ 

Angular distributions involving <sup>18</sup>O\*(0, 1.98, 3.55) have been studied at  $E(^{12}C) = 115$  MeV: see (83AJ01).

22. 
$${}^{18}N(\beta^-){}^{18}O$$
  $Q_m = 13.899$ 

The transitions observed in the  $\beta^-$  decay are displayed in Table 18.18. The  $\gamma$ -decaying states were measured by (82OL01) and an estimated  $15 \pm 6\%$  branching to non- $\gamma$ -decaying states in <sup>18</sup>O was assumed. At least  $12.2 \pm 0.6\%$  of the  $\beta$ -decay branching ratio has been measured to feed 1<sup>-</sup> alpha-particle emitting states (89ZH04). See also the measurements of (87GA1G, 87ZH1F, 88MI1G). A  $\beta$ -delayed neutron emission probability of  $14.3 \pm 2.0\%$ has been measured (91RE02). The  $\beta^-$  branchings to  $\gamma$ -emitting states of (82OL01) has been renormalized to take in account the  $26.5 \pm 2.1\%$  branches to particle emitting states. The  $\gamma$ -ray intensities of (82OL01) also need to be renormalized by this factor, see Table

| Decay to $^{18}O^*$            | Decay    | $J^{\pi}$   | Branch <sup>b</sup> ) | $\log ft$         |
|--------------------------------|----------|-------------|-----------------------|-------------------|
| $(\mathrm{keV})$               | Mode     |             | (%)                   |                   |
| $1982.05 \pm 0.09 \ ^{\rm c})$ | $\gamma$ | $2^{+}$     | $3.4\pm1.3$           | $6.79\pm0.17$     |
| $3554.13\pm0.80$               | $\gamma$ | $4^{+}$     | < 0.5                 | > 7.3             |
| $3633.70 \pm 0.11$             | $\gamma$ | $0^+$       | < 0.3                 | > 7.5             |
| $3920.42\pm0.14$               | $\gamma$ | $2^{+}$     | < 0.4                 | > 7.4             |
| $4455.52 \pm 0.10$             | $\gamma$ | 1-          | $47.2\pm0.9$          | $5.167 \pm 0.013$ |
| $5097.60 \pm 0.60$             | $\gamma$ | $3^{-}$     | < 0.4                 | > 7.1             |
| $5530.17\pm0.32$               | $\gamma$ | $2^{-}$     | $2.7\pm0.3$           | $6.16\pm0.05$     |
| $6198.22\pm0.40$               | $\gamma$ | 1-          | $1.2\pm0.2$           | $6.34\pm0.08$     |
| $6349.76\pm1.0$                | $\gamma$ | $(2^{-})$   | $1.9\pm0.2$           | $6.10\pm0.05$     |
| $6880.45 \pm 0.27$             | $\gamma$ | $0^{-d})$   | $12.8\pm0.7$          | $5.13\pm0.03$     |
| 7620                           | $\alpha$ | 1-          | $6.8\pm0.5$           | $5.17\pm0.04$     |
| $7771.07 \pm 0.50$             | $\gamma$ | $2^{-d}$ )  | $4.3\pm0.4$           | $5.32\pm0.05$     |
| 8040                           | $\alpha$ | 1-          | $1.8\pm0.2$           | $5.61\pm0.05$     |
| $9000^{\rm e})$                | $\alpha$ | $(1^{-})$   | $\geq 3.6\pm 0.2$     | $\leq 5.0$        |
| $(9090\pm30)$                  | n        | $(0-2)^{-}$ | $0.16\pm0.03$         | $6.27\pm0.09$     |
| $9270\pm20$                    | n        | $(0-2)^{-}$ | $0.39\pm0.09$         | $5.80\pm0.11$     |
| $9470\pm20$                    | n        | $(0-2)^{-}$ | $0.47\pm0.09$         | $5.64\pm0.09$     |
| $9690\pm20$                    | n        | $(0-2)^{-}$ | $0.14\pm0.03$         | $6.06\pm0.10$     |
| $9910\pm20$                    | n        | $(0-2)^{-}$ | $0.17\pm0.03$         | $5.87\pm0.08$     |
| $10240\pm30$                   | n        | $(0-2)^{-}$ | $0.16\pm0.03$         | $5.73\pm0.09$     |
| $10650\pm30$                   | n        | $(0-2)^{-}$ | $0.43\pm0.09$         | $5.07\pm0.10$     |
| $10990\pm30$                   | n        | $(0-2)^{-}$ | $0.13\pm0.03$         | $5.38\pm0.11$     |
| $11490\pm30$                   | n        | $(0-2)^{-}$ | $0.19\pm0.04$         | $4.85\pm0.10$     |

Table 18.18 Branching in  $^{18}{\rm N}(\beta^-)^{18}{\rm O}$  ^ )

<sup>a</sup>) Branchings to  $\gamma$ -decaying levels (82OL01), branchings to  $\alpha$ -decaying levels (89ZH04), and branchings to n-decaying levels (94SC01).

<sup>b</sup>)  $12.2 \pm 0.6\%$  of the  $\beta$ -decay branching ratio has been measured to feed  $\alpha$ -emitting states (89ZH04).  $14.3 \pm 2.0\%$  has been measured to feed n-decaying states (91RE02). The branching ratios of  $\gamma$ -decaying states (82OL01) have been renormalized to take these values into account. See reaction 22 of <sup>18</sup>O. Branchings in this table do not add up to 100% since n-decaying levels below 9.00 MeV were not measured by (94SC01) and there is a missing 12.1% branching to n-decaying levels not listed.

<sup>c</sup>)  $E_{\gamma} = 1981.933 \pm 0.09$  keV is adopted by (82OL01).

<sup>d</sup>) See (82OL01).

<sup>e</sup>) Found as a broad bump at 3 MeV in  $\beta$ -delayed alpha spectrum. Could be several unresolved 1<sup>-</sup> states or a new broad 1<sup>-</sup> state in <sup>18</sup>O (89ZH04).

| $E_{\gamma} \ (\text{keV})^{\text{b}})$ | $E_{\rm i}~({\rm keV})$ | $E_{\rm f}~({\rm keV})$ | $I_{\gamma}^{\ c})$ |
|-----------------------------------------|-------------------------|-------------------------|---------------------|
| $535.24\pm0.05$                         | 4456                    | 3920                    | $2.85\pm0.14$       |
| $821.71\pm0.09$                         | 4456                    | 3634                    | $60.6 \pm 1.8$      |
| $1074.8\pm0.6$                          | 5530                    | 4456                    | $0.80\pm0.12$       |
| $1177.3\pm0.9$                          | 5098                    | 3920                    | $0.42\pm0.13$       |
| $1572.0\pm0.8$                          | 3554                    | 1982                    | $0.64\pm0.13$       |
| $1609.6\pm0.9$                          | 5530                    | 3920                    | $0.85\pm0.34$       |
| $1651.56 \pm 0.07$                      | 3634                    | 1982                    | $60.5\pm1.8$        |
| $1893.9\pm0.9$                          | 6350                    | 4456                    | $0.37\pm0.06$       |
| $1938.2\pm0.2$                          | 3920                    | 1982                    | $4.49\pm0.14$       |
| $1981.93\pm0.09$                        | 1982                    | 0                       | $98.0\pm2.0$        |
| $2424.8\pm0.3$                          | 6880                    | 4456                    | $17.53\pm0.70$      |
| $2429.7\pm0.8$                          | 6350                    | 3920                    | $1.41\pm0.14$       |
| $2473.0\pm0.3$                          | 4456                    | 1982                    | $20.4\pm1.0$        |
| $2673.0\pm0.5$                          | 7771                    | 5098                    | $1.63\pm0.16$       |
| $3114.5\pm0.6$                          | 5098                    | 1982                    | $0.92\pm0.14$       |
| $3315.1\pm0.9$                          | 7771                    | 4456                    | $0.63\pm0.25$       |
| $3547.7\pm0.4$                          | 5530                    | 1982                    | $2.01\pm0.14$       |
| $3920.1\pm0.9$                          | 3920                    | 0                       | $0.65\pm0.07$       |
| $4366.0\pm0.8$                          | 6350                    | 1982                    | $0.84\pm0.21$       |
| $5788.5\pm0.7$                          | 7771                    | 1982                    | $3.58\pm0.32$       |
| $6197.1\pm0.4$                          | 6198                    | 0                       | $1.40\pm0.14$       |

Table 18.19 $\gamma\text{-ray intensities observed in <math display="inline">^{18}\mathrm{N}(\beta^-)^{18}\mathrm{O}$  a)

<sup>a</sup>) (82OL01).
<sup>b</sup>) γ-ray energies have not been corrected for nuclear recoil.
<sup>c</sup>) γ-ray intensities are normalized such that the flux into the ground state is 100. To obtain  $\gamma$ -ray intensities per 100 parent decays multiply by  $0.735 \pm 0.021$  (see reaction 22 under <sup>18</sup>O for discussion of this normalization).

18.19. (94SC01) has measured  $\beta$  decay branching ratios to 9 neutron emitting states in <sup>18</sup>O listed in Table 18.18 for a total of  $2.2 \pm 0.4\%$ .

| 23. | (a) ${}^{18}O(\gamma, n){}^{17}O$                   | $Q_{\rm m} = -8.044$  |
|-----|-----------------------------------------------------|-----------------------|
|     | (b) ${}^{18}O(\gamma, 2n){}^{16}O$                  | $Q_{\rm m} = -12.187$ |
|     | (c) ${}^{18}O(\gamma, p){}^{17}N$                   | $Q_{\rm m} = -15.942$ |
|     | (d) ${}^{18}O(\gamma, t){}^{15}N$                   | $Q_{\rm m} = -15.834$ |
|     | (e) ${}^{18}O(\gamma, pn + np){}^{14}C$             | $Q_{\rm m} = -34.522$ |
|     | (f) $^{18}\mathrm{O}(\gamma,\alpha)^{14}\mathrm{C}$ | $Q_{\rm m} = -6.227$  |
|     |                                                     |                       |

The cross sections for the  $(\gamma, p)$ ,  $(\gamma, n)$ ,  $(\gamma, 2n)$  and  $(\gamma, tot)$  [tot = total absorption] have been measured with monoenergetic photons to 42 MeV: observed resonances are displayed in Table 18.20. All three of the partial cross sections have substantial strength in the giant resonance region; the  $(\gamma, 2n)$  cross section is a significant fraction of  $\sigma(\gamma, tot)$ and is even larger than  $\sigma(\gamma, p)$ . Above the GDR the partial cross sections decrease. The integrated  $\sigma(\gamma, tot)$  between 29 and 42 MeV is about one-third of the value integrated from threshold to 42 MeV. The relative strengths of partial cross sections leads to the Tassignments shown in Table 18.20. The  $T_{<}$  and  $T_{>}$  components of the <sup>18</sup>O photo absorption cross section are also derived (79WO04).

In a related, but more recent, experiment the cross section for reaction (e) was measured (91MC01) and it was determined that the cross section rises to a maximum of 1.2 mb at 27.5 MeV, approximately one-tenth of the total ( $\gamma$ , n) cross section there. The cross section, integrated to 43 MeV, is only 11.8 mb-MeV, and as a result the isospin assignments of (79WO04) are unaffected by neglect of this channel. A recent extensive study of isospin effects in the photodisintegration of light nuclei (93MC02) used a collection of data on ( $\gamma$ , p), ( $\gamma$ , n), ( $\gamma$ , 2n) and ( $\gamma$ , n<sub>0</sub>) cross sections and separated the T<sub>></sub> and T<sub><</sub> isospin components of the GDR in several light nuclei including <sup>18</sup>O. The relative strengths were extracted. See also the atlas of photoneutron cross sections with monoenergetic photons (88DI02), and see (88BE1T, 89NO1C). Structures in the ( $\gamma$ ,  $\alpha_0$ ) cross section are reported at  $E_x = 18.2$ , 20.9, 22.1, and 24.2 MeV (82BA03;  $E_{\text{brems.}}$ ). The decay of the GDR to <sup>14</sup>C, <sup>15</sup>N, <sup>16</sup>O, <sup>17</sup>N and <sup>17</sup>O states has been studied: see (83AJ01). Less than 20% of the decay of states with 14.5 <  $E_x$  < 20 MeV goes via the n<sub>0</sub> channel (87JU07). See (78AJ03, 87AJ02) for the earlier work.

24. <sup>18</sup>O( $\gamma, \gamma$ )<sup>18</sup>O

For <sup>18</sup>O\*(6.20)  $\Gamma_{\gamma_0} = 0.18 \pm 0.03$  eV, assuming  $\Gamma_{\gamma_0}/\Gamma = 0.88$ ;  $E_x = 6202.7 \pm 0.8$  keV: see (78AJ03).

25.  ${}^{18}O(e, e'){}^{18}O$ 

|                         | $E_{\rm x}~({ m MeV})$ <sup>a</sup> ) |                |               | $\sigma \ ({\rm mb})$                   | $\Gamma (MeV)$ |  |
|-------------------------|---------------------------------------|----------------|---------------|-----------------------------------------|----------------|--|
| $(\gamma, \text{ tot})$ | $(\gamma, n)$                         | $(\gamma, 2n)$ | $(\gamma, p)$ | _                                       |                |  |
| 9.1                     | 9.1                                   |                |               | 1.1 <sup>b</sup> )                      | 0.6            |  |
| 10.3                    | 10.3                                  |                |               | $5.3^{\ { m b}})$                       | 0.9            |  |
| 11.4                    | 11.4                                  |                |               | $9.0^{\rm b})$                          | 0.7            |  |
| 13.1                    | 13.1                                  | 13.2           |               | $8.6^{\rm b})$                          | 0.7            |  |
| 13.8                    | 13.8                                  | 13.9           |               | $6.9^{\rm b})$                          | 0.6            |  |
| 14.7                    | 14.7                                  | 14.8           |               | $13.1^{\rm b})$                         | 0.8            |  |
| 15.8                    | 15.7                                  | 15.8           |               | 10.9 <sup>b</sup> )                     | 0.7            |  |
| 17.3 <sup>c</sup> )     | 17.1                                  |                | 17.5          | 10.1 <sup>b</sup> ), 1.2 <sup>e</sup> ) | 0.6            |  |
| 19.4 <sup>c</sup> )     |                                       | (19.1)         | 19.4          | 10.0 <sup>b</sup> ), 1.8 <sup>e</sup> ) | 0.9            |  |
| $21.1 \ ^{\rm d})$      |                                       | 21.1           | 21.0          | 9.7 <sup>b</sup> ), 1.2 <sup>e</sup> )  |                |  |
| 22.6                    | (22.6)                                | 22.7           | 22.7          |                                         |                |  |
| $23.7 {\rm ~d})$        | 23.7                                  | 23.5           | 23.7          | 17.7 <sup>b</sup> ), 6.1 <sup>e</sup> ) | 1.6            |  |
| 27 <sup>c</sup> )       | 27                                    |                | 27 - 28       |                                         |                |  |
| $30^{\rm f})$           | 30                                    |                |               |                                         |                |  |
| 36 <sup>f</sup> )       |                                       |                |               |                                         |                |  |

Table 18.20 Resonances in  $^{18}\mathrm{O} + \gamma$ 

<sup>a</sup>) (79WO04). See also (87JU07, 93MC02) and Table 18.9 in (83AJ01).
<sup>b</sup>) σ(γ, n) + 2σ(γ, 2n).
<sup>c</sup>) T = 2: see (79WO04).
<sup>d</sup>) T = 1: see (79WO04).
<sup>e</sup>) σ(γ, p).
<sup>f</sup>) Weak and broad resonances: may indicate the presence of particle-hole states at these high groups. high energies.

| $E_{\rm x}$ (MeV)                | $\Gamma$ (keV) | $J^{\pi}; T$    | Mult. | Transition probability<br>(in $e^2 \cdot \text{fm}^{2\lambda}$ ) |
|----------------------------------|----------------|-----------------|-------|------------------------------------------------------------------|
| 1.98 <sup>b</sup> )              |                | $2^+: 1$        | C2    | $44.8 \pm 1.3$                                                   |
| $3.55^{\rm b})$                  |                | $4^+; 1$        | C4    | $(9.04 \pm 0.90) \times 10^2$                                    |
| 3.92 <sup>b</sup> )              |                | $2^+; 1$        | C2    | $22.2 \pm 1.0$                                                   |
| 4.46 °)                          |                | 1-              |       |                                                                  |
| 5.10 °)                          |                | $3^{-}$         | C3    | $1301 \pm 39$                                                    |
| 5.26 <sup>b</sup> )              |                | $2^+; 1$        | C2    | $28.3 \pm 1.5$                                                   |
| $5.53 \pm 0.01$ e)               | < 50           | $2^{-}; 1$      |       |                                                                  |
| 6.20 °)                          |                | 1-              |       |                                                                  |
| $6.35 \pm 0.01$ e)               | < 50           | $(2^{-}); 1$    |       |                                                                  |
| 6.40 <sup>c</sup> )              |                | 3-              | C3    | $40 \pm 9$                                                       |
| 7.12 <sup>b</sup> )              |                | $4^+; 1$        | C4    | $(1.31 \pm 0.06) \times 10^4$                                    |
| 7.62 <sup>c</sup> )              |                | 1-              |       |                                                                  |
| $7.77 \pm 0.01^{-\text{e}}$      | < 50           | $2^{-}; 1$      |       |                                                                  |
| 7.86 <sup>c</sup> )              |                | $5^{-}$         | C5    | $(3.54 \pm 0.64) \times 10^4$                                    |
| 8.04 °)                          |                | 1-              |       |                                                                  |
| 8.13 <sup>c</sup> )              |                | $5^{-}$         | C5    | $(1.88 \pm 0.35) \times 10^4$                                    |
| 8.21 <sup>d</sup> )              |                | $2^+;(1)$       | C2    | $7.3 \pm 4.2$                                                    |
| 8.29 <sup>c</sup> )              |                | 3-              | C3    | $\leq 19$                                                        |
| $8.41 \pm 0.01$ e)               | < 50           | $(2^{-}); 1$    |       |                                                                  |
| $8.52 \pm 0.01$ e)               | < 50           | $(4^{-}); 1$    |       |                                                                  |
| $8.82 \pm 0.01$ e)               | $70 \pm 12$    | $(1^+); 1$      |       |                                                                  |
| $8.96 \pm 0.01$ e)               | $43 \pm 3$     | $(4^+); 1$      |       |                                                                  |
| $9.36 \pm 0.01$ <sup>d,e</sup> ) | $\leq 20$      | $(2^+); 1$      |       |                                                                  |
| $9.71 \pm 0.01$ <sup>e</sup> )   | < 50           | $(5^{-}); 1$    |       |                                                                  |
| $10.31 \pm 0.02$ <sup>e</sup> )  | < 50           | $(4^+); 1$      |       |                                                                  |
| $10.43 \pm 0.04$ <sup>e</sup> )  | < 50           | $(2^{-}); 1$    |       |                                                                  |
| $10.67 \pm 0.02$ <sup>e</sup> )  | < 50           | $(2^{-}); 1$    |       |                                                                  |
| $10.99 \pm 0.02$ <sup>e</sup> )  | < 50           | $(2^{-}); 1$    |       |                                                                  |
| $11.52 \pm 0.05$ <sup>e</sup> )  | < 50           | $(2^{-}); 1$    |       |                                                                  |
| $11.67 \pm 0.02$ <sup>e</sup> )  | $112\pm7$      | $(3^{-}); 1$    |       |                                                                  |
| $11.90 \pm 0.03$ <sup>e</sup> )  | < 50           | $(2^{-}); 1$    |       |                                                                  |
| $12.09 \pm 0.02$ <sup>e</sup> )  | < 50           | $(1^-, 2^+); 1$ |       |                                                                  |
| $12.41 \pm 0.02$ <sup>e</sup> )  | $143\pm24$     | $(3^{-}); 1$    |       |                                                                  |
| $12.52 \pm 0.02$ <sup>e</sup> )  | < 50           |                 |       |                                                                  |
| $12.66 \pm 0.02$ °)              | < 50           | $(2^{-}); 1$    |       |                                                                  |
| $12.99 \pm 0.02$ <sup>e</sup> )  | $68\pm18$      | $(4^{-}); 1$    |       |                                                                  |
| $13.40 \pm 0.02$ <sup>e</sup> )  | $108\pm26$     | $(2^{-}); 1$    |       |                                                                  |
| $13.85 \pm 0.13$ <sup>e</sup> )  | $\sim 200$     | $(6^{-}): 1$    |       |                                                                  |

Table 18.21 Some states of  $^{18}{\rm O}$  from  $^{18}{\rm O}({\rm e},\,{\rm e}')$   $^{\rm a})$ 

| $E_{\mathbf{x}}$                                        |                      | $J^{\pi}; T$          | Mult. | Transition probability $(1 - 2 - c - 2\lambda)$ |
|---------------------------------------------------------|----------------------|-----------------------|-------|-------------------------------------------------|
| (MeV)                                                   | (KeV)                | (c-) 1                |       | $(\ln e^2 \cdot \mathrm{Im}^{-1})$              |
| $14.17 \pm 0.04^{\circ})$                               | $140 \pm 50$         | (6);1                 |       |                                                 |
| $14.45 \pm 0.05^{\circ}$                                | $\sim 1070$          |                       |       |                                                 |
| $15.23 \pm 0.04$ °)                                     | $\sim 300$           |                       |       |                                                 |
| $15.95 \pm 0.03$ °)                                     | < 50                 | 1(-)                  |       |                                                 |
| $16.210 \pm 0.01^{-1.9}$                                |                      | (2, 0) =              |       |                                                 |
| $10.315 \pm 0.01^{-1.8}$                                | . 20                 | (3, 2)                | 140   | (24 + 0) = 10 - 2                               |
| $16.399 \pm 0.005^{-1,11}$                              | < 20                 | $2; 2^{-})$           | M2    | $(64 \pm 8) \times 10^{-2}$                     |
| $16.40 \pm 0.02^{\circ}$                                | < 50                 | (2); 2                |       |                                                 |
| $16.88 \pm 0.03^{\text{e}}$                             | < 50                 | $(4^-, 2^-; 1)$       |       |                                                 |
| $16.948 \pm 0.01^{-1,g})$                               |                      | $(3, 2)^{-}$          |       |                                                 |
| $17.025 \pm 0.01^{\text{e},\text{r},\text{g},\text{m}}$ | $20\pm 6$            | $(3^{-}); 2$          |       |                                                 |
| $17.398 \pm 0.01$ <sup>r,g</sup> )                      |                      | $(2, 1, 3)^{-}$       |       |                                                 |
| $17.450 \pm 0.01$ <sup>t,g</sup> )                      |                      | $(2, 1, 3)^{-}$       |       |                                                 |
| $17.46 \pm 0.03$ °)                                     | $\sim 600$           | $(4^{-}); 1$          |       |                                                 |
| 17.5 <sup>t</sup> )                                     | $\approx 150$        |                       |       |                                                 |
| $17.502 \pm 0.01$ <sup>f,g</sup> )                      |                      | $(1, 2, 3)^{-}$       |       |                                                 |
| $17.635 \pm 0.01$ <sup>f,g</sup> )                      |                      |                       |       |                                                 |
| $18.049 \pm 0.01$ <sup>f,g</sup> )                      |                      | d)                    |       |                                                 |
| 18.2 f)                                                 | $\approx 150$        |                       |       |                                                 |
| $18.45 \pm 0.02$ e)                                     | $75 \pm 27$          | $(3^-; 1)$            |       |                                                 |
| 18.5 f)                                                 | $\approx 4300$       |                       |       |                                                 |
| $18.68 \pm 0.02$ <sup>e,h</sup> )                       | < 50                 | $(4^-; 2)$            |       | $63 \pm 8^{\text{h}})$                          |
| $18.871 \pm 0.005 \ ^{\rm f})$                          |                      | $1^+; 2$              | M1    | $(3.1 \pm 0.4) \times 10^{-2}$                  |
| $18.927 {\rm ~f,g})$                                    |                      | $1 (2^+)$             |       |                                                 |
| $19.027 \pm 0.01^{\rm ~f,g})$                           |                      | $(1, 3)^{-}$          |       |                                                 |
| $19.150 \pm 0.01^{\rm ~f,g})$                           |                      | $1^{-}(2^{+}, 3^{-})$ |       |                                                 |
| $19.22 \pm 0.02$ <sup>e</sup> )                         | < 50                 | $(3^-; 2)$            |       |                                                 |
| $19.7 {}^{ m f})$                                       | $\approx 200$        |                       |       |                                                 |
| 20.2 f)                                                 | $\approx 180$        |                       |       |                                                 |
| $20.36 \pm 0.02 \ ^{\rm e,h})$                          | < 20                 | $(4^{-}); 2$          | M4    | $66\pm 6$                                       |
| $20.86 \pm 0.02$ <sup>e</sup> )                         | $97\pm41$            |                       |       |                                                 |
| $21.0^{\text{ f}})$                                     | $\approx 150$        |                       |       |                                                 |
| $21.42 \pm 0.02 \ ^{\rm e,h})$                          | $49\pm37$            | $(4^-; 2)$            |       |                                                 |
| $22.40 \pm 0.02 \ ^{\rm e,f,h})$                        | $91\pm8$ $^{\rm e})$ | $4^-; 2^{e})$         | M4    | $400\pm32$                                      |
| $23.10 \pm 0.02$ <sup>e</sup> )                         | $49\pm24$            |                       |       |                                                 |
| 23.8 <sup>f</sup> )                                     | $\sim 1300$          |                       |       |                                                 |

Table 18.21 (continued) Some states of  $^{18}{\rm O}$  from  $^{18}{\rm O(e,\,e')}$  ^)
Table 18.21 (continued) Some states of <sup>18</sup>O from <sup>18</sup>O(e, e') <sup>a</sup>)

<sup>a</sup>) Additional states have been excited: see reaction 28 in (83AJ01). For ground state see reaction 25 here.

<sup>b</sup>) (82NO04).
<sup>c</sup>) (91MA14).
<sup>d</sup>) (90MA06).
<sup>e</sup>) (95SE1A).
<sup>f</sup>) (83BE36).
<sup>g</sup>) Weakly excited.
<sup>h</sup>) (86MA48).
<sup>i</sup>) See fig. 5 for missing T = 2 strength.

The <sup>18</sup>O charge radius,  $\langle r^2 \rangle^{1/2} = 2.784 \pm 0.020$  fm, based on studies of the elastic charge form factors for  $E_e = 70$  to 370 MeV, the resulting determinations of the difference in the <sup>18</sup>O and <sup>16</sup>O radii, and the rms radius of <sup>16</sup>O: see (83AJ01).

Inelastic scattering has been reported to many states of <sup>18</sup>O: see (83AJ01, 87AJ02) and Table 18.21 here, which also includes the very recent work reported in (95SE1A). See also the comment (87MI25) and reply (87MA40) on the work reported in (86MA48). Recent measurements are reported for 4<sup>-</sup> and 6<sup>-</sup> states at  $E_e = 140-275$  MeV (90SEZZ), and for 1<sup>-</sup>, 3<sup>-</sup>, 5<sup>-</sup> states (91MA14). Form factor measurements for the 2<sup>+</sup> level at  $E_x = 8.21$  MeV and the (2<sup>+</sup>) level at  $E_x = 9.3$  MeV at momentum transfer 0.9 < q < 2.1 fm<sup>-1</sup> (90MA06) and for the 1<sup>-</sup>, 3<sup>-</sup> and 5<sup>-</sup> levels at 0.6 < q < 2.7 fm<sup>-1</sup> (91MA14) are reported.

Several theoretical studies of inelastic electron scattering to states of <sup>18</sup>O have been carried out. A microscopic calculation for scattering to  $2^+$  states is reported in (88HAZZ) and to  $0^+$  and  $2^+$  states in (88KU17). See also the calculations of transition charge densities described in (88GU03, 88GU12, 92GU11) and see (87GU1D, 88GU1B, 89AJ1A).

26. (a)  ${}^{18}O(\pi^{\pm}, \pi^{\pm}){}^{18}O$ (b)  ${}^{18}O(\pi^{\pm}, \pi^{\pm}p){}^{17}N$   $Q_m = -15.942$ (c)  ${}^{18}O(\pi^-, \pi^-n){}^{17}O$   $Q_m = -8.044$ 

Angular distributions for the scattering to <sup>18</sup>O<sup>\*</sup> (0, 1.98, 5.10) have been reported at  $E_{\pi^{\pm}} = 29.2$  to 230 MeV [see (83AJ01)] and at 50 MeV (84TA1A; <sup>18</sup>O<sup>\*</sup>(0, 1.98)) at 140, 180, and 220 MeV (84SE1A; <sup>18</sup>O<sup>\*</sup>(1.98)), and at 164 MeV (87CH14; <sup>18</sup>O<sup>\*</sup>(0, 1.98, 4.46, 5.10)) and (88SE04; <sup>18</sup>O<sup>\*</sup>(1.98, 3.92, 5.26 MeV)). See also (89GR1M, 90W11K). Measurements and analysis work reported in (83AJ01) determine  $\langle r_n^2 \rangle^{1/2} = 2.81 \pm 0.03$  fm,  $\langle r_n^2 \rangle^{1/2} - \langle r_p^2 \rangle^{1/2} = 0.03 \pm 0.03$  fm. For a discussion of proton matter distribution in <sup>18</sup>O see (85BA27). Total reaction cross sections at  $E_{\pi} = 50$  MeV have been determined by (87ME12). At E = 165 MeV, the cross section for reaction (c) is larger for <sup>18</sup>O than for <sup>16</sup>O while reaction (b) has a lower cross section (82PI06). For the ( $\pi^+$ , 2p), ( $\pi^+$ , pn) and ( $\pi^-$ , pn) reactions at  $E_{\pi} = 165$  MeV see (84AL20, 86AL22). Results of Glauber model calculations of pion scattering from <sup>18</sup>O at energies above the  $\Delta_{33}$  resonance are presented in (91OS01). A microscopic study of inelastic scattering to the 2<sup>+</sup> states in <sup>18</sup>O is reported in (88HAZZ). See also the review of pion-nucleus physics in (91MO13).

27.  ${}^{18}O(n, n'){}^{18}O$ 

Angular distributions have been measured for  $E_n = 2.9$  to 24 MeV [see (72AJ02, 83AJ01)] and at  $E_n = 5.0$  to 7.5 MeV (86KO10;  $n_0$ ,  $n_1$ ).

28.  ${}^{18}O(p, p'){}^{18}O$ 

Angular distributions have been measured for  $E_{\rm p} = 0.84$  to 135 MeV [see (78AJ03, 83AJ01)], at  $E_{\rm p} = 135$  MeV (86KE05; p<sub>1</sub>) and at  $E_{\rm p} = 800$  MeV (82GL08; p to <sup>18</sup>O\*(0, 1.98, 7.12).) At  $E_{\rm p} = 24.5$  MeV (74ES02) have studied the angular distributions of the proton groups to <sup>18</sup>O\*(1.98, 3.55, 3.63, 3.92, 4.46, 5.10, 5.26, 5.53, 7.12): a modified DWBA analysis leads to  $J^{\pi} = 2^+$ ,  $4^+$ ,  $0^+$ ,  $2^+$ ,  $1^-$ ,  $3^-$ ,  $2^+$ ,  $2^-$  and  $4^+$  for these states. A coupled-channels calculation suggests  $\beta_2 = 0.37 \pm 0.03$ ,  $0.56 \pm 0.06$  and  $0.18 \pm 0.04$  for <sup>18</sup>O\*(1.98, 5.10, 7.12). Such calculations also support evidence for a rotational band involving <sup>18</sup>O\*(0, 1.98, 7.12). The  $3^-$  state at 5.10 MeV is strongly excited and collective in nature:  $B(E3) = 1120 \ e^2 \cdot \text{fm}^6$ . For <sup>18</sup>O\*(1.98, 3.92, 5.26), B(E2) = 45, 8.3 and 24  $e^2 \cdot \text{fm}^4$  (74ES02). The 800-MeV data indicates that <sup>18</sup>O\*(7.12) can be described only if a large hexadecapole deformation is assumed (82GL08). At  $E_{\rm p} = 201$  MeV,  $\sigma(\theta)$  at forward angles has been measured to <sup>18</sup>O\*(8.21, 8.82, 16.40): it is proposed that <sup>18</sup>O\*(8.82) has  $J^{\pi} = 1^+$  and that additional 1<sup>+</sup> strength is located in a group centered at  $E_{\rm x} \approx 10.1$  MeV as well as in the region  $E_{\rm x} = 12.4$  to 15 MeV. The 1<sup>+</sup>; T = 2 state <sup>18</sup>O\*(18.87), reported in (e, e'), is not observed (87DJ01). See also (88CR1B).

<sup>18</sup>O\*(1.98) has  $|g| = 0.287 \pm 0.015$  [ $\tau_{\rm m} = 2.99 \pm 0.12$  psec]. <sup>18</sup>O\*(3.55) has  $|g| = 0.62 \pm 0.10$  suggesting a mainly  $(d_{5/2})^2$  configuration for this state: see (83AJ01). See also <sup>19</sup>F and (87AJ02).

A Dirac optical model analysis of  ${}^{18}O(p, p)$  cross section and analyzing power at 800 MeV is described in (90PH02). A coupled-channels analysis was presented in (88DE31). The intrinsic radial sensitivity of nucleon inelastic scattering was studied by (88KE01) and a comparison of electromagnetic and hadronic probes of nuclear structure is described in (86KE1C).

29.  ${}^{18}O(\bar{p}, \bar{p}'){}^{18}O$ 

Angular distributions are reported with 178.4 MeV antiprotons to  ${}^{18}O^*(0, 1.98)$  (86BR04, 86LE13). For atomic effects see (86KO22). See also (87AJ02).

Differential cross sections for elastic and inelastic scattering of 180-MeV antiprotons by <sup>18</sup>O were calculated in the eikonal and Glauber approaches by (92TA08).

30.  ${}^{18}O(d, d'){}^{18}O$ 

Angular distributions have been reported at  $E_d = 7.0$  to 15.0 MeV: see (72AJ02, 83AJ01). See also <sup>20</sup>F of (87AJ02).

31.  ${}^{18}O(t, t'){}^{18}O$ 

See (72AJ02).

32. <sup>18</sup>O(<sup>3</sup>He, <sup>3</sup>He')<sup>18</sup>O

The elastic scattering has been studied at  $E({}^{3}\text{He}) = 11.0$  to 41 MeV [see (72AJ02, 83AJ01)] and at 14 MeV (82AB04), at 25 MeV (82VE13) [the matter radius,  $\langle r^{2} \rangle_{\text{m}}^{1/2} = 2.59 \pm 0.12$  fm] and at 33 MeV (83LE03; also  $A_{\gamma}$ ; and also to  ${}^{18}\text{O*}(1.98)$ ). A strong-absorption model analysis of angular distributions at 2.5 and 41 MeV is described in (87RA36). See also (85HA11, 87CO07).

33.  ${}^{18}O(\alpha, \alpha'){}^{18}O$ 

Recent elastic scattering cross sections at  $E_{\alpha} = 44.8$  MeV were reported by (92AR18). Angular distributions of many  $\alpha$ -groups have been measured in the range  $E_{\alpha} = 21$  to 40.5 MeV [see (78AJ03)], at 23.5 MeV (84SA28; to <sup>18</sup>O\*(1.98, 3.56 + 3.63, 3.92, 4.45, 5.1–5.53)) and at 54.1 MeV (87AB03; g.s.). The transitions to <sup>18</sup>O\*(4.46, 5.10) are L = 1 and 3, respectively, fixing  $J^{\pi} = 1^{-}$  and  $3^{-}$  for these states. Measurements of  $\alpha$ -groups near 180° for  $E_{\alpha} = 20.0$  to 23.4 MeV confirm assignments of natural parity for <sup>18</sup>O\*(1.98, 3.55, 3.63, 3.92, 4.46, 5.10, 5.26, 5.34, 6.20, 6.40, 7.12, 7.62, 7.86, 8.22, 8.29, 8.82, 8.96, 9.03, 9.10, 9.36, 9.41, 9.67, 9.72 \pm 0.03, 9.88, 10.12, 10.30, 10.40, 11.62, 11.69). [See, however, Table 18.9.] Levels at  $E_x = 5.38, 8.48$  and 8.64 MeV were not observed, and those at 5.53, 6.35 and 6.88 MeV were populated weakly indicating unnatural parity;  $J^{\pi} = 3^+$  and  $2^-$  respectively for <sup>18</sup>O\*(5.38, 5.53).

Alpha-gamma correlation measurements involving <sup>18</sup>O states below  $E_x = 6.4$  MeV [see Table 18.10] lead to  $J^{\pi} = 1^-$  and  $3^-$  for <sup>18</sup>O\*(6.20, 6.40). Other  $J^{\pi}$  values agree with previous assignments. The transitions  $3.92 \rightarrow 1.98$  and  $5.26 \rightarrow 1.98$  are almost pure M1. For  $\tau_m$  measurements, see Table 18.4 in (78AJ03). For references see (83AJ01, 87AJ02). A microscopic investigation of the  $\alpha + {}^{18}$ O system in a three-cluster model is discussed in (88DE37).

34. (a)  ${}^{18}O({}^{6}Li, {}^{6}Li'){}^{18}O$ (b)  ${}^{18}O({}^{7}Li, {}^{7}Li'){}^{18}O$ 

See (72AJ02, 83AJ01).

- 35. (a)  ${}^{18}O({}^{9}Be, {}^{9}Be'){}^{18}O$ 
  - (b) <sup>18</sup>O(<sup>9</sup>Be,  $\pi$ -n)X (not observed)

A recent search for a bound system of  $\pi^-$  and neutrons in the fragmentation region of  ${}^{18}\text{O} + {}^{9}\text{Be}$  collisions at 100 A MeV is reported in (93SU08). Upper limits were obtained. See also (72AJ02, 87AJ02).

36. (a)  ${}^{18}O({}^{10}B, {}^{10}B'){}^{18}O$ (b)  ${}^{18}O({}^{11}B, {}^{11}B'){}^{18}O$ 

An elastic angular distribution has been reported at  $E(^{11}B) = 115$  MeV: see (83AJ01). For reaction (a) see (74AJ01).

A recent measurement of <sup>18</sup>O on <sup>10,11</sup>B targets at  $E_{\text{lab}} \approx 55$  MeV is described in (93AN08) and evidence for fusion-fission rather than orbiting is reported. See also (90SZ1C).

37. (a)  ${}^{18}O({}^{12}C, {}^{12}C'){}^{18}O$ (b)  ${}^{18}O({}^{13}C, {}^{13}C'){}^{18}O$ (c)  ${}^{18}O({}^{14}C, {}^{14}C'){}^{18}O$ (d)  ${}^{18}O({}^{12}C, {}^{\alpha}{}^{12}C){}^{14}C$   $Q_{\rm m} = -6.227$ 

Elastic angular distributions have been studied at  $E(^{18}\text{O}) = 32.3$  to 57.5 MeV for reaction (a) [as well as at  $E(^{18}\text{O}) = 70$ , 100, and 140 MeV (82HE07)] and at  $E(^{18}\text{O}) = 31$  MeV for reaction (b). Yields and fusion cross sections are reported by (82BA49, 82HE07, 85BE40, 85CA01, 86GA13). For reaction (c) see (86ST1C). See also (83AJ01, 87AJ02).

Angular correlations (reaction (d)) have been studied at  $E(^{18}\text{O}) = 82 \text{ MeV}$ .  $^{18}\text{O}^*(7.10, 7.62, 7.86, 8.04, 8.22, 10.30, 11.59, 12.55)$  are observed: the first seven of these have  $J^{\pi} = 4^+$ ,  $1^-$ ,  $5^-$ ,  $1^-$ ,  $2^+$ ,  $4^+$ ,  $5^-$  (84BH01, 84RA07). In addition  $^{18}\text{O}^*(9.33, 9.65)$  are also populated [ $\Gamma \approx 0.3 \text{ MeV}$ ]: a possible interpretation of the data is that these two are  $3^-$  states and that there is in addition a very wide ( > 1 MeV) 2<sup>+</sup> state at  $\approx 9.5 \text{ MeV}$  (84RA17). See also (87AJ02).

Giant dipole decays in nuclei excited by  ${}^{18}O + {}^{12}C$  collisions were discussed in (89BEZC, 90SN1A). Competition between p2n, dn and t emissions in the  ${}^{12}C + {}^{18}O$  reaction was studied in an experiment reported in (90XE01).

Predictions of possible resonant behavior in medium-mass colliding systems are discussed in (89CI1C). Molecular single particle effects for  ${}^{12}C + {}^{18}O$  are explored in calculations described in (87MO27).

38. <sup>18</sup>O(<sup>15</sup>N, <sup>15</sup>N')<sup>18</sup>O

See (83DU13).

39.  ${}^{18}O({}^{16}O, {}^{16}O'){}^{18}O$ 

Angular distributions have been measured at many energies for  $E({}^{16}\text{O}) = 24$  to 54.5 MeV and  $E({}^{18}\text{O}) = 25$  to 52 MeV, involving besides  ${}^{18}\text{O}_{\text{g.s.}}, {}^{18}\text{O}^*(1.98, 3.55 + 3.63, 3.92, 4.46, 5.10, 7.12)$ . At  $E({}^{18}\text{O}) = 126$  MeV,  ${}^{18}\text{O}^*(9.0)$  is relatively strongly populated. See (83AJ01). For yields and fusion cross sections, including the effect of  ${}^{18}\text{O}^*(1.98)$ , see (85TH03, 85WU03, 86GA13, 86TH01). See also (87AJ02). Competition between p2n, dn and t emissions in  ${}^{18}\text{O} + {}^{16}\text{O}$  reactions was studied in an experiment reported in (90XE01).

A unified description of sub-barrier interactions of oxygen isotopes is discussed in (87PO11); see the coupled-channels calculations reported in (92LI1K). See also the review of sub-barrier fusion in (88BE1W). A semi-classical analysis of two particle transfer in  ${}^{16}O + {}^{18}O$  reactions is discussed in (87MA22).

40. (a)  ${}^{18}O({}^{17}O, {}^{17}O'){}^{18}O$ (b)  ${}^{18}O({}^{18}O, {}^{18}O'){}^{18}O$ 

Angular distributions involving <sup>18</sup>O<sup>\*</sup>(0, 1.98) are reported at  $E(^{17}\text{O}) = 36$  MeV. Angular distributions [reaction (b)] have been studied at  $E(^{18}\text{O}) = 20$  to 52 MeV. <sup>18</sup>O<sup>\*</sup>(3.55 + 3.63, 4.46, 5.10, 7.12) are also populated; see (78AJ03, 83AJ01). See also (87AJ02) and see (90XE01) reporting on p2n, dn and t emissions in <sup>18</sup>O + <sup>18</sup>O reactions.

The effect of high spin states on fusion in  ${}^{18}O + {}^{18}O$  systems has been studied in the framework of a statistical theory (87RA28).

41.  ${}^{18}O({}^{19}F, {}^{19}F'){}^{18}O$ 

The elastic scattering has been studied at  $E(^{19}\text{F}) = 27$ , 30, and 33 MeV: see (83AJ01). See also (87AJ02). An experiment reported in (90XE01) studied p2n, dn and t emission in  $^{18}\text{O} + ^{19}\text{F}$  reactions. 42. (a)  ${}^{18}O({}^{24}Mg, {}^{24}Mg'){}^{18}O$ (b)  ${}^{18}O({}^{26}Mg, {}^{26}Mg){}^{18}O$ 

Angular distributions are reported for reaction (a) at  $E(^{18}\text{O}) = 29$  and 35 MeV to  $^{18}\text{O}^*(0, 1.98)$ . See (87AJ02).

43. <sup>18</sup>O(<sup>27</sup>Al, <sup>27</sup>Al')<sup>18</sup>O

The elastic angular distribution has been studied at  $E(^{18}\text{O}) = 100 \text{ MeV}$  (81ME13). See also (83AJ01, 87AJ02).

44. <sup>18</sup>O(<sup>28</sup>Si, <sup>28</sup>Si')<sup>18</sup>O

Elastic angular distributions are reported at  $E(^{18}\text{O}) = 36$  to 56 MeV [see (83AJ01)] and at 351.7 MeV (84BU1A, 88BU15; also to  $^{18}\text{O}^*(1.98)$ ). See also (87AJ02).

Ambiguities in optical-model potentials for describing  ${}^{18}\text{O} + {}^{28}\text{Si}$  and other heavy-ion reactions are discussed in (87HO18). See also (89NA1M).

45. (a)  ${}^{18}O({}^{40}Ca, {}^{40}Ca'){}^{18}O$ (b)  ${}^{18}O({}^{44}Ca, {}^{44}Ca'){}^{18}O$ (c)  ${}^{18}O({}^{48}Ca, {}^{48}Ca'){}^{18}O$ 

Angular distributions have been measured at  $E(^{18}\text{O}) = 62.1 \text{ MeV}$  [reaction (a)] for the transitions to  $^{18}\text{O}^*(0, 1.98, 5.10)$  (82RE14). For a fusion study [reaction (b)] see (84DE1B). See also (87AJ02, 87SC34).

46. 
$${}^{18}\mathrm{F}(\beta^+){}^{18}\mathrm{O}$$
  $Q_{\mathrm{m}} = 1.655$ 

See  ${}^{18}$ F, reaction 1.

47. <sup>19</sup>F $(\gamma, p)^{18}$ O  $Q_{\rm m} = -7.994$ 

(85KE03) have measured the yields of proton groups to  ${}^{18}O^*(0, 1.98)$  [and to unresolved states] for  $E_{\rm bs}$  in the GDR range. See also (78AJ03) and  ${}^{19}F$ , reaction 36.

| $E_{\rm x}~({\rm keV})$ | $J^{\pi}$ | $E_{\rm x}~({\rm keV})$ | $J^{\pi}$ |
|-------------------------|-----------|-------------------------|-----------|
| $1982.16\pm0.20$        |           | $5530.5\pm0.6$          | 1, 2      |
| $3555.07 \pm 0.45$      |           | $6196.3 \pm 1.2$        | 1         |
| $3634.50 \pm 0.40$      |           | $6351.3\pm0.6$          | 1, 2      |
| $3920.6\pm0.4$          |           | $6404.4\pm1.2$          |           |
| $4456.1\pm0.5$          |           | $6881.6 \pm 1.2$        | 0, (1)    |
| $5098.5 \pm 1.2$        |           | $7116.9 \pm 1.2$        |           |
| $5260.4 \pm 1.2$        |           | 7750                    | 1 - 4     |
| $5336.4\pm0.6$          |           | 7980                    | 1 - 5     |
| $5377.8 \pm 1.2$        |           | b)                      |           |

Table 18.22  $^{18}{\rm O}$  states from  $^{19}{\rm F}({\rm t},\,\alpha\gamma)$   $^{\rm a})$ 

<sup>a</sup>) (73OL02): See Table 18.10 for branching ratios and Table 18.9 for  $\tau_{\rm m}$ . See also Table 18.10 in (83AJ01). <sup>b</sup>) Alpha groups are also reported to <sup>18</sup>O states with  $E_{\rm x} = 7.60, 7.75,$ 

<sup>b</sup>) Alpha groups are also reported to <sup>18</sup>O states with  $E_x = 7.60, 7.75, 7.84, 7.96, 8.02, 8.11, 8.19, 8.26, 8.39, 8.48, 8.64 MeV (<math>\pm 20$  keV) (62HI06).

48. <sup>19</sup>F(n, d)<sup>18</sup>O 
$$Q_{\rm m} = -5.770$$

Angular distributions have been measured at  $E_n = 14$  to 14.4 MeV: see (72AJ02). See also (78AJ03) and <sup>20</sup>F of (87AJ02). Nuclear model calculations for  $E_n = 2-20$  MeV are described in (92ZH15).

49. <sup>19</sup>F(p, pp)<sup>18</sup>O 
$$Q_{\rm m} = -7.994$$

Experimental and theoretical studies of knockout reactions are reviewed in (87VD1A).

50. <sup>19</sup>F(d, <sup>3</sup>He)<sup>18</sup>O 
$$Q_{\rm m} = -2.500$$

Many states of <sup>18</sup>O ( $E_x < 14.6$  MeV) have been populated in this reaction: see Table 18.8 in (78AJ03). [Comment: Note, however, density of states.] Analyzing powers for the ground-state transition are reported at  $E_d = 12.4$  MeV (83EN02). See also (83KI13).

51. <sup>19</sup>F(t, 
$$\alpha$$
)<sup>18</sup>O  $Q_{\rm m} = 11.820$ 

See Table 18.22.

52. <sup>22</sup>Ne(d, <sup>6</sup>Li)<sup>18</sup>O 
$$Q_{\rm m} = -8.192$$

At  $E_{\rm d} = 80$  MeV angular distributions have been measured for the <sup>6</sup>Li groups to the ground state of <sup>18</sup>O and to excited states at 1.98, 3.57, 5.10, 6.30, 7.8, 9.4 [±0.04] MeV (84OE02) [see also for  $S_{\rm rel.}$ ]. For the earlier work see (83AJ01).

# $^{18}F$

GENERAL: See Table 18.23.

$$\mu_{1.12} = +2.86 \pm 0.03 \text{ n.m.} \text{ [see (83AJ01)]}$$
  
 $Q_{1.12} = 0.13 \pm 0.03 \text{ b} \text{ [see (83AJ01)]}.$ 

Table 18.23  $^{18}$ F – general

Reference Description

#### Model Calculations

| 87LE1L | Low-lying non-normal parity states of ${}^{18}O \& {}^{18}F$ calculated in shell model + tensor force |
|--------|-------------------------------------------------------------------------------------------------------|
| 87SH1O | Validity of M-3Y force equivalent G-matrix element for sd-shell nucl. struc. calcs.                   |
| 88BR11 | Semi-empirical effective interactions for the 1s-0d shell                                             |
| 89HJ03 | Effective interactions through 3rd order for $A = 18$ nuclei with the Paris potential                 |
| 89TR18 | 2-nucleon and 4-nucleon clusters in light & heavy nuclei                                              |
| 89ZH05 | Evidence for unnatural parity-pairing correlations in some light nuclei                               |
| 90HJ03 | Choice of single-particle potential & the convergence of the effective interaction                    |
| 90SK04 | Study of $A = 18$ nuclei and the effective interaction in the sd shell                                |
| 90SK1C | Effective interaction derived from the BAGEL approach                                                 |
| 92HJ01 | Folded-diagram effective interactions with the Bonn meson-exchange potential model                    |
| 92JI04 | Bonn potential used to evaluate energy spectra of some light sd-shell nuclei                          |
| 92WA22 | Effective interactions for the 0p1s0d nuclear shell-model space                                       |

Special States

Review:

89RA17 Compilation of exp. data on nuclear moments for ground & excited states of nucl.

Other Articles:

| Ounci min | CIC5.      |            |                |     |                   |            |          |         |          |       |
|-----------|------------|------------|----------------|-----|-------------------|------------|----------|---------|----------|-------|
| 87LE1L    | Non-normal | parity sta | tes of $^{18}$ | 3 C | $^{18}\mathrm{F}$ | calculated | in shell | model + | - tensor | force |

- 87MU16 Relativistic effects in the low-energy spectra of 1s0d-shell nuclei
- 87SH10 Validity of M-3Y force equivalent G-matrix element for sd-shell nucl. struc. calcs.
- 88ET01 Analysis of magnetic dipole transitions between sd-shell states

# Table 18.23 (continued) ${}^{18}\text{F}$ – General

| Reference   | Description |
|-------------|-------------|
| 10010101000 |             |

# Special States (continued)

| 89HJ03  | Effective interactions through 3rd order for $A = 18$ nuclei with the Paris potential      |
|---------|--------------------------------------------------------------------------------------------|
| 89ZH05  | Evidence for unnatural parity-pairing correlations in some light nuclei                    |
| 90HJ01  | 3rd order number-conserving sets & effective interactions calc. with Bonn-Jülich potential |
| 90HJ03  | Choice of single-particle potential & the convergence of the effective interaction         |
| 0001204 |                                                                                            |

90SK04 Study of A = 18 nuclei and the effective interaction in the sd shell

# Electromagnetic

#### Reviews:

| 88HE1E | Report on charge symmetry, charge independence, parity and time reversal invariance |
|--------|-------------------------------------------------------------------------------------|
| 89MC1C | Nuclear tests of fundamental interactions                                           |
| 89RA17 | Compilation of exp. data on nuclear moments for ground & excited states of nucl.    |

# Other articles:

| 88ET01 | Analysis of magnetic dipole transitions between sd-shell states                       |
|--------|---------------------------------------------------------------------------------------|
| 88KA1U | Evaluation of the weak pion-nucleon vertex; predicts $\gamma$ -asymmetry in $^{18}$ F |
| 93EN03 | Strengths of $\gamma$ -ray transitions in $A = 5-44$ nuclei                           |

#### Astrophysical

# Reviews:

| elerated particles in solar flares |
|------------------------------------|
|                                    |

89WH1B Abundance ratios as a function of metallicity

90AR10 Nuclear reactions in astrophysics

# Other articles:

| 87GO1G | Measurement of <sup>21</sup> Ne(p, $\alpha$ ) <sup>18</sup> F & its astrophysical implications (A) |
|--------|----------------------------------------------------------------------------------------------------|
| 88CA1N | Analytic expressions for thermonuclear reaction rates involving $Z \leq 14$ nuclei                 |
| 89JI1A | Nucleosynthesis inside thick accretion disks around massive black holes                            |
| 90TH1C | Explosive nucleosynthesis in SN 1987A: composition, radioactivities, neutron star mass             |

# Applications

Review:

| 89WO1B | Biomedical | applications | of | particle | accelerators ( | A | ) |
|--------|------------|--------------|----|----------|----------------|---|---|
|--------|------------|--------------|----|----------|----------------|---|---|

# Other articles:

| 88HI1F | Design & uses of positron emission tomography target systems (A)                                        |
|--------|---------------------------------------------------------------------------------------------------------|
| 88VO1D | Radionuclide production for positron emission tomography: accelerator choices (A)                       |
| 88VO1E | Water targetry for <sup>18</sup> F prod. (calc. & exp. verification of beam heating & heat removal) (A) |
| 89AR1J | Production and acceleration of radioactive ion beams at Louvain-la-Neuve                                |

### **Complex Reactions**

# $\begin{array}{ll} 87BU07 & \mbox{Projectile-like fragments from $^{20}$Ne} + $^{197}$Au: counting simultaneously emitted neutrons} \\ 87FE04 & \mbox{Single-nucleon transfer reactions induced by $376-MeV $^{17}$O on $^{208}$Pb (DWBA analysis)} \end{array}$

# Table 18.23 (continued) ${}^{18}\text{F}$ – General

Reference Description

# Complex Reactions (continued)

| 87HI05 | Energy & linear-momentum dissipation in the fusion reaction $^{165}\mathrm{Ho}+^{20}\mathrm{Ne}$ at 30 $\mathrm{MeV}/A$ |
|--------|-------------------------------------------------------------------------------------------------------------------------|
| 89SA10 | Total cross sections of reactions induced by neutron-rich light nuclei                                                  |
| 90GL01 | Structure phenomena in the orbiting ${}^{12}C + {}^{24}Mg$ system                                                       |

### Hypernuclei

- 88MA1Q Identification of one glue-like mechanism of the Λ-hyperon in hypernuclei
   89BA2N Evaluation of hypernucleus production cross-sections in relativistic heavy-ion collisions
- 89TA1T Schmidt diagrams & configuration mixing effects on hypernuclear magnetic moments

### Symmetries and Fundamental Interactions

| 86AD1A | Parity and time-reversal violation in nuclei and atoms |
|--------|--------------------------------------------------------|
| 86HA1I | Fundamental interaction studies in nuclei              |
|        |                                                        |

- 88HE1C Studies of symmetries and symmetry breaking using nuclei
- $88 \mathrm{HE1E} \qquad \mathrm{Status\ report\ on\ charge\ symmetry\ \&\ charge\ independence}$
- 89MC1C Nuclear tests of fundamental interactions

### Other Topics

Review

| 89AJ1A | Summary of rece | nt work involving light nuclei | (Sec. 4.2 covers $A = 18$ ) |
|--------|-----------------|--------------------------------|-----------------------------|
|        | •               |                                | \ /                         |

Other articles:

| 87MU16 | Relativistic effects in the low-energy spectra of 1s0d-shell nuclei                         |
|--------|---------------------------------------------------------------------------------------------|
| 88KA1U | Evaluation of the weak pion-nucleon vertex; predicts $\gamma$ -asymmetry in <sup>18</sup> F |

- 88TR02 Interacting boson scheme for light nuclei
- 89GE10 Threshold pion-nucleus amplitudes as predicted by current algebra
- 89ZH05 Evidence for unnatural parity-pairing correlations in some light nuclei
- 90HJ01 3rd order number-conserving sets & effective interactions calc. with Bonn-Jülich potential
- 90KA1F Theoretical aspects of nuclear parity violation
- 90SK04 Study of A = 18 nuclei and the effective interaction in the sd shell
- 90SK1C Effective interaction derived from the BAGEL approach

### Ground State Properties

Review:

89RA17 Compilation of exp. data on nuclear moments for ground & excited states of nucl.

Other articles:

| 89SA10 | Total cross sections of reactions induced by neutron-rich light nuclei                |
|--------|---------------------------------------------------------------------------------------|
| 89TR18 | 2-nucleon and 4-nucleon clusters in light & heavy nuclei                              |
| 91UE01 | Unitary pole approx. for Coulomb+Yamaguchi potential used for 3-body bound-state calc |

(A) denotes that only an abstract is available for this reference.

| $E_{\mathbf{x}}$          | $J^{\pi}; T$ | $K^{\pi}$ | au or                                                                                                                     | Decay     | Reactions                                                                                                        |
|---------------------------|--------------|-----------|---------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------|
| $({\rm MeV}\pm{\rm keV})$ |              |           | $\Gamma_{\rm c.m.}$                                                                                                       |           |                                                                                                                  |
| 0                         | $1^+; 0$     | $0^{+}$   | $\tau_{1/2} = 109.77 \pm 0.05 \text{ min}$                                                                                | $\beta^+$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                             |
| $0.93720 \pm 0.06$        | $3^+; 0$     | 0+        | $\tau_{\rm m} = 67.6 \pm 2.5 \text{ psec}$<br>(g = +0.56 ± 0.05)                                                          | $\gamma$  | $\begin{array}{c} 2,\ 6,\ 9,\ 10,\ 13,\ 21,\ 23,\ 25,\\ 30,\ 31,\ 35,\ 36,\ 38,\ 40,\ 41,\\ 42,\ 44 \end{array}$ |
| $1.04155 \pm 0.08$        | $0^+; 1$     |           | $\tau_{\rm m} = 2.55 \pm 0.45 \; {\rm fsec}$                                                                              | $\gamma$  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                             |
| $1.08054 \pm 0.12$        | $0^{-}; 0$   | 0-        | $\tau_{\rm m} = 27.5 \pm 1.9 ~{\rm fsec}$                                                                                 | $\gamma$  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                             |
| $1.12136 \pm 0.15$        | $5^+; 0$     | $0^+$     | $\tau_{\rm m} = 234 \pm 10 \text{ nsec}$<br>( $\mu = +2.86 \pm 0.03 \text{ n.m.}$ )<br>( $Q = 0.13 \pm 0.036 \text{ b}$ ) | $\gamma$  | $\begin{array}{c}5,\ 6,\ 9,\ 10,\ 13,\ 14,\ 21,\ 22,\\25,\ 30,\ 31,\ 32,\ 35,\ 37,\ 40,\\42,\ 44\end{array}$     |
| $1.70081 \pm 0.18$        | $1^+; 0$     | $1^{+}$   | $\tau_{\rm m} = 955 \pm 27~{\rm fsec}$                                                                                    | $\gamma$  | $\begin{array}{c} 6, \ 10, \ 21, \ 25, \ 34, \ 35, \ 40, \\ 42, \ 43, \ 44 \end{array}$                          |
| $2.10061\pm0.10$          | $2^{-}; 0$   | 0-        | $\tau_{\rm m} = 5.1 \pm 0.5 \ {\rm psec}$                                                                                 | $\gamma$  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                             |
| $2.52335 \pm 0.18$        | $2^+; 0$     | $1^{+}$   | $\tau_{\rm m} = 590 \pm 24~{\rm fsec}$                                                                                    | $\gamma$  | $\begin{array}{c} 6, \ 10, \ 21, \ 25, \ 30, \ 31, \ 40, \\ 42 \end{array}$                                      |
| $3.06184\pm0.18$          | $2^+; 1$     |           | $\tau_{\rm m} < 1.2~{\rm fsec}$                                                                                           | $\gamma$  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                             |
| $3.13387 \pm 0.15$        | $1^{-}; 0$   | 1-        | $\tau_{\rm m} = 0.39 \pm 0.02 \text{ psec}$                                                                               | $\gamma$  | $\begin{array}{c} 6, \ 10, \ 21, \ 25, \ 35, \ 38, \ 40, \\ 42 \end{array}$                                      |
| $3.3582 \pm 1.0$          | $3^+; 0$     | $1^{+}$   | $\tau_{\rm m} = 0.44 \pm 0.03~{\rm psec}$                                                                                 | $\gamma$  | 6,10,21,35,40,42,44                                                                                              |
| $3.72419 \pm 0.22$        | $1^+; 0$     |           | $\tau_{\rm m} = 2.7^{+4.1}_{-2.7} \; {\rm fsec}$                                                                          | $\gamma$  | $\begin{array}{c} 6, \ 10, \ 21, \ 23, \ 25, \ 31, \ 34, \\ 35, \ 40, \ 42, \ 44 \end{array}$                    |
| $3.79149 \pm 0.22$        | $3^{-}; 0$   | 1-        | $\tau_{\rm m} = 1.91 \pm 0.13~{\rm psec}$                                                                                 | $\gamma$  | $5, 10, 21, 23, 25, 35, 40, \\42, 44$                                                                            |
| $3.83917 \pm 0.22$        | $2^+; 0$     |           | $\Gamma = 19.0 \pm 2.7 \ \rm keV$                                                                                         | $\gamma$  | $\begin{array}{c} 6,\ 10,\ 21,\ 23,\ 25,\ 30,\ 35,\\ 40,\ 42,\ 44 \end{array}$                                   |
| $4.11590 \pm 0.25$        | $3^+; 0$     |           | $\tau_{\rm m} = 91 \pm 22~{\rm fsec}$                                                                                     | $\gamma$  | $\begin{array}{c} 6,\ 10,\ 21,\ 23,\ 25,\ 30,\ 31,\\ 35,\ 40,\ 42,\ 44 \end{array}$                              |
| $4.2258\pm0.7$            | $2^{-}; 0$   | $(1^{-})$ | $\tau_{\rm m} = 110 \pm 15~{\rm fsec}$                                                                                    | $\gamma$  | $\begin{array}{c} 6, \ 10, \ 21, \ 23, \ 35, \ 40, \ 42, \\ 44 \end{array}$                                      |
| $4.36015 \pm 0.26$        | $1^+; 0$     |           | $\tau_{\rm m} = 27 \pm 10$ fsec                                                                                           | $\gamma$  | $\begin{array}{c} 10,21,25,34,35,40,42,\\ 44 \end{array}$                                                        |
| $4.3981 \pm 0.7$          | $4^{-}; 0$   | 0-        | $\tau_{\rm m} = 58 \pm 12 \ {\rm fsec}$                                                                                   | $\gamma$  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                             |
| $4.652\pm2$               | $4^+; 1$     |           | $\tau_{\rm m} < 10 {\rm fsec}$                                                                                            | $\gamma$  | $\begin{array}{c} 6, \ 21, \ 24, \ 30, \ 31, \ 35, \ 40, \\ 42 \end{array}$                                      |

Table 18.24 Energy levels of  $^{18}$ F <sup>a</sup>)

| $E_{\mathbf{x}}$               | $J^{\pi}; T$     | $K^{\pi}$ | au or                                     | Decay                      | Reactions                                                                   |
|--------------------------------|------------------|-----------|-------------------------------------------|----------------------------|-----------------------------------------------------------------------------|
| $({\rm MeV}\pm{\rm keV})$      |                  |           | $\Gamma_{ m c.m.}$                        |                            |                                                                             |
| $4.753\pm3$                    | $0^+; 1$         |           |                                           | $\gamma$                   | 21,  35,  38,  40,  42,  44                                                 |
| $4.8483\pm0.5$                 | $5^{-}; 0$       | $1^{-}$   | $\tau_{\rm m} = 5.2 \pm 0.9 \text{ psec}$ | $\gamma$                   | 5, 23                                                                       |
| $4.860\pm2$                    | $1^{-}; 0$       |           | $\tau_{\rm m} = 66 \pm 18~{\rm fsec}$     | $\gamma,  \alpha$          | 6,21,40,42,44                                                               |
| $4.9636\pm0.8$                 | $2^+; 1$         |           | $\tau_{\rm m} < 4 {\rm fsec}$             | $\gamma$                   | 6,21,30,40,42                                                               |
| $5.2976 \pm 1.5$               | $4^+; 0$         | $1^{+}$   | $\tau_{\rm m} = 30 \pm 5 \text{ fsec}$    | $\gamma,  \alpha$          | 6,9,10,11,21,40,42                                                          |
| $5.502\pm2$                    | $3^{(-)}; 0$     |           | $\tau_{\rm m} = 63 \pm 25 \text{ fsec}$   | $\gamma,  \alpha$          | 6,10,21,40,42                                                               |
| $5.60338 \pm 0.27$             | $1^{+}$          |           | $\Gamma = 43.3 \pm 1.6 \text{ eV}$        | $\gamma,  \alpha$          | 6,8,25,40,42,44                                                             |
| $5.60486 \pm 0.28$             | $1^{-}; 0 + 1$   |           | $\Gamma < 1.2 \text{ keV}$                | $\gamma, lpha$             | 6, 8, 10, 21, 25, 40, 42, 44                                                |
| $5.67257 \pm 0.32 \ ^{\rm d})$ | $1^{-}; 0 + 1$   |           | $\Gamma < 0.8 \ {\rm keV}$                | $\gamma, lpha$             | 6, 8, 10, 21, 25, 40, 42, 44                                                |
| $5.786 \pm 2.4$                | $2^{-}; 0$       |           | $\tau_{\rm m} = 15 \pm 10~{\rm fsec}$     | $\gamma,  \alpha$          | 6, 21, 40, 42, 44                                                           |
| $6.0964 \pm 1.1$               | $4^{-}; 0$       | 1-        | $\Gamma = 0.24 \pm 0.03 ~\rm keV$         | $\gamma,\mathrm{p},\alpha$ | $\begin{array}{c} 6, \ 10, \ 21, \ 25, \ 29, \ 40, \ 42, \\ 44 \end{array}$ |
| $6.108\pm3$                    | $(1^+); 0$       |           | $\Gamma = 0.034 \pm 0.003~{\rm keV}$      | $\gamma,\mathrm{p},\alpha$ | 6,8,21,23,29,42,44                                                          |
| $6.13647 \pm 0.33$             | $0^+; 1$         |           | $\Gamma \leq 1 \ \mathrm{keV}$            | $\gamma,  { m p}$          | 21, 25, 27, 42, 44                                                          |
| $6.1632 \pm 0.9$               | $3^+; 1$         |           | $\Gamma = 14 \pm 0.5 \ \mathrm{keV}$      | $\gamma,\mathrm{p},\alpha$ | 21, 25, 27, 42, 44                                                          |
| $6.2404\pm0.8$                 | $3^{-}; 0+1$     |           | $\Gamma=0.19\pm0.03~{\rm keV}$            | $\gamma,\mathrm{p},\alpha$ | 6, 21, 25, 27, 29, 42                                                       |
| $6.242\pm3$                    | $3^{-}; 0+1$     |           | $\Gamma = 0.18 \pm 0.04 \ \rm keV$        | $\gamma,\mathrm{p},\alpha$ | 6, 8, 21, 25, 29, 42                                                        |
| $6.262 \pm 2.5$                | $1^+; 0$         |           | $\Gamma = 0.60 \pm 0.12 ~\rm keV$         | $\gamma,\mathrm{p},\alpha$ | 6,  8,  10,  21,  29,  34,  42                                              |
| $6.2832 \pm 0.9$               | $2^+; 1$         |           | $\Gamma = 10.0 \pm 0.5 ~\rm keV$          | $\gamma,\mathrm{p},\alpha$ | 21, 25, 27, 29                                                              |
| $6.3105\pm0.8$                 | $3^+; 0$         |           | $\Gamma = 0.95 \pm 0.14 ~\rm keV$         | $\gamma,\mathrm{p},\alpha$ | 6,21,25,27,29,44                                                            |
| $6.3855 \pm 1.7$               | $2^+; 0+1$       |           | $\Gamma = 0.49 \pm 0.09 \ \mathrm{keV}$   | $\gamma,\mathrm{p},\alpha$ | 6, 21, 25, 29, 42                                                           |
| $6.4849 \pm 1.5$               | $3^+; 0$         |           | $\Gamma = 0.40 \pm 0.10 \ \mathrm{keV}$   | $\gamma$ , p, $\alpha$     | 6, 21, 25, 29, 42, 44                                                       |
| $6.5670 \pm 1.5$               | $5^+; 0$         | $1^{+}$   | $\Gamma = 0.56 \pm 0.13 \ \mathrm{keV}$   | $\gamma,\mathrm{p},\alpha$ | 6,  8,  9,  10,  11,  21,  29,  42                                          |
| $6.633 \pm 10$                 | 1                |           | $\Gamma = 80 \pm 2 ~\rm keV$              | p, $\alpha$                | 29, 42                                                                      |
| $6.6437 \pm 0.8$               | $2^{-}; 1$       |           | $\Gamma = 0.60 \pm 0.07 ~\rm keV$         | $\gamma,\mathrm{p},\alpha$ | 6,  7,  21,  25,  29                                                        |
| $6.647 \pm 4$                  | $1^{-}$          |           | $\Gamma = 91 \pm 4 \ \mathrm{keV}$        | p, $\alpha$                | 8, 10, 29                                                                   |
| $6.777 \pm 1.4$                | $4^+; 0$         |           | $\Gamma = 9.2 \pm 1.0 \ \mathrm{keV}$     | $\gamma,\mathrm{p},\alpha$ | 21, 25, 27, 29, 42                                                          |
| $6.8031 \pm 1.5$               | $1^+, 2, 3^+; 0$ |           | $\Gamma \leq 2 \ {\rm keV}$               | $\gamma,  \mathrm{p}$      | 10, 21, 25, 27, 42                                                          |
| $6.809 \pm 5$                  | $2^{-}$          |           | $\Gamma = 88 \pm 2 \ \mathrm{keV}$        | p, $\alpha$                | 7, 8, 29                                                                    |
| 6.811                          | $(2^+)$          |           | $\Gamma = 3.0 \pm 0.5 \ \mathrm{keV}$     | p, $\alpha$                | 29                                                                          |
| $6.857 \pm 10$                 | $(3^{-})$        |           | $\Gamma = 5.0 \pm 1.0 \text{ keV}$        | p, $\alpha$                | 29, 42                                                                      |
| $6.8774 \pm 1.7$               | $3, 4^-; 0$      |           | $\Gamma \leq 2 \ { m keV}$                | $\gamma,\mathrm{p},\alpha$ | 21, 25, 29                                                                  |
| $7.201\pm2$                    | $(4^+); 0$       |           | $\Gamma=6.5~{\rm keV}$                    | p, $\alpha$                | 8, 20, 42                                                                   |
| $7.247\pm2$                    | $(1^+); 0$       |           | $\Gamma = 46.5 \text{ keV}$               | p, $\alpha$                | 8, 29                                                                       |

Table 18.24 (continued) Energy levels of  ${}^{18}F^{a}$ )

| $E_{\mathbf{x}}$              | $J^{\pi}; T$   | $K^{\pi}$ | au or                                  | Decay                      | Reactions         |
|-------------------------------|----------------|-----------|----------------------------------------|----------------------------|-------------------|
| $({\rm MeV}\pm{\rm keV})$     |                |           | $\Gamma_{\rm c.m.}$                    |                            |                   |
| $7.291 \pm 2$                 | $3^{-}$        |           | $\Gamma = 38 \text{ keV}$              | p, $\alpha$                | 7, 8, 27, 29      |
| $7.315 \pm 4$                 | $(3^-; 0)$     |           | $\Gamma = 52 \text{ keV}$              | p, $\alpha$                | 29, 42            |
| $7.336\pm2$                   | $1^{-}; 1$     |           | $\Gamma = 16 \pm 2 \ \mathrm{keV}$     | $\gamma,\mathrm{p}$        | 25, 27            |
| $7.406 \pm 2$                 | $1^{+}$        |           | $\Gamma = 14.6 \pm 1.4 \ \rm keV$      | р                          | 27                |
| $7.447 \pm 10$                |                |           | $\Gamma = 140 \text{ keV}$             | p, $\alpha$                | 29, 31            |
| $7.454\pm2$                   | 1-             |           | $\Gamma = 6 \text{ keV}$               | р                          | 27                |
| $7.478 \pm 2$                 | (2)            |           | $\Gamma = 12 \pm 3 \ \mathrm{keV}$     | $\gamma,{\rm p},\alpha$    | 25, 27, 29        |
| $(7.485\pm2)$                 | $(1^{-})$      |           | $\Gamma = 32 \text{ keV}$              | р                          | 27                |
| $7.506\pm2$                   | 4-             |           | $\Gamma = 12 \pm 2 \text{ keV}$        | p, $\alpha$                | 27, 29            |
| $7.513\pm2$                   |                |           | $\Gamma < 4 \text{ keV}$               | $\gamma,\mathrm{p}$        | 25                |
| $7.528\pm2$                   | $2^{-}; 1$     |           | $\Gamma = 16.5 \pm 3.0 \ \mathrm{keV}$ | $\gamma,\mathrm{p},\alpha$ | 25, 27, 29        |
| $7.532\pm5$                   |                |           | $\Gamma = 75 \text{ keV}$              | p, $\alpha$                | 27, 29            |
| $7.555 \pm 2$                 | $(1^{-})$      |           | $\Gamma = 30 \text{ keV}$              | р                          | 27                |
| $7.584 \pm 2$                 |                |           | $\Gamma = 9 \pm 2 \text{ keV}$         | $\gamma$ , p, $\alpha$     | 25, 27, 29        |
| $7.685\pm2$                   | $3^+, 4^+$     |           | $\Gamma = 36 \pm 4 \text{ keV}$        | p, $\alpha$                | 27, 29            |
| $7.729 \pm 4$                 | $\geq 1$       |           | $\Gamma = 66 \pm 5 \text{ keV}$        | p, $\alpha$                | 27, 29            |
| $7.763 \pm 4$                 |                |           | $\Gamma = 70 \text{ keV}$              | р                          | 27                |
| $7.878\pm3$                   | $\geq 2$       |           | $\Gamma = 20 \text{ keV}$              | p, $\alpha$                | 27, 29            |
| $7.899 \pm 2$                 | $(2^{-})$      |           | $\Gamma = 38 \text{ keV}$              | p, $\alpha$                | 7, 8, 29          |
| $7.941 \pm 12$                | $(1^+)$        |           | $\Gamma = 112 \text{ keV}$             | p, $\alpha$                | 7, 8, 29          |
| $8.064 \pm 6$                 | > 4            |           | $\Gamma = 60 \text{ keV}$              | p, α                       | 27, 29            |
| $8.115 \pm 8$                 | _              |           | $\Gamma = 96 \text{ keV}$              | p                          | 27                |
| $8.209 \pm 2$                 | $2^{-}$        |           | $\Gamma = 52 \text{ keV}$              | p, $\alpha$                | 27, 29            |
| $8.238 \pm 2$                 | 4+             |           | $\Gamma = 20 \text{ keV}$              | p                          | 27                |
| 9.02                          | $(5^{-}; 1)$   |           |                                        | r                          | 31                |
| $9.207 \pm 15$ <sup>b</sup> ) | $3, 4^-; 0$    |           |                                        | p, d, $\alpha$             | 16, 17, 18        |
| 9.50                          | $2, 3^+; 0$    |           |                                        | n, d, $\alpha$             | 16, 18            |
| $9.58 \pm 20^{\circ}$ c)      | $6^{+}$        | $1^{+}$   |                                        | d. $\alpha$                | 9, 10, 11, 22, 31 |
| $10.58 \pm 50$                |                |           |                                        | ,                          | 11                |
| $11.22 \pm 30$                | $7^+$          | $1^{+}$   |                                        | d. $\alpha$                | 9, 10, 11         |
| 12.75                         | $(6^{-}:1)$    |           |                                        | -)                         | 31                |
| 13.83                         | $4^{-}.5^{+}$  |           | $\Gamma = 60 \text{ keV}$              | d. $\alpha$                | 18                |
| 14.02                         | $4^{-}, 5^{+}$ |           | $\Gamma = 60 \text{ keV}$              | d, $\alpha$                | 18                |
| 14.10                         | $4^{-}, 5^{+}$ |           | $\Gamma = 60 \text{ keV}$              | d, $\alpha$                | 18                |
| $14.18 \pm 40$                | $(8^+)$        | $(1^{+})$ |                                        | d, $\alpha$                | 9, 10, 11         |

Table 18.24 (continued) Energy levels of  ${}^{18}F^{a}$ )

| $E_{\mathbf{x}}$          | $J^{\pi}; T$          | $K^{\pi}$ | au or                                  | Decay                      | Reactions |
|---------------------------|-----------------------|-----------|----------------------------------------|----------------------------|-----------|
| $({\rm MeV}\pm{\rm keV})$ |                       |           | $\Gamma_{\rm c.m.}$                    |                            |           |
| 14.65                     | $(7^{+})$             |           |                                        |                            | 31        |
| 15.09                     | $4^{-}, 5^{+}$        |           |                                        | d, $\alpha$                | 18        |
| 15.34                     | $5^+,  6^-$           |           |                                        | d, $\alpha$                | 18        |
| $15.79 \pm 100$           | $(6^-; 1)$            |           |                                        |                            | 11, 31    |
| 16.07                     | $4^{-}, 5^{+}$        |           | $\Gamma = 220 \text{ keV}$             | d, $\alpha$                | 18        |
| 16.72                     | $4^{-}, 5^{+}$        |           | $\Gamma = 60 \text{ keV}$              | d, $\alpha$                | 18        |
| 17.43                     | $4^{-}, 5^{+}, 6^{-}$ |           | $\Gamma = 70 \text{ keV}$              | d, $\alpha$                | 18        |
| $18.62 \pm 120$           |                       |           |                                        |                            | 11        |
| $(19.00 \pm 150)$         |                       |           | $\Gamma = (500 \pm 150) \text{ keV}$   | $\gamma$ , <sup>3</sup> He | 12        |
| $20.1\pm200$              | $(2^-; 1)$            |           | $\Gamma = 1600 \pm 100 \ {\rm keV}$    | $\gamma$ , <sup>3</sup> He | 12        |
| $22.7\pm200$              | $(2^-;1)$             |           | $\Gamma = 1200 \pm 100 \ \mathrm{keV}$ | $\gamma$ , <sup>3</sup> He | 12        |
| $(24.1 \pm 200)$          |                       |           | $\Gamma = (1400 \pm 300) \text{ keV}$  | $\gamma$ , <sup>3</sup> He | 12        |

Table 18.24 (continued) Energy levels of  ${}^{18}$ F  ${}^{a}$ )

<sup>a</sup>) See also Table 18.25 for radiative transitions and 18.26 for  $\tau_{\rm m}$ .

<sup>b</sup>) Uncertainty estimated by evaluators.

c) For other states with  $E_{\rm x} < 9.6$  MeV see footnote (e) in Table 18.17 of (78AJ03) and Table 18.27 here. For other states with  $10.0 < E_{\rm x} < 19.6$  MeV see Table 18.27 here, and Tables 18.14 and 18.16 in (78AJ03). These two tables in (78AJ03) display the states deduced from the yields of the isospin-forbidden  $\alpha_1$  groups in  $^{14}$ N +  $\alpha$  and  $^{16}$ O + d, respectively. (76CH24) reports 151 isospinmixed natural-parity states with  $10.4 < E_{\rm x} < 17.5$  MeV [ $^{14}$ N( $\alpha, \alpha_1$ )] and (73JO13) reports 138 such states with  $9.2 < E_{\rm x} < 19.4$  MeV [ $^{16}$ O(d,  $\alpha_1$ )] of which 16 have  $E_{\rm x} > 17.5$  MeV. In the region  $10.4 < E_{\rm x} < 20.8$  MeV some 167 states with mixed isospin and natural parity have been reported. See also reaction 29.

<sup>d</sup>) (89BO01).

| $E_{\rm i}~({\rm MeV})$ | $J_{\mathrm{i}}^{\pi}$ | $E_{\rm f}~({\rm MeV})$ | Branch (%)     | Widths and Mixing Ratios                                    |
|-------------------------|------------------------|-------------------------|----------------|-------------------------------------------------------------|
| 0.94                    | $3^+; 0$               | 0                       | 100            |                                                             |
| 1.04                    | $0^+; 1$               | 0                       | 100            |                                                             |
| 1.08                    | $0^{-}; 0$             | 0                       | 100            |                                                             |
| 1.12                    | $5^+; 0$               | 0.94                    | 100            |                                                             |
| 1.70                    | $1^+; 0$               | 0                       | $29.8 \pm 1.3$ |                                                             |
|                         |                        | 1.04                    | $70.2\pm1.3$   |                                                             |
| 2.10                    | $2^{-}; 0$             | 0                       | $38 \pm 1$     | $\Gamma_{\gamma} = (4.6 \pm 2.2) \times 10^{-5} \text{ eV}$ |
|                         |                        | 0.94                    | $31 \pm 1$     | $\Gamma_{\gamma} = (4.0 \pm 1.9) \times 10^{-5} \text{ eV}$ |
|                         |                        | 1.08                    | $31 \pm 1$     |                                                             |

Table 18.25 Radiative decays in  $^{18}$ F <sup>a</sup>)

| $E_{\rm i}~({\rm MeV})$ | $J_{\mathrm{i}}^{\pi}$ | $E_{\rm f}~({\rm MeV})$ | Branch $(\%)$  | Widths and Mixing Ratios                                                                 |
|-------------------------|------------------------|-------------------------|----------------|------------------------------------------------------------------------------------------|
| 2.52                    | $2^+; 0$               | 0                       | $74.9 \pm 1.8$ | $\delta = 3.0 \pm 1.0$                                                                   |
|                         |                        | 0.94                    | $21.5\pm1.2$   | $\delta = -(1.5 \pm 0.6)$                                                                |
|                         |                        | 1.70                    | $3.9\pm0.6$    | $\delta = 0.94 \pm 0.4$                                                                  |
| 3.06                    | $2^+; 1$               | 0                       | $23.2\pm0.8$   |                                                                                          |
|                         |                        | 0.94                    | $76.7\pm0.8$   |                                                                                          |
|                         |                        | 1.04                    | $0.11\pm0.03$  |                                                                                          |
| 3.13                    | $1^{-}; 0$             | 0                       | $39\pm2$       | $\delta = +(0.07 \pm 0.05)$<br>$\Gamma_{\gamma} = (5.7 \pm 2) \times 10^{-4} \text{ eV}$ |
|                         |                        | 1.04                    | $34\pm2$       | $\Gamma_{\gamma} = (7.3 \pm 2.7) \times 10^{-4} \text{ eV}$                              |
|                         |                        | 1.08                    | $25\pm2$       | $\Gamma_{\gamma} = (4.8 \pm 1.8) \times 10^{-4} \text{ eV}$                              |
|                         |                        | 1.70                    | $2.0\pm0.5$    | $\delta = +(0.22 \pm 0.15)$                                                              |
| 3.36                    | $3^+; 0$               | 0                       | $45\pm5$       |                                                                                          |
|                         |                        | 0.94                    | $9\pm3$        |                                                                                          |
|                         |                        | 1.70                    | $40 \pm 4$     |                                                                                          |
|                         |                        | 2.10                    | < 3            |                                                                                          |
|                         |                        | 2.52                    | $6\pm3$        | $\delta = -0.4^{+0.3}_{-0.5}$                                                            |
| 3.72                    | $1^+; 0$               | 0                       | $5\pm 2$       |                                                                                          |
|                         |                        | 1.04                    | $91\pm2$       | $\Gamma_{\gamma} = (1.3 \pm 0.2) \times 10^{-3} \text{ eV}^{\text{c}})$                  |
|                         |                        | 3.06                    | $4\pm 2$       |                                                                                          |
| 3.79                    | $3^{-}; 0$             | 2.10                    | $68 \pm 4$     | $\delta = -(0.22 \pm 0.06)$                                                              |
|                         |                        | 2.52                    | $2.2\pm1.1$    |                                                                                          |
|                         |                        | 3.06                    | $30\pm3$       | $\delta = -(0.09 \pm 0.09)$                                                              |
| 3.84                    | $2^+; 0$               | 0                       | $38 \pm 2$     | $\delta = -(1.8 \pm 0.5)$                                                                |
|                         |                        | 0.94                    | $8.9 \pm 1.4$  | $\delta = -(0.3 \pm 0.3)$                                                                |
|                         |                        | 1.70                    | $3.0 \pm 1.0$  |                                                                                          |
|                         |                        | 3.06                    | $50\pm3$       | $\delta = -(0.1 \pm 0.3)$                                                                |
| 4.12                    | $3^+; 0$               | 0                       | $5\pm3$        |                                                                                          |
|                         |                        | 3.06                    | $95\pm3$       | $\delta=+0.06\pm0.07$                                                                    |
| 4.23                    | $2^{-}; 0$             | 0                       | $23\pm2$       | $\delta = 0.15 \pm 0.15$                                                                 |
|                         |                        | 0.94                    | $49\pm3$       | $\delta = 0.0 \pm 0.2$                                                                   |
|                         |                        | 1.08                    | $3.2\pm1.0$    |                                                                                          |
|                         |                        | 1.70                    | $9.3\pm1.2$    |                                                                                          |
|                         |                        | 2.10                    | $15\pm5$       |                                                                                          |
|                         |                        | 3.13                    | $0.9\pm0.6$    |                                                                                          |
| 4.36                    | $1^{+}$                | 3.06                    | 100            |                                                                                          |
| 4.40                    | $4^{-}; 0$             | 0.94                    | $13 \pm 4$     | $\delta = -(0.2 \pm 0.3)$                                                                |
|                         |                        | 1.12                    | $60 \pm 6$     | $\delta = -(0.2 \pm 0.2)$                                                                |
|                         |                        | 2.10                    | $27\pm3$       |                                                                                          |
| 4.65                    | $4^+; 1$               | 0.94                    | $17\pm3$       |                                                                                          |
|                         |                        | 1.12                    | $83 \pm 3$     | $\delta = 0.15 \pm 0.15$                                                                 |

Table 18.25 (continued) Radiative decays in  $^{18}{\rm F}$   $^{\rm a})$ 

| $E_{\rm i}~({\rm MeV})$ | $J^{\pi}_{\mathrm{i}}$ | $E_{\rm f}~({\rm MeV})$ | Branch (%)    | Widths and Mixing Ratios                                              |
|-------------------------|------------------------|-------------------------|---------------|-----------------------------------------------------------------------|
| 4.75                    | $0^+; 1$               | 0                       | $92 \pm 4$    |                                                                       |
|                         |                        | 1.70                    | $8\pm4$       |                                                                       |
| $4.85^{\ b})$           | $5^{-}; 0$             | 1.12                    | $65 \pm 4$    |                                                                       |
|                         |                        | 3.79                    | $35 \pm 4$    |                                                                       |
| 4.86                    | $1^{-}; 0$             | 1.04                    | $65 \pm 11$   |                                                                       |
|                         |                        | 1.08                    | $8\pm 6$      |                                                                       |
|                         |                        | 3.06                    | $23\pm7$      | $\delta = -(0.4 \pm 0.4)$                                             |
|                         |                        | 3.13                    | $4\pm3$       |                                                                       |
| 4.96                    | $2^+; 1$               | 0                       | 100           | $\delta = 1.2 \pm 0.7$                                                |
| 5.30                    | $4^+; 0$               | 0.94                    | $9\pm2$       | $\delta = -(0.3\pm0.1)$                                               |
|                         |                        | 1.12                    | $7\pm2$       | $\delta = -(1.1 \pm 0.5)$                                             |
|                         |                        | 2.52                    | $78\pm3$      | $\Gamma_{\gamma} = 1.2 \pm 0.4 \times 10^{-2} \text{ eV}^{\text{c}})$ |
|                         |                        | 3.36                    | $5\pm1$       | $\delta = 2.5 \pm 0.8$                                                |
|                         |                        | 4.65                    | $1.3\pm0.3$   |                                                                       |
| 5.50                    | $3^{(-)};0$            | 3.06                    | 100           | $\Gamma_{\gamma} = 2.1 \pm 0.7 \times 10^{-3} \text{ eV}^{\text{c}})$ |
| 5.603                   | $1^{+}$                | 0                       | $16.7\pm2.3$  | $\Gamma_{\gamma} = 0.485 \pm 0.046$ eV $^{\rm e})$                    |
|                         |                        | 1.04                    | $3.8\pm1.2$   |                                                                       |
|                         |                        | 3.06                    | $79.5\pm5.9$  |                                                                       |
| 5.605                   | $1^{-}; 0+1$           | 0                       | $6.7\pm1.2$   |                                                                       |
|                         |                        | 1.04                    | $4.2\pm0.8$   |                                                                       |
|                         |                        | 1.08                    | $54.3\pm3.1$  | $\Gamma_{\gamma} = 0.87 \pm 0.07$ eV $^{\rm c})$                      |
|                         |                        | 3.06                    | $2.6\pm1.4$   |                                                                       |
|                         |                        | 3.13                    | $32.2\pm2.5$  | $\delta = -0.05 \pm 0.02$                                             |
| 5.67                    | $1^{-}; 0+1$           | 0                       | $6.2\pm0.4$   | $\delta = -0.01 \pm 0.04$                                             |
|                         |                        | 1.04                    | $8.1\pm0.7$   |                                                                       |
|                         |                        | 1.08                    | $52 \pm 3$    | $\Gamma_{\gamma} = 0.46 \pm 0.06$ eV $^{\rm c})$                      |
|                         |                        | 1.70                    | $0.8\pm0.3$   |                                                                       |
|                         |                        | 2.10                    | $0.4 \pm 0.2$ |                                                                       |
|                         |                        | 3.06                    | $4.0\pm0.4$   | $\delta = 0.04 \pm 0.06$                                              |
|                         |                        | 3.13                    | $28.5\pm2.0$  | $\delta = +0.10 \pm 0.03$                                             |
| 5.79                    | $2^{-}; 0$             | 0.94                    | $40\pm 8$     |                                                                       |
|                         |                        | 1.08                    | $60\pm 8$     |                                                                       |
| 6.10                    | $4^{-}; 0$             | 0.94                    | $4.9\pm0.9$   | $\Gamma_{\gamma} = 5.1 \pm 1.0 \times 10^{-2} \text{ eV}^{\text{c}}$  |
|                         |                        | 1.12                    | $55 \pm 3$    |                                                                       |
|                         |                        | 2.10                    | $27\pm2$      |                                                                       |
|                         |                        | 3.79                    | $1.4\pm0.3$   |                                                                       |
|                         |                        | 4.12                    | $1.8\pm0.3$   |                                                                       |
|                         |                        | 4.40                    | $0.7\pm0.3$   |                                                                       |
|                         |                        | 4.65                    | $8.7\pm0.7$   |                                                                       |

Table 18.25 (continued) Radiative decays in  $^{18}{\rm F}$   $^{\rm a})$ 

| $E_{\rm i}~({\rm MeV})$ | $J_{ m i}^{\pi}$ | $E_{\rm f}~({\rm MeV})$ | Branch (%)    | Widths and Mixing Ratios                                 |
|-------------------------|------------------|-------------------------|---------------|----------------------------------------------------------|
| 6.10                    | $(1^+); 0$       | 0                       | $24 \pm 3$    |                                                          |
|                         |                  | 0.94                    | $11 \pm 3$    |                                                          |
|                         |                  | 2.10                    | $20\pm 6$     |                                                          |
|                         |                  | 3.06                    | $45\pm5$      |                                                          |
| 6.14                    | $0^+; 1$         | 0                       | $50 \pm 3$    | $\Gamma_{\gamma} > 1.6 \text{ eV}$                       |
|                         |                  | 1.70                    | $12\pm2$      |                                                          |
|                         |                  | 3.72                    | $36\pm3$      |                                                          |
|                         |                  | 4.36                    | $2.1\pm0.4$   |                                                          |
|                         |                  | 5.603                   | $0.19\pm0.02$ |                                                          |
| 6.16                    | $3^+; 1$         | 0                       | $0.2\pm0.2$   | $\Gamma_{\gamma} = 0.96 \pm 0.26$ eV <sup>c</sup> )      |
|                         |                  | 0.94                    | $51\pm3$      |                                                          |
|                         |                  | 1.12                    | $1.0\pm0.1$   |                                                          |
|                         |                  | 2.52                    | $5.5\pm0.4$   |                                                          |
|                         |                  | 3.06                    | $1.3\pm0.3$   |                                                          |
|                         |                  | 3.79                    | $11.6\pm1.3$  |                                                          |
|                         |                  | 3.84                    | $25.0\pm1.6$  |                                                          |
|                         |                  | 4.12                    | $1.5\pm0.3$   |                                                          |
|                         |                  | 4.23                    | $0.9\pm0.3$   |                                                          |
|                         |                  | 4.40                    | $2.0\pm0.2$   |                                                          |
| 6.240                   | $3^-; 0+1$       | 0.94                    | $4.6\pm0.3$   |                                                          |
|                         |                  | 2.10                    | $71.5\pm3.0$  | $\Gamma_{\gamma} = 0.80 \pm 0.11$ eV $^{\rm c})$         |
|                         |                  | 3.36                    | $1.1\pm0.4$   |                                                          |
|                         |                  | 3.79                    | $10.6\pm0.5$  |                                                          |
|                         |                  | 3.84                    | $1.0\pm0.2$   |                                                          |
|                         |                  | 4.12                    | $0.5 \pm 0.2$ |                                                          |
|                         |                  | 4.23                    | $7.8\pm0.4$   |                                                          |
|                         |                  | 4.40                    | $2.9\pm0.3$   |                                                          |
| 6.242                   | $3^{-}; 0+1$     | 0.94                    | $4.1\pm0.3$   |                                                          |
|                         |                  | 2.10                    | $71.2\pm3.0$  | $\Gamma_{\gamma} = 0.73 \pm 0.11 \text{ eV}^{\text{c}})$ |
|                         |                  | 3.36                    | $0.8 \pm 0.3$ |                                                          |
|                         |                  | 3.79                    | $11.6\pm0.6$  |                                                          |
|                         |                  | 3.84                    | $0.9 \pm 0.2$ |                                                          |
|                         |                  | 4.12                    | $1.1\pm0.4$   |                                                          |
|                         |                  | 4.23                    | $8.2 \pm 0.4$ |                                                          |
|                         |                  | 4.40                    | $2.1\pm0.3$   |                                                          |
| 6.26                    | $1^+; 0$         | 0                       | (100)         |                                                          |
| 6.28                    | $2^+; 1$         | 0                       | $0.3 \pm 0.1$ | $\Gamma_{\gamma} = 1.8 \pm 0.5 \text{ eV}^{\text{c}}$    |
|                         |                  | 0.94                    | $67 \pm 3$    |                                                          |
|                         |                  | 1.04                    | $1.3\pm0.1$   |                                                          |

Table 18.25 (continued) Radiative decays in  $^{18}{\rm F}$   $^{\rm a})$ 

| $E_{\rm i}~({\rm MeV})$ | $J^{\pi}_{\mathrm{i}}$ | $E_{\rm f}~({\rm MeV})$ | Branch (%)    | Widths and Mixing Ratios                                               |
|-------------------------|------------------------|-------------------------|---------------|------------------------------------------------------------------------|
|                         |                        | 1.70                    | $5.7\pm0.6$   |                                                                        |
|                         |                        | 2.10                    | $1.2\pm0.3$   |                                                                        |
|                         |                        | 2.52                    | $0.3\pm0.2$   |                                                                        |
|                         |                        | 3.13                    | $0.7\pm0.3$   |                                                                        |
|                         |                        | 3.36                    | $2.3\pm0.3$   |                                                                        |
|                         |                        | 3.72                    | $1.4\pm0.5$   |                                                                        |
|                         |                        | 3.84                    | $15.8\pm1.4$  |                                                                        |
|                         |                        | 4.12                    | $3.9\pm0.2$   |                                                                        |
|                         |                        | 4.36                    | $0.5\pm0.4$   |                                                                        |
| 6.31                    | $3^+; 0$               | 0                       | $4.0\pm0.7$   | $\Gamma_{\gamma} = 0.17 \pm 0.04$ eV <sup>c</sup> )                    |
|                         |                        | 0.94                    | $10.6\pm1.0$  |                                                                        |
|                         |                        | 1.70                    | $3.0\pm0.8$   |                                                                        |
|                         |                        | 2.52                    | $4.0\pm0.5$   |                                                                        |
|                         |                        | 3.06                    | $57\pm3$      | $\delta = -(0.03 \pm 0.10)$                                            |
|                         |                        | 3.72                    | $1.4\pm0.7$   |                                                                        |
|                         |                        | 3.84                    | $4.6\pm1.0$   |                                                                        |
|                         |                        | 4.12                    | $2.4\pm1.7$   |                                                                        |
|                         |                        | 4.96                    | $13.0\pm1.5$  | $\delta = -(0.01 \pm 0.14)$                                            |
| 6.39                    | $2^+; 0+1$             | 0                       | $1.5\pm0.5$   | $\Gamma_{\gamma} = 0.44 \pm 0.18 \text{ eV}^{\text{c}}$                |
|                         |                        | 0.94                    | $75\pm3$      | $\delta = -(0.25 \pm 0.10)$                                            |
|                         |                        | 1.70                    | $6.8\pm1.7$   |                                                                        |
|                         |                        | 3.84                    | $14.1\pm1.6$  | $\delta = 0.1 \pm 0.2$                                                 |
|                         |                        | 4.12                    | $2.3\pm0.5$   |                                                                        |
| 6.48                    | $3^+; 0$               | 0                       | $13 \pm 2$    | $\Gamma_{\gamma} = 74 \pm 21 \text{ meV}^{\text{c}}$                   |
|                         |                        | 0.94                    | $33 \pm 2$    |                                                                        |
|                         |                        | 1.12                    | $10 \pm 2$    |                                                                        |
|                         |                        | 1.70                    | $4\pm 2$      |                                                                        |
|                         |                        | 2.52                    | $4\pm 2$      |                                                                        |
|                         |                        | 3.06                    | $21\pm3$      |                                                                        |
|                         |                        | 3.79                    | $4\pm 2$      |                                                                        |
|                         |                        | 3.84                    | $9\pm 2$      |                                                                        |
|                         |                        | 4.96                    | $2\pm 2$      |                                                                        |
| 6.57                    | $5^+; 0$               | 0.94                    | $15.2\pm1.6$  |                                                                        |
|                         | *                      | 3.36                    | $83 \pm 3$    | $\Gamma_{\gamma} = 2.6 \pm 0.5 \times 10^{-2} \text{ eV}^{\text{c,d}}$ |
|                         |                        | 5.30                    | $2.3\pm0.6$   |                                                                        |
| 6.64                    | $2^{-}; 1$             | 0.94                    | $8.9\pm0.6$   | $\Gamma_{\gamma} = 1.4 \pm 0.4 \text{ eV}^{\text{c}}$                  |
|                         | ,                      | 2.10                    | $58 \pm 3$    |                                                                        |
|                         |                        | 3.13                    | $22.0\pm1.3$  |                                                                        |
|                         |                        | 3.72                    | $0.9 \pm 0.2$ |                                                                        |

Table 18.25 (continued) Radiative decays in  $^{18}{\rm F}$   $^{\rm a})$ 

| $E_{\rm i}~({\rm MeV})$ | $J_{ m i}^{\pi}$     | $E_{\rm f}~({\rm MeV})$ | Branch (%)   | Widths and Mixing Ratios                                                                |
|-------------------------|----------------------|-------------------------|--------------|-----------------------------------------------------------------------------------------|
|                         |                      | 3.79                    | $2.4\pm0.2$  |                                                                                         |
|                         |                      | 4.12                    | $1.0\pm0.3$  |                                                                                         |
|                         |                      | 4.86                    | $2.6\pm0.2$  |                                                                                         |
|                         |                      | 5.50                    | $4.0\pm0.3$  |                                                                                         |
| 6.78                    | $4^+; 0$             | 0.94                    | $12.6\pm0.9$ | $\Gamma_{\gamma} = 0.31 \pm 0.08 \text{ eV}^{\text{c}})$<br>$\delta = -(0.35 \pm 0.18)$ |
|                         |                      | 1.12                    | $25.2\pm1.3$ | $\delta = -(1.4 \pm 1.1)$                                                               |
|                         |                      | 4.65                    | $62 \pm 2$   | $\delta = 0.13 \pm 0.13$                                                                |
| 6.80                    | $1^+, 2^+, 3^+; (0)$ | 0                       | $20\pm2$     |                                                                                         |
|                         |                      | 0.94                    | $20\pm2$     |                                                                                         |
|                         |                      | 3.06                    | $50\pm3$     |                                                                                         |
|                         |                      | 3.84                    | $3.0\pm1.6$  |                                                                                         |
|                         |                      | 4.96                    | $7.0\pm1.7$  |                                                                                         |
| 6.88                    | $3, 4^-; 0$          | 2.10                    | $9\pm 2$     |                                                                                         |
|                         |                      | 4.65                    | $91 \pm 2$   |                                                                                         |
| 7.34                    | $1^{-}; 1$           | 0                       | $4\pm0.5$    |                                                                                         |
|                         |                      | 1.08                    | $54\pm2$     |                                                                                         |
|                         |                      | 2.10                    | $18 \pm 1$   |                                                                                         |
|                         |                      | 3.06                    | $1\pm0.5$    |                                                                                         |
|                         |                      | 3.13                    | $8\pm0.5$    |                                                                                         |
|                         |                      | 4.23                    | $15\pm0.6$   |                                                                                         |
| 7.48                    | (2)                  | 0.94                    | 100          |                                                                                         |
| 7.52                    |                      | 0.94                    | $5\pm4$      |                                                                                         |
|                         |                      | 2.10                    | $7\pm5$      |                                                                                         |
|                         |                      | 3.79                    | $33 \pm 5$   |                                                                                         |
|                         |                      | 4.40                    | $55\pm7$     |                                                                                         |
| 7.53                    | $2^{-}$              | 0                       | $10\pm3$     |                                                                                         |
|                         |                      | 0.94                    | $14\pm 6$    |                                                                                         |
|                         |                      | 2.10                    | $50 \pm 9$   |                                                                                         |
|                         |                      | 3.79                    | $26\pm7$     |                                                                                         |
| 7.59                    |                      | 0                       | $18\pm7$     |                                                                                         |
|                         |                      | 0.94                    | $14\pm12$    |                                                                                         |
|                         |                      | 1.12                    | $9\pm7$      |                                                                                         |
|                         |                      | 4.65                    | $59\pm16$    |                                                                                         |

Table 18.25 (continued) Radiative decays in  $^{18}$ F  $^{a}$ )

<sup>a</sup>) For earlier references see Tables 18.11 in (78AJ03) and 18.12 in (83AJ01). See these tables also for upper limits for transitions to other states.

<sup>b</sup>) (82FR15): see reactions 6 and 23.

<sup>c)</sup>  $\Gamma_{\gamma} = \text{total radiative width for this state.}$ <sup>d)</sup>  $\Gamma_{\alpha} = \Gamma \sim 560 \text{ eV}, \Gamma_{p} < 4.5 \text{ eV}.$ <sup>e)</sup> See Table 18.27

| 1817* (11 17)           | τπ π                     |                                       | DC                            |
|-------------------------|--------------------------|---------------------------------------|-------------------------------|
| <sup>10</sup> F'↑ (MeV) | $J^{\pi}; T$             | $	au_{ m m}$                          | References                    |
| 0.94                    | $3^+; 0$                 | $67.6 \pm 2.5 \text{ ps}$             | mean <sup>a</sup> )           |
| 1.04                    | $0^+; 1$                 | $2.7 \pm 0.4 \text{ fs}$              | р)                            |
|                         |                          | $2.2 \pm 0.6$ fs                      | (83CA21)                      |
|                         |                          | $2.55\pm0.45~\mathrm{fs}$             | (83CA21) <sup>c</sup> )       |
| 1.08                    | $0^{-}; 0$               | $27.5\pm1.9~\mathrm{ps}$              | mean $^{a})$                  |
| 1.12                    | $5^+; 0$                 | $234\pm10~\mathrm{ns}$                | $\mathrm{mean}^{\mathrm{b}})$ |
| 1.70                    | $1^+; 0$                 | $0.971\pm0.30~\mathrm{ps}$            | (82BA40)                      |
|                         |                          | $0.897\pm0.057~\mathrm{ps}$           | $(83MO16)^{-d})$              |
|                         |                          | $0.955\pm0.027~\mathrm{ps}$           | mean                          |
| 2.10                    | $2^{-}; 0$               | $5.12\pm0.56~\mathrm{ps}$             | (82BA40)                      |
|                         |                          | $4.93\pm0.78~\mathrm{ps}$             | (83MO16)                      |
|                         |                          | $5.06\pm0.46~\mathrm{ps}$             | mean                          |
| 2.52                    | $2^+; 0$                 | $0.605\pm0.029~\mathrm{ps}$           | (82BA40)                      |
|                         |                          | $0.554\pm0.045~\mathrm{ps}$           | (83MO16)                      |
|                         |                          | $0.590\pm0.024~\mathrm{ps}$           | mean                          |
| 3.06                    | $2^+; 1$                 | $< 1.2 { m \ fs}$                     | $(82BA40)^{a,e})$             |
| 3.13                    | $1^{-}; 0$               | $0.403\pm0.018~\mathrm{ps}$           | (82BA40)                      |
|                         |                          | $0.343 \pm 0.022 \text{ ps}$          | (83MO16)                      |
|                         |                          | $0.39\pm0.02~\mathrm{ps}^\mathrm{A}$  |                               |
| 3.36                    | $3^+; 0$                 | $0.435 \pm 0.041 \text{ ps}$          | (82BA40)                      |
|                         |                          | $0.451 \pm 0.034 \text{ ps}$          | (83MO16)                      |
|                         |                          | $0.44 \pm 0.03 \text{ ps}^{\text{A}}$ |                               |
| 3.72                    | $1^+; 0$                 | $4 \pm 2$ fs                          | (73RO04)                      |
|                         | ,                        | $2.7^{+4.1}_{-2.7}$ fs <sup>A</sup>   | (82BA40) <sup>c</sup> )       |
| 3.79                    | $3^{-}; 0$               | $1.91 \pm 0.17$ ps                    | (82BA40)                      |
|                         | ,                        | $1.90 \pm 0.20 \text{ ps}$            | (83MO16)                      |
|                         |                          | $1.91 \pm 0.13 \text{ ps}$            | mean                          |
| 3.84                    | $2^+; 0$                 | $17.4 \pm 3.6 \text{ fs}$             | (82BA40)                      |
|                         | ,                        | $21 \pm 4$ fs                         | (83MO16)                      |
|                         |                          | $19.0 \pm 2.7$ fs                     | mean                          |
| 4.12                    | $3^+: 0$                 | $91 \pm 22$ fs                        | (73RO06)                      |
| 4.23                    | $2^{-}: 0$               | $110 \pm 15$ fs                       | (73RO06)                      |
| 4.36                    | $\frac{1}{1+0}$          | $27 \pm 10$ fs                        | (73BO06)                      |
| 4.40                    | $4^{-} \cdot 0$          | $58 \pm 12$ fs                        | (73BO06)                      |
| 4 65                    | $\frac{1}{4^{+}}, 0$     | < 10  fs                              | (73BO06)                      |
| 4.85                    | $5^{-} \cdot 0$          | $52 \pm 0.9$ ms                       | (73BO06)                      |
| 4.00                    | $1^{-1} \cdot 0$         | $66 \pm 18$ fs                        | (73RO06)                      |
| 4.00                    | $\frac{1}{2^{+}}, 0$     | $\sim 16$ fc                          | (73BO06)                      |
| 4. <i>3</i> 0<br>5.20   | $2^{+}, 1$<br>$4^{+}, 0$ | > 4.15<br>20 $\pm 5.6$                | (731000)                      |
| 0.50                    | 4.;0                     | $30 \pm 0.18$                         | (130000)                      |

Table 18.26 Lifetime measurements of some  $^{18}\mathrm{F}$  states

| ${}^{18}{ m F^{*}}$ (MeV) | $J^{\pi}; T$ | $	au_{ m m}$           | References |
|---------------------------|--------------|------------------------|------------|
| 5.50                      | $3^{(-)}; 0$ | $63 \pm 25 \text{ fs}$ | (73RO06)   |
| 5.79                      | $2^{-}; 0$   | $15\pm10~{\rm fs}$     | (73RO06)   |

Table 18.26 (continued) Lifetime measurements of some  $^{18}\mathrm{F}$  states

A = adopted

 $^{\rm a})$  See Table 18.12 in (78AJ03).

<sup>b</sup>) See Table 18.13 in (83AJ01).

 $^{\rm c})$  See also (85KE1C).

<sup>d</sup>) See also (82MO09).

<sup>e</sup>) See also (83MO16).

1. 
$${}^{18}\mathrm{F}(\beta^+){}^{18}\mathrm{O}$$
  $Q_{\mathrm{m}} = 1.655$ 

The positron decay is entirely to the ground state of <sup>18</sup>O [ $J^{\pi} = 0^+$ , T = 1]; the half-life is 109.77 ± 0.05 min [see Table 18.11 in (72AJ02)]; log ft = 3.554. The fact that the  $\beta^+$ transition to <sup>18</sup>O<sub>g.s.</sub> is allowed fixes  $J^{\pi} = 1^+$  for <sup>18</sup>F<sub>g.s.</sub>.

The ratio  $\epsilon_{\rm K}/\beta^+ = 0.030 \pm 0.002$ : see (78AJ03, 87AJ02). See also (89SA1P, 89KA1S).

The influence of meson exchange currents of the second kind is discussed in (88SA12) and in (89SA1H) which also considers the effects of neutrino mass. Charged-current ( $\nu_{e}, e^{-}$ ) reactions on <sup>18</sup>O and the predicted effects on a proposed neutrino elastic scattering measurement of the Weinberg angle is discussed in (88HA22).

2. (a)  ${}^{10}B({}^{9}Be, n){}^{18}F$ (b)  ${}^{11}B({}^{9}Be, 2n){}^{18}F$   $Q_m = 14.455$  $Q_m = 3.001$ 

See (86CU02) for production cross sections of 0.94 MeV  $\gamma$ -rays.

3. (a)  ${}^{12}C({}^{6}Li, d){}^{16}O$   $Q_{m} = 5.687$   $E_{b} = 13.213$ (b)  ${}^{12}C({}^{6}Li, \alpha){}^{14}N$   $Q_{m} = 8.798$ (c)  ${}^{12}C({}^{6}Li, {}^{6}Li'){}^{12}C$ 

Cross sections for these and other charged particle channels have been measured for  $E(^{6}\text{Li}) = 1.9$  to 36 MeV [see (78AJ03, 83AJ01)]. More recently, measurements of cross sections at  $E(^{6}\text{Li}) = 210$  MeV are reported in (88NA02). Vector analyzing power measurements have been made at  $E(^{6}\text{Li}) = 150$  MeV (87TA21, 88TA08) and at  $E(^{6}\text{Li}) = 30$  MeV (94RE01) for elastic scattering and at  $E(^{6}\text{Li}) = 30$  MeV (88VAZY, 89VA04) for inelastic scattering to  $^{12}\text{C}^*(4.43)$ . Neutron yields from  $^{6}\text{Li} + ^{12}\text{C}$  at  $E(^{6}\text{Li}) = 40$  MeV have been measured by (87SC11).

The cross section for the isospin-forbidden  $\alpha_1$  group [to <sup>14</sup>N\*(2.31), 0<sup>+</sup>, T = 1] is 1 to 2% of the cross section of the allowed  $\alpha_0$  and  $\alpha_2$  groups for  $E(^{6}\text{Li}) = 3.2$  to 6 MeV while for 9 to 14 MeV it varies from 0.4 to 1.8%. At 20 MeV, the  $\alpha_1$  yield is 0.02% of the allowed yield. Structures are reported at  $E(^{6}\text{Li}) = 11.0$  and 13.0 MeV in the  $\alpha_0$  yield, at 11.5 and 13.0 MeV in the  $\alpha_1$  yield and at  $\approx 11.7$  and 12.8 MeV in the  $\alpha_2$  yield. A resonance is also reported in the  $\alpha_1$  yield at  $E(^{6}\text{Li}) = 4.2$  MeV:  $E_x = 15.99 \pm 0.02$  MeV,  $\Gamma_{\text{c.m.}} = 290 \pm 30$  keV,  $J^{\pi} = 2^+$  (one-level BW fit). It is suggested that this resonance is due to  $2^+$  states with T = 0 and T = 1 which are unresolved. Cross sections for populating  ${}^{16}\text{O}^{*}(8.87, 10.36, 11.08, 11.10)$  are reported by (81GL02).

The excitation functions for the <sup>6</sup>Li ions to <sup>12</sup>C<sup>\*</sup>(0, 4.43) show a single isolated structure at  $E(^{6}\text{Li}) = 22.8$  MeV, in the range 20–36 MeV, with  $\Gamma \approx 0.8$  MeV. It is unlikely to be due to an isolated state in <sup>18</sup>F. Analyzing power measurements are reported for many deuteron and  $\alpha$  groups and for elastically scattered <sup>6</sup>Li ions at  $E(^{6}\text{Li}) = 20$  MeV. VAP measurements for elastic scattering are also reported at  $E_{d} = 9.0$  and 19.2 MeV (83RU09) and at 150 MeV (86KA1C, 86TA1B).

For fusion studies see (82DE30, 87PA12). For references to earlier work and for additional comments see (78AJ03, 83AJ01, 87AJ02), <sup>12</sup>C in (85AJ01), <sup>14</sup>N in (86AJ01), and <sup>16</sup>O in (86AJ04, 93TI07).

4. 
$${}^{12}C({}^{9}Be, t){}^{18}F$$
  $Q_{\rm m} = -4.475$ 

Angular distributions are reported at  $E({}^{9}\text{Be}) = 12$  to 27 MeV to  ${}^{18}\text{F}_{\text{g.s.}}$  and to the unresolved states at 1 MeV: see (83AJ01). For excitation functions see (82HU06, 83JA09).

5. <sup>12</sup>C(<sup>11</sup>B, 
$$\alpha$$
n)<sup>18</sup>F  $Q_{\rm m} = -2.701$ 

For <sup>18</sup>F\*(4.85) [5<sup>-</sup>; T = 0]  $\tau_{\rm m} = 5.2 \pm 0.9$  psec. The E1 strength is  $(3.4 \pm 0.6) \times 10^{-6}$  W.u. for the transition to <sup>18</sup>F\*(1.12) [5<sup>+</sup>; T = 0] and the E2 strength is  $14.8 \pm 2.6$  W.u. for that to <sup>18</sup>F\*(3.79) [3<sup>-</sup>; 0]. The latter strength, which is that of a highly collective transition, corresponds to a quadrupole moment  $Q_0 = 395 \pm 35$  mb and suggests that <sup>18</sup>F\*(4.85) is the 5<sup>-</sup> state of a (strongly decoupled)  $K^{\pi} = 1^{-}$  band (82KO24). See also Tables 18.25 and 18.26.

6. <sup>14</sup>N(
$$\alpha$$
,  $\gamma$ )<sup>18</sup>F  $Q_{\rm m} = 4.415$ 

The non-resonant S-factor for this reaction is  $S \approx 0.7 \text{ MeV} \cdot \text{b}$ : see (78AJ03). A number of resonances have been observed for  $E_{\alpha} < 3$  MeV: see Table 18.27. Studies of these, principally by the Toronto and Queen's groups [see references in (78AJ03, 83AJ01)] in conjunction with work on <sup>14</sup>N( $\alpha$ ,  $\alpha$ ), <sup>16</sup>O(<sup>3</sup>He, p), <sup>17</sup>O(p,  $\gamma$ ) and <sup>17</sup>O(p,  $\alpha$ ) [see tables 18.29, 18.30, 18.31] have led to the determination of branching ratios, mixing ratios and widths

| $E_{\alpha}$              | Particles             | $\Gamma_{\rm c.m.}$ | $(2J+1)\Gamma_{\gamma}\Gamma_{\alpha}/\Gamma$ | $J^{\pi}; T$         | $E_{\mathbf{x}}$     |
|---------------------------|-----------------------|---------------------|-----------------------------------------------|----------------------|----------------------|
| $({\rm MeV}\pm{\rm keV})$ | out                   | $(\mathrm{keV})$    | (eV)                                          |                      | (MeV)                |
|                           |                       |                     | $< 2 \times 10^{-5}$                          |                      | 4.657                |
| 0.559                     | $\gamma$              |                     | $(2.8 \pm 0.5) \times 10^{-4}$                | 1; 0                 | 4.850                |
| 0.698                     |                       |                     | $< 0.5 \times 10^{-4}$                        | $2^+; 1$             | 4.958                |
| $1.136\pm3$               | $\gamma$              |                     | $0.084 \pm 0.004$                             | $4^+; 0$             | 5.299                |
| $1.398\pm3$               | $\gamma$              |                     | $0.022\pm0.003$                               | $3^{(-)}; 0$         | 5.502                |
| 1.527                     | $\gamma,  lpha_0$     |                     | $1.44\pm0.14$                                 | $1^{+}$              | $5.603 {}^{ m e})$   |
| $1.529\pm2$               | $\gamma,  lpha_0$     | < 1.2               | $2.60\pm0.21$                                 | $1^{-}; 0+1$         | $5.604^{\text{f}})$  |
| $1.618\pm2$               | $\gamma,  lpha_0$     | < 0.8               | $1.4 \pm 0.2$ <sup>b</sup> )                  | $1^{-}; 0+1$         | $5.673  {}^{ m g})$  |
| $1.765\pm4$               | $\gamma$              |                     | $0.047 \pm 0.018$                             | $2^{-}; 0$           | 5.788                |
| $2.160\pm4$               | $\gamma$              |                     | $0.20\pm0.04$                                 | $4^{-}; 0$           | 6.095                |
| $2.166\pm7$               | $\gamma,  \alpha_0$   |                     | $0.08\pm0.03$                                 | $1, 2, 3^{(-)}; 0$   | 6.100                |
|                           |                       |                     | с)                                            |                      |                      |
| $2.348\pm3$               | $\gamma,  \alpha_0$   | < 0.8               |                                               | $3^{-}; 0+1$         | 6.241 <sup>h</sup> ) |
| $2.372\pm3$               | $\gamma,  \alpha_0$   | < 3                 |                                               | $1^+; (0)$           | $6.260^{i})$         |
|                           |                       |                     | d)                                            |                      |                      |
| $2.438 \pm 4$             | $\gamma$              |                     | $0.52\pm0.12$                                 | $3^+; 0$             | 6.311                |
| $2.532\pm4$               | $\gamma$              |                     | $1.6\pm0.4$                                   | $2^+; 0+1$           | 6.384                |
|                           | $\gamma$              |                     | $0.16\pm0.06$                                 | $3^+; (0)$           | 6.480                |
| $2.767 \pm 4$             | $\gamma,  lpha_0$     | (< 0.8)             | $0.29\pm0.06$                                 | $5^+; 0$             | 6.567                |
| $2.870 \pm 4$             | $\gamma,\mathrm{p}_0$ | < 1.6               | $2.7\pm0.5$                                   | $2^{-}; 1$           | 6.647                |
| $2.870\pm 6$              | $lpha_0$              | $93\pm5$            | $\Gamma_{\alpha}/\Gamma = 0.85$               | $1^{-}$              | 6.647                |
|                           |                       |                     | $0.12\pm0.07$                                 | $4^+; 0$             | 6.78                 |
|                           |                       |                     | < 0.2                                         | $1^+, 2^+, 3^+; (0)$ | 6.803                |
| $3.080\pm 6$              | $p_0, \alpha_0$       | $101\pm5$           |                                               | $2^{-}$              | 6.810                |
| $3.576 \pm 4$             | $lpha_0$              | < 4                 |                                               | $(4^+)$              | 7.196                |
| 3.67                      | $lpha_0$              | $45\pm10$           |                                               | $(1^+)$              | 7.27                 |
| 3.72                      | $p_0, \alpha_0$       | $53\pm 6$           |                                               | $(3^{-})$            | 7.31                 |
| 4.00                      | $p_0, \alpha_0$       | 35                  |                                               | $(3^{-})$            | 7.53                 |
| 4.05                      | $p_0, \alpha_0$       | 60                  |                                               |                      | 7.57                 |
| 4.11                      | $p_0, \alpha_0$       | 40                  |                                               |                      | 7.61                 |
| 4.28                      | $p_0, \alpha_0$       | 120                 |                                               |                      | 7.74                 |
| 4.50                      | $p_0, \alpha_0$       | 30                  |                                               | $(2^{-})$            | 7.92                 |
| 4.55                      | $p_0, \alpha_0$       | 70                  |                                               | $(1^{+})$            | 7.95                 |

Table 18.27 Resonances in  $^{14}{\rm N}+\alpha$  below  $E_{\alpha}=5$  MeV  $^{\rm a})$ 

 4.55
  $p_0, \alpha_0$  70
 (1<sup>+</sup>)
 7.95

 a) References are displayed in Tables 18.13 of (72AJ02, 78AJ03). Higher resonances observed in <sup>14</sup>N(α, α<sub>1</sub>) are listed in Table 18.14 of (78AJ03).
 b)  $ωγ = 0.45 \pm 0.02$  (82BE29).
 c)

 b)  $ωγ = 0.45 \pm 0.02$  (82BE29).
 c)
 c)
 ≤ 0.07 for <sup>18</sup>F\* (6.11, 6.16 MeV) (73RO03).

 d) ≤ 0.03 for <sup>18</sup>F\* (6.28 MeV) (73RO03).
 c)
 (1<sup>+</sup>)
 7.95

Table 18.27 (continued) Resonances in  ${}^{14}N + \alpha$  below  $E_{\alpha} = 5$  MeV <sup>a</sup>)

<sup>e)</sup>  $\Gamma_{\alpha} = 42.8 \pm 1.6 \text{ eV}, \Gamma_{\gamma} = 0.485 \pm 0.046 \text{ eV}, l_{\alpha} = 0 \text{ (80MA26)}.$  See also Table 18.30. <sup>f)</sup>  $\Gamma_{\alpha} = 32.0 \pm 2.1 \text{ eV}, \Gamma_{\gamma} = 0.891 \pm 0.074 \text{ eV}, l_{\alpha} = 1. \Delta E_{\text{x}} \text{ for } {}^{18}\text{F}^{*} \text{ (5.603, 5.605 MeV)} \text{ is } 1.84 \pm 0.04 \text{ keV (80MA26)}.$  See also Table 18.30. <sup>g)</sup>  $\Gamma_{\alpha} = 130 \pm 5 \text{ eV}, \Gamma_{\gamma} = 1.4 \pm 0.3 \text{ eV}, l_{\alpha} = 1 \text{ (80MA26)}.$  More recently, an accurate energy measurement for this level by (89BO01) gave  $E_{\text{x}} = 5672.57 \pm 0.32 \text{ keV}.$ <sup>h)</sup> This resonance corresponds to two states at  $E_{\text{x}} = 6240$  and 6242 keV. The lower member of the doublet (both of which have  $J^{\pi} = 3^{-}$  and mixed isospin) has  $\Gamma_{\alpha} = 133 \pm 4 \text{ eV}, \Gamma_{\gamma} = 0.80 \pm 0.11 \text{ eV}$ ; the higher has  $\Gamma_{\alpha} = 137 \pm 0.4 \text{ eV}, \Gamma_{\gamma} = 0.73 \pm 0.11 \text{ eV}$  (79KI12). <sup>i)</sup>  $\Gamma_{\alpha} = 580 \pm 12 \text{ eV}, \Gamma_{\text{p}} = 25^{+35}_{-25} \text{ eV}$  (79KI12).

(table 18.25), lifetimes (table 18.26) and the  $E_x$ ,  $J^{\pi}$  and  $K^{\pi}$  assignments for <sup>18</sup>F states with  $E_x < 6.9$  MeV. The reader is referred to the series of papers by the Toronto group for the most complete and definitive arguments on the parameters of the low-lying states of <sup>18</sup>F.

A recent measurement reported in (89BO01) determines a value  $E_x = 5672.57 \pm 0.32$  keV for the first <sup>18</sup>F level above the proton threshold. This level is important for calculating the rate of <sup>17</sup>O destruction during hydrogen burning in stars.

No evidence is seen for the excitation of the (forbidden) state at  $E_x = 4.753$  MeV  $[J^{\pi} = 0^+, T = 1]$  (81LE1A, 83LE08). See also (87AJ02), and see the tables of reaction rates (88CA1N) and the reviews of (89KA24, 89WH1B, 89TH1C).

7. <sup>14</sup>N(
$$\alpha$$
, p)<sup>17</sup>O  $Q_{\rm m} = -1.192$   $E_{\rm b} = 4.415$ 

Observed resonances are displayed in table 18.27. See also <sup>17</sup>O in (86AJ04, 93TI07).

8. (a)  ${}^{14}N(\alpha, \alpha'){}^{14}N$ (b)  ${}^{14}N(\alpha, 2\alpha){}^{10}B$ (c)  ${}^{14}N(\alpha, {}^{6}\text{Li}){}^{12}\text{C}$   $Q_{\rm m} = -11.613$  $Q_{\rm m} = -8.798$ 

Observed anomalies in the elastic scattering [reaction (a)] are exhibited in Table 18.27. Resonances in the  $\alpha_1$  isospin-forbidden yield are displayed in Table 18.14 of (78AJ03). In the  $\alpha_1$  study, carried out for  $E_{\alpha} = 7.6$ –16.9 MeV, a partial-wave analysis involving a method of removing ambiguities and parametrizing *S*-matrix elements gives the level parameters of 151 isospin mixed, natural-parity states in <sup>18</sup>F with 10.4 <  $E_x$  < 17.5 MeV. Many of these states have also been reported in the <sup>16</sup>O(d,  $\alpha_1$ ) reaction [Table 18.16 of (78AJ03)]. The agreement is best for low-lying 2<sup>+</sup> or 4<sup>+</sup> states, and is quite good for 3<sup>-</sup> and 5<sup>-</sup> states, while for high-*J* states the greater centrifugal barrier for <sup>16</sup>O + d at the same  $E_x$  leads to a relative suppression of high-*J* states in the <sup>16</sup>O + d work. A study of the energy dependence of averaged intensities of the partial waves shows some indication that the lower partial waves conserve isospin as  $E_x$  increases.

The total cross sections for formation of <sup>10</sup>B and <sup>6</sup>Li have been studied for  $E_{\alpha} = 21$  to 42 MeV [see (78AJ03)], as has the cross section for production of 1.64 and 2.31 MeV  $\gamma$ -rays from threshold to  $E_{\alpha} = 26$  MeV (85DY05). See also (87AJ02), and see (87BU1E, 89BE1R, 90WE1A, 91LE33).

9. (a)  ${}^{14}N({}^{6}Li, d){}^{18}F$ (b)  ${}^{14}N({}^{6}Li, d\alpha){}^{14}N$  $Q_m = -1.475$ 

Angular distributions have been measured for the deuteron groups to  ${}^{18}\text{F}^*(5.34 \ [4^+], 6.56 \ [5^+], 9.58, 11.2, 14.1)$  at  $E({}^6\text{Li}) = 36$  MeV. Angular correlations lead to  $J^{\pi} = 6^+$  and  $8^+$  for  ${}^{18}\text{F}^*(9.58, 14.1)$  and the data are consistent with  $J^{\pi} = 7^+$  for  ${}^{18}\text{F}^*(11.2)$  (83ET02). For the earlier work see (78AJ03).

10. <sup>14</sup>N(<sup>7</sup>Li, t)<sup>18</sup>F 
$$Q_{\rm m} = 1.948$$

At  $E(^{7}\text{Li}) = 36$  MeV the  $K^{\pi} = 1^{+}$  band appears to be selectively populated. States at  $E_x = 9.58 \pm 0.02$ ,  $11.22 \pm 0.03$  and  $14.18 \pm 0.04$  MeV are strongly populated. It is suggested that the first two are the 6<sup>+</sup> and 7<sup>+</sup> members of that band: see reaction 8. [Angular distributions are reported for  ${}^{18}\text{F}^{*}(1.70, 2.10, 2.52, 3.36, 4.40, 5.30, 6.57, 9.58,$ 11.22, 14.18).] See (78AJ03, 87AJ02) for the earlier work.

11. (a) <sup>14</sup>N(<sup>11</sup>B, <sup>7</sup>Li)<sup>18</sup>F 
$$Q_{\rm m} = -4.250$$
  
(b) <sup>14</sup>N(<sup>13</sup>C, <sup>9</sup>Be)<sup>18</sup>F  $Q_{\rm m} = -6.233$ 

These reactions have been studied at  $E(^{11}\text{B}) = 115$  MeV and  $E(^{13}\text{C}) = 105$  MeV. Differential cross sections at three angles are reported for the transitions to  $^{18}\text{F}^*(9.58, 10.57 \pm 0.07, 11.2)$  in reaction (a) and to  $^{18}\text{F}^*(5.30, 6.57, 9.58, 10.60 \pm 0.08, 11.2)$  in reaction (b). In addition to these states  $^{18}\text{F}^*(14.18)$  is strongly excited in both reactions, and transitions to  $^{18}\text{F}^*(15.79 \pm 0.10, 18.62 \pm 0.12)$  are also reported: see (83AJ01).

12. (a) 
$${}^{15}N({}^{3}\text{He}, \gamma){}^{18}\text{F}$$
  $Q_{\rm m} = 14.156$   
(b)  ${}^{15}N({}^{3}\text{He}, \alpha){}^{14}N$   $Q_{\rm m} = 9.745$   $E_{\rm b} = 14.160$ 

Excitation functions have been measured for  $E({}^{3}\text{He}) = 2.5$  to 16 MeV for the  $\gamma_{0}$ and  $\gamma_{1\to4}$  yields. Resonances are observed corresponding to  $E_{x} = (19.00 \pm 0.15) [\gamma_{1\to4}],$  $(20.1 \pm 0.2) [\gamma_{0}, \gamma_{1\to4}], (22.7 \pm 0.2) [\gamma_{0}, \gamma_{1\to4}] \text{ and } (24.1 \pm 0.2) \text{ MeV } [\gamma_{1\to4}], \text{ with } \Gamma_{\text{c.m.}} =$   $(0.5 \pm 0.15)$ ,  $(1.6 \pm 0.1)$ ,  $(1.2 \pm 0.1)$  and  $(1.4 \pm 0.3)$  MeV, respectively. The  $\gamma_0$  yield is dominated by <sup>18</sup>F\*(20.10) [(83WA05): see for  $(2J + 1)\Gamma_{3\text{He}}\Gamma_{\gamma}$  values]. It is suggested that structures decaying by  $\gamma_0$  have  $J^{\pi} = 2^-$  (and possibly T = 1) (83WA05). For analyzing power measurements at  $E(^{3}\text{He}) = 33$  MeV see (86DR03).

13. <sup>15</sup>N(<sup>6</sup>Li, t)<sup>18</sup>F 
$$Q_{\rm m} = -1.635$$

At  $E(^{6}\text{Li}) = 30$  MeV preferential excitation of odd-parity states of <sup>18</sup>F below  $E_{x} = 5$  MeV is reported. Angular distributions of the tritons to <sup>18</sup>F\*(0, 0.94, 2.10, 4.40) [ $J^{\pi} = 1^{+}$ ,  $3^{+}$ ,  $2^{-}$ ,  $4^{-}$ ] are all strongly forward peaked: see (78AJ03).

14. (a) 
$${}^{15}N({}^{11}B, {}^{8}Li){}^{18}F$$
  $Q_m = -13.048$   
(b)  ${}^{15}N({}^{12}C, {}^{9}Be){}^{18}F$   $Q_m = -12.119$ 

These reactions have been studied with  $E(^{11}\text{B}) = E(^{12}\text{C}) = 115$  MeV. Reaction (a) is dominated by the transitions to  $^{18}\text{F*}(1.12)$  [presumably  $J^{\pi} = 5^+$  state, although the group is unresolved] and to  $^{18}\text{F*}(7.15, 9.45)$  [ $J^{\pi} = (7^-)$  and ( $6^-$ )]. No single state is strongly preferentially populated in reaction (b). Differential cross sections for  $^{18}\text{F*}(4.40, 6.10, 7.15,$ 9.45) [ $J^{\pi} = 4^-$ , ( $5^-$ ), ( $7^-$ ), ( $6^-$ )], are fitted by FRDWBA: see (83AJ01).

15. <sup>16</sup>O(d, 
$$\gamma$$
)<sup>18</sup>F  $Q_{\rm m} = 7.526$ 

The capture cross section rises from 0.1  $\mu$ b at  $E_d = 0.4$  MeV to 25  $\mu$ b at 3.5 MeV:  $\Gamma_{\gamma}$  over this range is  $\approx 2$  eV: see (72AJ02).

16. (a) 
$${}^{16}O(d, n){}^{17}F$$
  $Q_m = -1.624$   $E_b = 7.526$   
(b)  ${}^{16}O(d, p){}^{17}O$   $Q_m = 1.919$ 

Excitation functions and polarization studies have been carried out to  $E_d = 17$  MeV [see (78AJ03, 83AJ01)] and at  $E_d \approx 5.6$  to 8.3 MeV (85GR1B; p<sub>0</sub>, p<sub>3</sub>, p<sub>4</sub>). Structures attributed to states in <sup>18</sup>F are displayed in Table 18.28. See also <sup>17</sup>O and <sup>17</sup>F in (86AJ04, 93TI07), (87AJ02), and see (92LA08) for applications.

17. <sup>16</sup>O(d, d')<sup>16</sup>O  $E_{\rm b} = 7.526$ 

| $E_{ m d}$                | Particles out                               | $\Gamma_{\rm c.m.}$     | $J^{\pi}; T$  | $E_{\mathbf{x}}$ |
|---------------------------|---------------------------------------------|-------------------------|---------------|------------------|
| $({\rm MeV}\pm{\rm keV})$ |                                             | (keV)                   |               | (MeV)            |
| 0.895                     | $p_1, \alpha_0$                             | $210 \pm \overline{25}$ |               | (8.320)          |
| 1.048                     | $p_1,d_0,\alpha_0$                          | $88\pm10$               | $1^{+}$       | 8.456            |
| 1.199                     | $lpha_0$                                    | $230\pm30$              |               | (8.590)          |
| 1.298                     | $p_1,d_0,\alpha_0$                          | $13 \pm 3$              |               | (8.678)          |
| 1.325                     | $d_0, \alpha_0$                             |                         |               | (8.702)          |
| 1.482                     | $lpha_0$                                    | $40 \pm 5$              |               | (8.842)          |
| 1.563                     | $d_0, \alpha_0$                             | $121\pm15$              |               | (8.914)          |
| 1.616                     | $lpha_0$                                    | $19\pm15$               |               | (8.961)          |
| 1.765                     | $d_0, \alpha_0$                             | $141\pm10$              |               | (9.093)          |
| 1.885                     | $p_0, p_1, d_0, \alpha_0$                   | $108\pm12$              | $3, 4^-; 0$   | 9.200            |
| 2.22                      | $n_0, \alpha_0$                             |                         | $2, 3^+; 0$   | 9.50             |
| 2.28                      | $lpha_0$                                    |                         | $2, 3^+; 0$   | (9.55)           |
| 2.34                      | $n_0, p_1$                                  |                         |               | (9.60)           |
| 2.55                      | $p_1$                                       |                         |               | (9.79)           |
| 2.92                      | $n_0, p_0, p_1$                             |                         |               | 10.12            |
| 3.05                      | $lpha_0$                                    |                         | $3, 4^-; 0$   | 10.24            |
| 3.13                      | n, p <sub>1</sub> , $\alpha_0$ , $\alpha_1$ |                         | $\geq 2; 0$   | 10.31            |
| 3.37                      | $n_0, p_0, p_1, \alpha_1$                   |                         |               | 10.52            |
| 3.47                      | $lpha_0$                                    |                         | $4, 5^+; 0$   | 10.61            |
| 3.68                      | $n_0, p_0, p_1, \alpha_1$                   |                         | $2^{+}$       | 10.79            |
| 3.80                      | $p_0, \alpha_0$                             |                         | $\geq 2^+; 0$ | 10.90            |
| 3.94                      | n, p <sub>1</sub> , $\alpha_1$              |                         |               | 11.03            |
| 3.95                      | $p_1, \alpha_0$                             | $\simeq 35$             | $3, 4^-; 0$   | 11.03            |
| 4.07                      | $n, p_1$                                    |                         |               | 11.14            |
| 4.38                      | $p_1, \alpha_0$                             |                         | $4, 5^+; 0$   | 11.42            |
| 4.57                      | $lpha_0$                                    |                         | $5, 6^-; 0$   | 11.58            |
| 4.80                      | $d_0, \alpha_0$                             |                         | $\geq 3; 0$   | 11.79            |
| 4.93                      | $lpha_0$                                    |                         | $5, 6^-; 0$   | 11.90            |
| $5.05 \pm 15$             | $lpha_4$                                    | 40                      |               | 12.01            |
| 5.11                      | $\alpha_0,  \alpha_2,  \alpha_4$            | 60                      | $4, 5^+; 0$   | 12.06            |
| 5.17                      | $lpha_0$                                    | 55                      | T = 0         | 12.12            |
| 5.32                      | $lpha_0$                                    | 70                      |               | 12.25            |
| 5.34                      | $\alpha_0, \alpha_2$                        | 170                     |               | 12.27            |
| 5.40                      | $\alpha_0,  \alpha_4$                       | 130                     |               | 12.32            |
| 5.47                      | $lpha_4$                                    | 80                      |               | 12.38            |
| 5.49                      | $\alpha_2,  \alpha_3,  \alpha_4$            | 120                     |               | 12.40            |
| 5.59                      | $\alpha_0,  \alpha_2$                       | 120                     |               | 12.49            |
| 5.65                      | $\alpha_0, \alpha_2$                        | 140                     |               | 12.54            |
| 5 77                      | Ωo                                          | 180                     | $2^+$         | 12.65            |

Table 18.28 Maxima in the yields of  $^{16}\mathrm{O}+\mathrm{d}$   $^{\mathrm{a}})$ 

| $E_{\rm d}$               | Particles out                            | $\Gamma_{\rm c.m.}$ | $J^{\pi}; T$   | $\overline{E_{\mathbf{x}}}$ |
|---------------------------|------------------------------------------|---------------------|----------------|-----------------------------|
| $({\rm MeV}\pm{\rm keV})$ |                                          | $(\mathrm{keV})$    |                | (MeV)                       |
| 5.80                      | $\alpha_0,  \alpha_2,  \alpha_4$         | 160                 |                | 12.68                       |
| 5.81                      | $\alpha_3, \alpha_4$                     | 80                  | $5^{-}$        | 12.69                       |
| 5.91                      | $\alpha_2$                               | 160                 |                | 12.77                       |
| 6.00                      | $lpha_0$                                 | 120                 |                | 12.85                       |
| 6.11                      | $\alpha_0,  \alpha_4$                    | 120                 |                | 12.95                       |
| 6.19                      | $\alpha_2, \alpha_3$                     | 200                 | $\geq 4; 0$    | 13.02                       |
| 6.25                      | $\alpha_0, \alpha_4$                     | 150                 | T = 0          | 13.08                       |
| 6.30                      | $\alpha_0,  \alpha_2$                    | 160                 |                | 13.12                       |
| 6.34                      | $\alpha_0,  \alpha_3$                    | 160                 | $5,6^-;0$      | 13.16                       |
| 6.38                      | $\alpha_0,  \alpha_3$                    | 145                 | T = 0          | 13.19                       |
| 6.43                      | $\alpha_0, \alpha_2$                     | 120                 |                | 13.24                       |
| 6.46                      | $\alpha_0,  \alpha_4$                    | 100                 |                | 13.26                       |
| 6.54                      | $\alpha_0,  \alpha_2$                    | 135                 |                | 13.33                       |
| 6.61                      | $\alpha_2, \alpha_3, \alpha_4$           | 120                 |                | 13.40                       |
| 6.64                      | $\alpha_0,  \alpha_2$                    | 200                 |                | 13.42                       |
| 6.66                      | $lpha_0$                                 | 100                 |                | 13.44                       |
| 6.72                      | $\alpha_2$                               | 100                 |                | 13.49                       |
| 6.73                      | $lpha_2$                                 | 100                 |                | 13.50                       |
| 6.80                      | $\alpha_2, \alpha_3$                     | 140                 |                | 13.56                       |
| 6.84                      | $\alpha_0,  \alpha_2,  \alpha_4$         | 150                 |                | 13.60                       |
| 6.94                      | $\alpha_0,  \alpha_3$                    | 90                  |                | 13.69                       |
| 7.10                      | $\alpha_3, \alpha_4$                     | 60                  | $4^{-}, 5^{+}$ | 13.83                       |
| 7.27                      | $lpha_3$                                 | 150                 |                | 13.98                       |
| 7.31                      | $\alpha_2$                               | 60                  | $4^{-}, 5^{+}$ | 14.02                       |
| 7.34                      | $\alpha_0,  \alpha_3,  \alpha_4$         | 200                 |                | 14.04                       |
| 7.38                      | $\alpha_0,  \alpha_3$                    | 210                 |                | 14.08                       |
| 7.41                      | $lpha_3$                                 | 60                  | $4^{-}, 5^{+}$ | 14.10                       |
| 7.49                      | $lpha_0$                                 | 220                 |                | 14.18                       |
| 7.58                      | $lpha_0$                                 | 200                 | $\geq 4; 0$    | 14.26                       |
| 7.62                      | $lpha_4$                                 | 85                  |                | 14.29                       |
| 7.66                      | $\alpha_0,  \alpha_2,  \alpha_4$         | 130                 | T = 0          | 14.33                       |
| 7.67                      | $\alpha_0, \alpha_2, \alpha_3, \alpha_4$ | 250                 | T = 0          | 14.34                       |
| 7.74                      | $lpha_3$                                 | 200                 | $3^+, 4^-$     | 14.40                       |
| 7.80                      | $\alpha_0,  \alpha_4$                    | 70                  |                | 14.45                       |
| 7.82                      | $\alpha_0,  \alpha_2$                    | 225                 |                | 14.47                       |
| 7.99                      | $lpha_4$                                 | 200                 |                | 14.62                       |
| 8.02                      | $lpha_0$                                 | 150                 |                | 14.65                       |
| 8.03                      | $lpha_3$                                 | 310                 |                | 14.66                       |
|                           |                                          |                     |                |                             |

Table 18.28 (continued) Maxima in the yields of  $^{16}{\rm O}+{\rm d}$   $^{\rm a})$ 

| $E_{\rm d}$               | Particles out                    | $\Gamma_{\rm c.m.}$ | $J^{\pi}; T$          | $E_{\mathbf{x}}$ |
|---------------------------|----------------------------------|---------------------|-----------------------|------------------|
| $({\rm MeV}\pm{\rm keV})$ |                                  | $(\mathrm{keV})$    |                       | (MeV)            |
| 8.08                      | $\alpha_3,  \alpha_4$            | 310                 |                       | 14.70            |
| 8.21                      | $lpha_2$                         | 250                 |                       | 14.82            |
| 8.25                      | $lpha_4$                         | 380                 |                       | 14.85            |
| 8.30                      | $\alpha_0,  \alpha_2,  \alpha_3$ | 210                 |                       | 14.90            |
| 8.34                      | $lpha_4$                         | 115                 |                       | 14.93            |
| 8.37                      | $lpha_0$                         | 130                 |                       | 14.96            |
| 8.37                      | $\alpha_0,  \alpha_3$            | 250                 |                       | 14.96            |
| 8.40                      | $lpha_0$                         | 310                 |                       | 14.99            |
| 8.43                      | $lpha_4$                         | 120                 |                       | 15.01            |
| 8.52                      | $\alpha_3,  \alpha_4$            | 160                 | $4^{-}, 5^{+}$        | 15.09            |
| 8.52                      | $lpha_2$                         | 150                 |                       | 15.09            |
| 8.56                      | $lpha_2$                         | 220                 |                       | 15.13            |
| 8.58                      | $lpha_4$                         | 180                 |                       | 15.15            |
| 8.61                      | $\alpha_0,  \alpha_3$            | 200                 |                       | 15.17            |
| 8.65                      | $\alpha_0,  \alpha_2$            | 135                 |                       | 15.21            |
| 8.72                      | $\alpha_2,  \alpha_4$            | 120                 |                       | 15.27            |
| 8.76                      | $lpha_2$                         | 160                 |                       | 15.30            |
| 8.79                      | $lpha_0$                         | 200                 |                       | 15.33            |
| 8.80                      | $\alpha_0,  \alpha_3,  \alpha_4$ | 200                 | $5^+, 6^-$            | 15.34            |
| 8.89                      | $lpha_3$                         | 110                 |                       | 15.42            |
| 8.93                      | $\alpha_3,  \alpha_4$            | 190                 |                       | 15.46            |
| 8.97                      | $\alpha_2,  \alpha_4$            | 210                 |                       | 15.49            |
| 9.00                      | $\alpha_0,  \alpha_2$            | 190                 |                       | 15.52            |
| 9.62                      | $lpha_3$                         | 220                 | $4^{-}, 5^{+}$        | 16.07            |
| 10.35                     | $lpha_3$                         | 60                  | $4^{-}, 5^{+}$        | 16.72            |
| 11.15                     | $\alpha_3$                       | 70                  | $4^{-}, 5^{+}, 6^{-}$ | 17.43            |

Table 18.28 (continued) Maxima in the yields of  $\rm ^{16}O + d~^a)$ 

<sup>a</sup>) For references see Table 18.15 in (78AJ03). This table does not include the structures in  $\alpha_1$  leading to isospin-mixed states in <sup>18</sup>F: for the latter see Table 18.16 in (78AJ03).

The yields and polarization observables of elastically scattered deuterons have been reported for  $E_d = 0.65$  to 56 MeV: see (78AJ03, 83AJ01). More recent measurements are those by (85GR1B) [excitation functions for  $E_d \approx 5.6$  to 8.3 MeV] and the polarization studies at  $E_d = 20.5$  MeV (84FR14; TAP), 56 MeV (86MA32, VAP, TAP) and 200, 400 and 700 MeV (87NG01; VAP, TAP). An analysis for  $E_d = 400$  MeV in terms of the folding model is discussed in (87GR16). Virtual breakup effects in (d, d) elastic scattering have been studied (88IS02). For references to earlier work see (87AJ02), and see the <sup>16</sup>O sections of (86AJ04, 93TI07).

18. <sup>16</sup>O(d, 
$$\alpha$$
)<sup>14</sup>N  $Q_{\rm m} = 3.111$   $E_{\rm b} = 7.526$ 

The yields of various groups of  $\alpha$ -particles have been measured for  $E_{\rm d} \leq 20$  MeV: see (78AJ03, 83AJ01). The yield curves have been fitted in terms of a large number of states in <sup>18</sup>F: see Table 18.28 here, and 18.16 in (78AJ03).

A detailed study by (73JO13) of the isospin-forbidden  $\alpha_1$  yield, analyzed by S-matrix theory, identifies a large number of isospin-mixed states in <sup>18</sup>F, possibly as many as 138 with  $9.2 < E_x < 19.4$  MeV. The reaction mechanism appears to be almost entirely compound nuclear. The isospin impurity, averaged over 1 MeV intervals, is 3–10% for the above  $E_x$  range. The average coherence width increases from  $\approx 100$  keV at  $E_x = 14$  MeV to  $\approx 500$  keV at  $E_x = 20$  MeV. The level densities appear to be consistent with predictions of the Fermi-gas model (73JO13). See also (85JO1A). [For mixed isospin states observed in <sup>14</sup>N( $\alpha$ ,  $\alpha_1$ ) see Table 18.14 in (78AJ03).] Polarized beam measurements are reported for  $E_d = 6.8$  to 16 MeV: see (78AJ03, 83AJ01).

19. <sup>16</sup>O(d, <sup>6</sup>Li)<sup>12</sup>C 
$$Q_{\rm m} = -5.687 \qquad E_{\rm b} = 7.526$$

Vector and tensor polarized beam measurements are reported for the transitions to  ${}^{12}C^*(0, 4.4)$  at  $E_d = 18$  and 22 MeV (87TA07; VAP, TAP) and 51.7 MeV (86YA12; VAP; also to  ${}^{12}C^*(14.1)$ ).

20. <sup>16</sup>O(t, n)<sup>18</sup>F 
$$Q_{\rm m} = 1.269$$

Recent measurement of neutron yields for  $E_x = 20$  MeV are discussed in (93DR03, 93DR04). Applications are discussed in (87BO16, 90BA1S). For earlier work see (83AJ01, 87AJ02).

21. <sup>16</sup>O(<sup>3</sup>He, p)<sup>18</sup>F 
$$Q_{\rm m} = 2.032$$

| $E_{\rm x} \ ({\rm keV})^{\rm b})$ | $l^{a})$ | $J^{\pi}; T^{c})$      | $K^{\pi c}$ ) |
|------------------------------------|----------|------------------------|---------------|
| 0                                  | 0        | $1^+; 0$               | $0^{+}$       |
| $937.1\pm0.4$                      | 2        | $3^+; 0$               | $0^{+}$       |
| $1040.9\pm0.5$                     | 0        | $0^+;1$                |               |
| $1080.1\pm0.5$                     |          | $0^{-}; 0$             | $0^{-}$       |
| $1119.0\pm0.6$                     | 4        | $5^+; 0$               | $0^{+}$       |
| $1701.4\pm0.7$                     | 0        | $1^+; 0$               | $1^{+}$       |
| $2099.9\pm0.6$                     |          | $2^{-}; 0$             | $0^{-}$       |
| $2523.4\pm0.7$                     | 2        | $2^+; 0$               | $1^{+}$       |
| $3061.2\pm0.5$                     | 2        | $2^+; 1$               |               |
| $3132.8\pm0.6$                     |          | $1^{-}; 0$             | 1-            |
| $3358.2\pm1.0$                     |          | $3^+; 0$               | $1^{+}$       |
| $3725.4\pm0.8$                     |          | $1^+; 0$               |               |
| $3790\pm0.9$                       |          | $3^{-}; 0$             | $1^{-}$       |
| $3838.4\pm0.7$                     | 2        | $2^+; 0$               |               |
| $4114.5\pm0.9$                     |          | $3^+; 0$               |               |
| $4225.8\pm0.7$                     |          | $2^{(-)}; 0$           | $(1^{-})$     |
| $4361.0\pm0.7$                     |          | $1^{(+)}$              |               |
| $4398.1\pm0.7$                     |          | $3^-, 4^-; 0^{\rm d})$ | $(0^{-})$     |
| $4652\pm2$                         | 4        | $4^+;1$                |               |
| $4753\pm3$                         |          | $(0^+; 1)$             |               |
| $4860\pm2$                         |          | $1^{(-)}; 0$           |               |
| $4963.6\pm0.8$                     |          | $2^+; 1$               |               |
| $5297.6 \pm 1.5$                   |          | $4^{+}$                | 1+            |
| $5502\pm2$                         |          | $3^{(-)}; 0$           |               |
| $5603\pm2$                         |          | $1^{-}; 0 + 1$         |               |
| $5669\pm2$                         |          | $1^{-}; 0 + 1$         |               |
| $5785\pm3$                         |          | $2^{-}; 0$             |               |
| $6097.4 \pm 1.4$                   |          | $4^{-}; 0$             | 1-            |
| $6108\pm3$                         |          | $1,2,3^{(-)};0$        |               |
| $6138.3 \pm 1.0$                   |          | $0^+;1$                |               |
| $6164.0 \pm 1.0$                   |          | $3^+; 1$               |               |
| $6241.2\pm1.0$                     |          | $3^{-}; 1$             |               |
| $6263\pm3$                         |          | $1^{+}$                |               |
| $6284.0 \pm 1.0$                   |          | $2^+; 0+1$             |               |
| $6310.5\pm0.8$                     |          | $3^+; 0$               |               |
| $6383\pm3$                         |          | $2^+; 0+1$             |               |
| $6480\pm2$                         |          | $3^+; (0)$             |               |
| $6567.0 \pm 1.5$                   |          | $5^{+}$                | 1+            |
| $6643.0 \pm 1.5$                   |          | $2^{-}; 1$             |               |
| $6777 \pm 2$ <sup>c</sup> )        |          | $4^{+}$                |               |

Table 18.29 States in  $^{18}{\rm F}$  from  $^{16}{\rm O}(^{3}{\rm He},\,{\rm p}\gamma)^{18}{\rm F}$   $^{a})$ 

| $E_{\rm x}~({\rm keV})$ <sup>b</sup> ) | $l^{a})$ | $J^{\pi}; T^{c})$     | $K^{\pi c})$ |
|----------------------------------------|----------|-----------------------|--------------|
| $6803.0 \pm 1.5$                       |          | $1^+, 2, 3^+; (0)$    |              |
| $6878 \pm 2$ <sup>c</sup> )            |          | $3^{(-)}, 4^{-}; (0)$ |              |

Table 18.29 (continued) States in <sup>18</sup>F from <sup>16</sup>O(<sup>3</sup>He,  $p\gamma$ )<sup>18</sup>F <sup>a</sup>)

<sup>a</sup>) For earlier results derived from measurements of proton spectra and of  $\gamma$ -rays, see Table 18.18 in (72AJ02). See also Tables 18.25 and 18.26 here.

<sup>b</sup>) (73RO03):  $\gamma$ -ray measurements.

<sup>c</sup>) See Table 18.17 in (78AJ03).

<sup>d</sup>) See p. 179 of (79KI12).

Excitation energies derived from measurements of  $\gamma$ -rays are displayed in Table 18.29 together with *l*-assignments obtained from distorted-wave analyses, and  $J^{\pi}$ , T and  $K^{\pi}$  assignments from branching ratios, radiative widths, linear polarization,  $\gamma$ -ray angular distributions and  $\tau_{\rm m}$  measurements [see also Tables 18.25 and 18.26]. Studies of this reaction, together with the work on  ${}^{14}{\rm N}(\alpha, \gamma)$  and  ${}^{17}{\rm O}({\rm p}, \gamma)$ , have defined the low-lying states of  ${}^{18}{\rm F}$ .

The g-factor of <sup>18</sup>F\*(0.94)  $[J^{\pi} = 3^+]$  is  $(+0.56 \pm 0.05)$ : see (83AJ01). The circular polarization of the 1.08 MeV  $\rightarrow$  g.s.  $\gamma$ -ray,  $P_{\gamma} = (-10 \pm 18) \times 10^{-4}$  (82AH07),  $(2.7 \pm 5.7) \times 10^{-4}$  (85BI03, 88BI07),  $(1.6 \pm 5.6) \times 10^{-4}$  (85EV03),  $(1.7 \pm 5.8) \times 10^{-4}$  (87PA07). The weak pion-nucleon coupling constant deduced from the weighted average of all recent  $P_{\gamma}$ measurements  $[(1.2 \pm 3.9) \times 10^{-4}]$  is  $(0.3^{+1.0}_{-0.3}) \times 10^{-7}$ . Together with PNC matrix elements in other experiments this suggests that the isovector weak NN interaction may be strongly suppressed compared with the isoscalar weak NN interaction (85EV03, 87PA07). For a measurement of the ICC of the 0.94, 1.02, 1.04, and 1.08 MeV  $\gamma$ -rays see (86KR04). See also (78AJ03, 83AJ01, 87AJ02) and <sup>19</sup>Ne.

A discussion of nuclear tests of fundamental interactions is presented in (89MC1C). For recent work on the use of this reaction for oxygen analysis, see (91BA62, 92CO08). For applications related to  $^{18}$ F production see (91GU05, 91SU17).

22. 
$${}^{16}O(\alpha, d){}^{18}F$$
  $Q_m = -16.321$ 

Angular distributions of the deuteron groups to  ${}^{18}\text{F}^*(1.12)$   $[J^{\pi} = 5^+]$  have been studied at  $E_{\alpha} = 28.0$  to 33.6 MeV: see (83AJ01). At  $E_{\alpha} = 65.3$  MeV a number of angular distributions are reported to  ${}^{18}\text{F}$  states with  $E_x \leq 11.4$  MeV:  ${}^{18}\text{F}^*$  (9.49, 10.54) are suggested to have  $J^{\pi} = 6^-$  and 7<sup>+</sup> respectively (86KA36). See, however, reactions 9 and 10. The use of this reaction in  ${}^{18}\text{F}$  production is discussed in (91GU05).

23. 
$${}^{16}O({}^{6}Li, \alpha){}^{18}F$$
  $Q_{\rm m} = 6.051$ 

Angular distributions have been measured at  $E(^{6}\text{Li}) = 5.5$  to 34 MeV [see (83AJ01)] and at  $E(^{6}\text{Li}) = 48$  MeV (84CO05;  $\alpha_{0}, \alpha_{1}, \alpha_{4}$ ). (82FR15) report the excitation of a state

| $E_{\rm x}~({\rm keV})$ | $E_{\rm x}~({\rm keV})$ |
|-------------------------|-------------------------|
| $937.18\pm0.06$         | $3724.19\pm0.22$        |
| $1041.55\pm0.08$        | $3791.49 \pm 0.22$      |
| $1080.54\pm0.12$        | $3839.17 \pm 0.22$      |
| $1121.36 \pm 0.15$      | $4115.90 \pm 0.25$      |
| $1700.81\pm0.18$        | $4360.15 \pm 0.26$      |
| $2100.61\pm0.10$        | $5603.38 \pm 0.27$      |
| $2523.35 \pm 0.18$      | $5604.86\pm0.28$        |
| $3061.84\pm0.18$        | $5668 \pm 2$            |
| $3133.87 \pm 0.15$      | $6136.47 \pm 0.33$      |

Table 18.30 Excited states of  $^{18}{\rm F}$  from  $^{17}{\rm O}({\rm p},\,\gamma)^{18}{\rm F}$   $^{\rm a})$ 

<sup>a</sup>) See also Table 18.31 here, and Table 18.17 in (83AJ01).

at  $E_x = 4848 \pm 0.5$  keV which decays  $(35 \pm 4)\%$  to  ${}^{18}F^*(3.79)$   $[E_{\gamma} = 1056.8 \pm 0.4$  keV] and  $(65 \pm 4)\%$  to  ${}^{18}F^*(1.12)$ . Alpha-gamma angular correlations are consistent with  $J^{\pi} = 5^-$ , and T = 0 (82FR15). See also (86GL02) and (86IC01).

| 24. (a) ${}^{16}O({}^{11}B, {}^{9}Be){}^{18}F$ | $Q_{\rm m} = -8.290$  |
|------------------------------------------------|-----------------------|
| (b) ${}^{16}O({}^{13}C, {}^{11}B){}^{18}F$     | $Q_{\rm m} = -11.153$ |
| (c) ${}^{16}O({}^{14}N,  {}^{12}C){}^{18}F$    | $Q_{\rm m} = -2.747$  |

See (83AJ01).

25. <sup>17</sup>O(p, 
$$\gamma$$
)<sup>18</sup>F  $Q_{\rm m} = 5.607$ 

Gamma-ray measurements lead to the very accurate  $E_x$  determinations for <sup>18</sup>F states below 6.2 MeV: see Table 18.30. Observed resonances are displayed in Table 18.31; branching ratios, radiative widths and multipole mixing ratios are shown in Table 18.25; and  $\tau_m$ in Table 18.26.

The direct capture cross section has been studied for  $E_{\rm p} = 0.3$  to 1.9 MeV: <sup>18</sup>F\*(5.603, 5.605, 5.668, 5.786 MeV) have  $J^{\pi} = 1^+$ , 1<sup>-</sup>, 1<sup>-</sup> and 2<sup>-</sup>. The 1<sup>-</sup> states have mixed isospin. For astrophysical work, see the thermonuclear reaction rate tables in (85CA41) and the analytical expression presented in (88CA1N). See also (78AJ03, 83AJ01, 87AJ02).

26. 
$${}^{17}O(p, n){}^{17}F$$
  $Q_m = -3.543$   $E_b = 5.607$ 

| $E_{\rm p}$                 | Particles out                                           | $\Gamma_{\rm c.m.}$ | $(2J+1)\Gamma_{\gamma}\Gamma_{\rm p}/\Gamma$ | $J^{\pi}; T$     | $E_{\rm x}$      |
|-----------------------------|---------------------------------------------------------|---------------------|----------------------------------------------|------------------|------------------|
| $(\mathrm{keV})$            |                                                         | $(\mathrm{keV})$    | (eV)                                         |                  | $(MeV \pm keV)$  |
| $517.0 \pm 1.0$             | $\gamma,  \alpha_0$                                     | $0.24\pm0.03$       | $0.26\pm0.05$                                | $4^{-}; 0$       | 6.095            |
| 525                         | $lpha_0$                                                | $0.034 \pm 0.003$   |                                              | $(1^+)$          | 6.102            |
| $561.2 \pm 1.0$             | $\gamma$                                                | $\leq 1$            | $2.2\pm0.6$                                  | $0^+; 1$         | 6.136            |
| $587.1 \pm 1.0$             | $\gamma, p_0, \alpha_0$                                 | $14 \pm 0.5$        | $6.7 \pm 1.8$                                | $3^+; 1$         | 6.161            |
| $670.5 \pm 1.0$             | $\gamma, p_0, \alpha_0$                                 | $0.19\pm0.03$       | (c)                                          | $3^{-}; 0+1$     | 6.239            |
| 673.0                       | $\gamma,  lpha_0$                                       | $0.18\pm0.04$       | (c)                                          | $3^-; 0+1$       | 6.242            |
| $690 \pm 4$                 | $lpha_0$                                                | $0.60\pm0.12$       | $\leq 0.02$                                  | $1^+; 0$         | 6.258            |
| $714.2\pm1.0$               | $\gamma$ , p <sub>0</sub> , $\alpha_0$                  | $10.0\pm0.5$        | $9.1\pm2.3$                                  | $2^+; 1$         | 6.281            |
| $741\pm2$                   | $\gamma$ , p <sub>0</sub> , $\alpha_0$                  | $0.95\pm0.14$       | $0.64\pm0.17$                                | $3^+; 0$         | 6.306            |
| $826\pm2$                   | $\gamma,  lpha_0$                                       | $0.40\pm0.09$       | $0.60\pm0.18$                                | $2^+; 0+1$       | 6.386            |
| $926\pm2$                   | $\gamma,  lpha_0$                                       | $0.40\pm0.10$       | $0.36\pm0.15$                                | $3^+; 0$         | 6.481            |
| 1015                        | $lpha_0$                                                | $0.56\pm0.13$       | $\leq 0.0023$                                | $5^+; 0$         | 6.565            |
| 1090                        | $lpha_0$                                                | $80 \pm 2$          |                                              | 1                | 6.635            |
| $1098.4\pm0.4$              | $\gamma,  \alpha$                                       | $0.60\pm0.07$       | $4.3\pm1.2$                                  | $2^{-}; 1$       | 6.6439           |
| $1101\pm4$                  | $lpha_0$                                                | $89 \pm 5$          |                                              |                  | 6.646            |
| $1240 \pm 2$ <sup>b</sup> ) | $\gamma$ , p <sub>0</sub> , $\alpha_0$                  | $9.2\pm1.0$         | $2.8\pm0.7$                                  | $4^+; 0$         | 6.777            |
| 1270                        | $\gamma,  \mathrm{p}_0$                                 | $\leq 2$            | $0.54\pm0.20$                                | $1^+, 2, 3^+; 0$ | $6.8031 \pm 1.5$ |
| $1274\pm5$                  | $lpha_0$                                                | $88 \pm 2$          |                                              | $2^{-}$          | 6.809            |
| 1276                        | $lpha_0$                                                | $3.0\pm0.5$         |                                              | $(2^+)$          | 6.811            |
| 1338                        | $lpha_0$                                                | $5.0\pm1.0$         |                                              | $(3^{-})$        | 6.870            |
| $1345\pm3$                  | $\gamma,lpha_0$                                         | $\leq 2$            | $1.0\pm0.4$                                  | $3, 4^-; 0$      | 6.876            |
| $1687.5\pm1$                | $lpha_0$                                                | 6.5                 | 3.9                                          | $(4^+); 0$       | 7.199            |
| $1738\pm2$                  | $lpha_0$                                                | 46.5                | 8.8                                          | $(1^+); 0$       | 7.247            |
| $1784\pm2$                  | $p_0, \alpha_0$                                         | 38                  | 47                                           | $3^{-}$          | 7.291            |
| $1810\pm4$                  | $lpha_0$                                                | 52                  | 8.5                                          | $(3^-; 0)$       | 7.315            |
| $1832.5\pm1$                | $\gamma, p_0, p_1$                                      | $16 \pm 2$          | <sup>d</sup> )                               | $1^{-}; 1$       | 7.336            |
| $1906\pm2$                  | $p_0, p_1$                                              | $14.6\pm1.4$        |                                              | $1^{+}$          | 7.406            |
| $1950\pm10$                 | $lpha_0$                                                | 140                 | 5.6                                          |                  | 7.447            |
| $1957\pm2$                  | $\mathbf{p}_0$                                          | 6                   |                                              | 1-               | 7.454            |
| $1983\pm2$                  | $\gamma, p_1, \alpha_0$                                 | $12\pm3$            | 1.5                                          | (2)              | 7.478            |
| $(1990\pm2)$                | $\mathbf{p}_0$                                          | 32                  |                                              | $(1^{-})$        | (7.485)          |
| $2012\pm2$                  | $p_0, \alpha_0$                                         | $12\pm2$            | 7.2                                          | $4^{-}$          | 7.506            |
| $2020\pm2$                  | $\gamma$                                                | $\leq 4$            |                                              |                  | 7.513            |
| $2036\pm2$                  | $\gamma$ , p <sub>0</sub> , p <sub>1</sub> , $\alpha_0$ | $16.5\pm3.0$        | $5.5$ $^{\rm e})$                            | $2^{-}; 1$       | 7.528            |
| $2040\pm5$                  | $p_1, \alpha_0$                                         | 75                  |                                              |                  | 7.532            |
| $2064\pm2$                  | $\mathbf{p}_0$                                          | 30                  |                                              | $(1^{-})$        | 7.555            |
| $2095\pm2$                  | $\gamma$ , p <sub>0</sub> , p <sub>1</sub> , $\alpha_0$ | $9\pm2$             | $3.7^{\rm f})$                               | g)               | 7.584            |
| $2202\pm2$                  | $p_0, p_1, \alpha_0$                                    | $36 \pm 4$          | 25.1                                         | $3^+, 4^{+g}$ )  | 7.685            |

Table 18.31 Resonances in  $^{17}\mathrm{O}+\mathrm{p}$   $^{\mathrm{a}})$ 

| $E_{\rm p}$      | Particles out   | $\Gamma_{\rm c.m.}$ | $(2J+1)\Gamma_{\gamma}\Gamma_{\rm p}/\Gamma$ | $J^{\pi}; T$ | $E_{\mathbf{x}}$          |
|------------------|-----------------|---------------------|----------------------------------------------|--------------|---------------------------|
| $(\mathrm{keV})$ |                 | $(\mathrm{keV})$    | (eV)                                         |              | $({\rm MeV}\pm{\rm keV})$ |
| $2248\pm4$       | $p_1, \alpha_0$ | $66\pm5$            | 28.2                                         | $\geq 1$     | 7.729                     |
| $2284\pm4$       | $p_1$           | 70                  |                                              |              | 7.763                     |
| $2406\pm3$       | $p_1, \alpha_0$ | 20                  | 24.4                                         | $\geq 2$     | 7.878                     |
| $2429\pm2$       | $lpha_0$        | 38                  | 42                                           | $(2^{-})$    | 7.899                     |
| $2473 \pm 12$    | $lpha_0$        | 112                 | 80                                           | $(1^+)$      | 7.941                     |
| $2603\pm6$       | $p_1, \alpha_0$ | 60                  | 11                                           | $\geq 4$     | 8.064                     |
| $2657\pm8$       | $p_1$           | 96                  |                                              |              | 8.115                     |
| $2757\pm2$       | $p_0, \alpha_0$ | 52                  | 63                                           | $2^{-}$      | 8.209                     |
| $2788\pm2$       | $\mathbf{p}_0$  | 20                  |                                              | $4^{+}$      | 8.238                     |
| 2828             | $lpha_0$        | $\simeq 50$         |                                              |              | 8.370                     |
| $3915\pm20$      | n               | 95                  |                                              |              | 9.302                     |
| $(4163 \pm 20)$  | n               | 19                  |                                              |              | (9.536)                   |
| $4235\pm10$      | n               | 33                  |                                              |              | 9.604                     |
| $4330\pm10$      | n               | 33                  |                                              |              | 9.694                     |
| $4490\pm20$      | n               | $\simeq 100$        |                                              |              | 9.845                     |
| $(4790\pm10)$    | n               | 28                  |                                              |              | (10.128)                  |
| $4900\pm20$      | n               | $\simeq 140$        |                                              |              | 10.232                    |

Table 18.31 (continued) Resonances in  ${}^{17}O + p^{a}$ )

<sup>a</sup>) For references see Tables 18.18 in (78AJ03, 83AJ01).

<sup>b</sup>) See footnote (d) in Table 18.18 (78AJ03).

<sup>c</sup>) This corresponds to a doublet of 3<sup>-</sup>, mixed isospin states, separated by  $2.09\pm0.04$  keV.  $\omega\gamma_{p,\gamma} = 2.04\pm0.45$  eV for the lower resonance and  $1.16\pm0.26$  eV for the higher one.

<sup>d</sup>)  $\Gamma_{\gamma} = 3.5 \pm 1.0$  eV.

e)  $\Gamma_{\gamma} = 0.44 \pm 0.10$  eV.

<sup>f</sup>)  $\Gamma_{\gamma} = 0.11 \pm 0.03$  eV.

<sup>g</sup>) Assumed to be unresolved.

Observed resonances are displayed in Table 18.31. Analyzing power measurements are reported at  $E_p = 135$  MeV (83PUZZ; n<sub>0</sub>).

For astrophysics-related work see the thermonuclear reaction rate tables of (85CA41) and the analytical expressions of (88CA1N).

27. <sup>17</sup>O(p, p')<sup>17</sup>O 
$$E_{\rm b} = 5.607$$

The elastic scattering has been studied for  $E_{\rm p} = 0.5$  to 13 MeV [see (78AJ03, 83AJ01)]: observed anomalies are displayed in Table 18.31. Analyzing powers have been measured at  $E_{\rm p} = 89.7$  MeV (85VO12).

28. <sup>17</sup>O(p, t)<sup>15</sup>O 
$$Q_{\rm m} = -11.325$$
  $E_{\rm b} = 5.607$ 

Analyzing powers have been reported at  $E_{\rm p} = 89.7$  MeV for the triton groups to a number of <sup>15</sup>O states (85VO12).

29. <sup>17</sup>O(p, 
$$\alpha$$
)<sup>14</sup>N  $Q_{\rm m} = 1.192$   $E_{\rm b} = 5.607$ 

The yield of  $\alpha_0$  shows a number of resonances for  $E_p = 0.49$  to 3.0 MeV: see Table 18.31. The R-matrix fit of (79KI13), obtained using data from  $E_p = 400$  to 1400 keV, confirms the earlier result [see, e.g., reaction 31 in (78AJ03)] that a significant quantity of <sup>17</sup>O is burned up in the (p,  $\gamma$ ) rather than in the (p,  $\alpha$ ) reaction for a wide range of stellar temperatures (79KI13). See also (87AJ02, 87AS05).

Measurements (89BO01; see <sup>14</sup>N( $\alpha$ ,  $\gamma$ )<sup>18</sup>F reaction) of the first level ( $J^{\pi} = 1^{-}$ ) of <sup>18</sup>F above the proton threshold determined  $E_{\rm x} = 5672.57 \pm 0.32$  keV. This result and a new value for the proton width of this level deduced from <sup>17</sup>O(<sup>3</sup>He, d)<sup>18</sup>F measurements (89LA19) lead to substantial changes in the stellar reaction rate for <sup>17</sup>O(p,  $\alpha$ )<sup>14</sup>N. [See discussion in (89LA19).] A direct search for the  $E_{\rm x} = 70$  keV resonance ( $E_{\rm p} = 5672.57 \pm 0.32$  keV) was carried out and an upper limit for the resonance strength ( $\omega\gamma \leq 8 \times 10^{-10}$  eV) was reported in (92BE21).

30. <sup>17</sup>O(<sup>3</sup>He, d)<sup>18</sup>F 
$$Q_{\rm m} = 0.113$$

At  $E({}^{3}\text{He}) = 15$  MeV DWBA analysis of angular distributions of deuteron groups corresponding to states of  ${}^{18}\text{F}$  with  $E_{\rm x} < 5$  MeV have led to  $J^{\pi}$  values and spectroscopic information: see (72AJ02). Proton widths of states near the proton threshold were measured by (89LA19). See also (87ER05).

31. 
$${}^{17}O(\alpha, t){}^{18}F$$
  $Q_m = -14.207$ 

Measurements and DWBA analysis of differential cross sections at  $E_{\alpha} = 65$  MeV are reported in (92YA08). Measured level energies and spectroscopic information are included in Table 18.32.

32. <sup>17</sup>O(<sup>12</sup>C, <sup>11</sup>B)<sup>18</sup>F  $Q_{\rm m} = -10.350$ 

See (83AJ01).

33. <sup>18</sup>O( $\pi^+$ ,  $\pi^0$ )<sup>18</sup>F  $Q_{\rm m} = 2.939$
| $E_x ({\rm MeV})^{\rm b})$ | $J^{\pi b}$ )              | $\sigma_{\rm int} \ ({\rm mb})^{\ c})$ |
|----------------------------|----------------------------|----------------------------------------|
| 0.0                        | 1+                         | 0.26                                   |
| 0.93                       | $3^{+}$                    | 0.41                                   |
| 1.04                       | $0^+, T = 1$               |                                        |
| 1.12                       | $5^{+}$                    | 1.92                                   |
| 2.52                       | $2^{+}$                    | 0.02                                   |
| 3.06                       | $2^+, T = 1$               | 0.32                                   |
| 3.72                       | $1^{+}$                    | 0.15                                   |
| 4.11                       | $3^{+}$                    | 0.43                                   |
| 4.65                       | $4^+, T = 1$               | 0.61                                   |
| 7.44                       | $(5^{-})^{d})$             | 0.09                                   |
| 9.02                       | $(5^-, T = 1)^{\text{d}})$ | 0.09                                   |
| 9.58                       | $(6^{-})^{d})$             | 0.19                                   |
| 12.75                      | $(6^-, T = 1)$             | 0.03                                   |
| 14.65                      | $(7^+)^{\rm d})$           | 0.07                                   |
| 15.8                       | $(6^-, T = 1)^{\text{d}})$ | 0.03                                   |

Table 18.32 Some states in  $^{18}{\rm F}$  from  $^{17}{\rm O}(\alpha,\,{\rm t})$  a)

<sup>a</sup>) (92YA08);  $E_{\alpha} = 65$  MeV.

<sup>b</sup>)  $E_x$  and  $J^{\pi}$  values from (87AJ02).

<sup>c</sup>) Integrated cross section. See Tables III and IV in (92YA08)

for spectroscopic factors.

<sup>d</sup>)  $J^{\pi}$  value assumed in analysis by (92YA08).

See (83AS01, 84AS05, 89LE1L).

34. <sup>18</sup>O(p, n)<sup>18</sup>F 
$$Q_{\rm m} = -2.437$$

(83AN05) have studied the distribution of Gamow-Teller (GT) strength. At  $E_{\rm p} = 135$  MeV angular distributions have been studied to the 0<sup>+</sup> state at 1.04 MeV and to the 1<sup>+</sup> states <sup>18</sup>F\*(0, 1.70, 3.72, 4.36, 6.26 MeV) as well as to possible 1<sup>+</sup>; T = 1 groups at  $E_{\rm x} = 9.9$ , 10.9 and 11.9 MeV. 82% of the observed strength lies in the ground state group and 5.5% in the T = 1 states. The observed GT strength is  $\approx \frac{2}{3}$  of that expected from the simple sum rule (83AN05). Multipole decomposition of data from measurements at  $E_{\rm p} = 494$  MeV is reported in (94ME07). See also (78AJ03, 87AJ02).

More recently the (p, n) reaction as a probe of beta decay strength is discussed in (87GO1V, 87TA13, 88MA53). See also (89RA1G). Studies of stretched state excitations are described in (86AN1E) and measurement of spin observables at  $E_{\rm p} = 135$  MeV are discussed in (89WAZZ, 90WAZT). Total cross sections for <sup>18</sup>F production from <sup>18</sup>O(p, n) were measured by (90WA10). See (88HI1F, 91GU05) for related applications.

| Decay to $^{18}\mathrm{F}^*$ | $J^{\pi}; T$ | $E_{\gamma_0}$                 | Branch <sup>b</sup> )            | $\log f_0 t^{\rm c}$ ) |
|------------------------------|--------------|--------------------------------|----------------------------------|------------------------|
| (MeV)                        |              | $(\mathrm{keV})$               | (%)                              |                        |
| 0                            | $1^+; 0$     |                                | $92.11\pm0.21$                   | $3.096 \pm 0.004$      |
| $1.04^{\rm d})$              | $0^+; 1$     | $1041.5\pm0.3$                 | $7.70\pm0.21$                    | $3.473 \pm 0.013$      |
| $1.08^{\rm d})$              | $0^{-}; 0$   | $1080.76 \pm 0.13 \ ^{\rm b})$ | $(2.07 \pm 0.28) \times 10^{-3}$ | $7.012\pm0.059$        |
| 1.70                         | $1^+; 0$     | $1699.9 \pm 0.3 \ {\rm e})$    | $0.188 \pm 0.006$                | $4.477\pm0.015$        |

 $\begin{array}{c} \text{Table 18.33} \\ \text{Branching in} \ ^{18}\text{Ne}(\beta^+)^{18}\text{F}^{-\text{a}}) \end{array}$ 

<sup>a</sup>) For the earlier work see Tables 18.19 in (83AJ01) and 18.20 in (78AJ03).

<sup>b</sup>) (83AD03). See also (82HE04).

<sup>c</sup>) Based on  $\tau_{1/2} = 1672 \pm 8$  ms: see (83AD03).

<sup>d</sup>) The splitting of the  $0^+$  and  $0^-$  states is  $39.20 \pm 0.11$  keV (83AD03).

e) And  $659.2 \pm 0.3$  keV for the  $\gamma$ -ray to  ${}^{18}F^*(1.04)$  (82HE04).

35. <sup>18</sup>O(<sup>3</sup>He, t)<sup>18</sup>F 
$$Q_{\rm m} = -1.674$$

At  $E({}^{3}\text{He}) = 16$  MeV, the triton spectrum is dominated by strong groups to  ${}^{18}\text{F}^{*}(0, 0.94)$  and to the 0<sup>+</sup> and 2<sup>+</sup>, T = 1 states of  ${}^{18}\text{F}^{*}(1.04, 3.06)$ . Angular distributions have been studied to these and many other states at this energy and at  $E({}^{3}\text{He}) = 17.3$  MeV.  $A_{y}$  measurements for t<sub>0</sub> have been reported at  $E({}^{3}\text{He}) = 33$  MeV. See (83AJ01) for references.

36. <sup>18</sup>O(<sup>6</sup>Li, <sup>6</sup>He)<sup>18</sup>F 
$$Q_{\rm m} = -5.163$$

The reaction was studied at  $E(^{6}\text{Li}) = 156 \text{ MeV}$  by (90MO13). Evaluated cross sections for Gamow-Teller transitions at 0° and strengths for analogous beta decays were compared.

37. <sup>18</sup>Ne(
$$\beta^+$$
)<sup>18</sup>F  $Q_{\rm m} = 4.446$ 

The half-life of <sup>18</sup>Ne is  $1672 \pm 8$  msec [see <sup>18</sup>Ne]. The decay is to <sup>18</sup>F\*(0, 1.04, 1.08, 1.70 MeV): see Table 18.33 and reaction 1 under <sup>18</sup>Ne.

38. <sup>19</sup>F
$$(\gamma, n)^{18}$$
F  $Q_m = -10.431$ 

Cross sections have been reported up to 30 MeV for the transitions to  ${}^{18}F^*(0.94, 1.04, 1.08, 3.06, 3.13, 4.75 MeV)$ : see (83AJ01).

Cross sections for the  $(\gamma, n_0)$  photoneutron reaction were measured between 48° and 139° for  $E_{\gamma} = 15-25$  MeV by (89KU10). The E1 absorption strength was deduced.

| $E_{\gamma} \; (\mathrm{keV})$ | $E_{\rm i}~({\rm keV})$ | $E_{\rm f}~({\rm keV})$ | $I_{\gamma}^{\  \  \mathrm{b}})$ |
|--------------------------------|-------------------------|-------------------------|----------------------------------|
| $659.0\pm0.2$                  | 1701                    | 1042                    | $0.135\pm0.005$                  |
| $1041.55\pm0.08$               | 1042                    | 0                       | $7.83 \pm 0.21$                  |
| $1080.76 \pm 0.13$             | 1081                    | 0                       | $0.00226 \pm 0.00021$            |
| $1700.81\pm0.18$               | 1701                    | 0                       | $0.0538 \pm 0.0018$              |

Table 18.34  $\gamma\text{-ray intensities in }^{18}\text{Ne}(\beta^+)^{18}\text{F}^{-\text{a}})$ 

<sup>a</sup>) (83AD03). <sup>b</sup>)  $\gamma$ -ray intensities are per 100 parent decays.

39.  ${}^{19}F(n, 2n){}^{18}F$  $Q_{\rm m} = -10.431$ 

Cross sections have been measured at  $E_n = 18, 21, 23, 25, and 27 MeV$  (91HA17).

40. 
$${}^{19}F(p, d){}^{18}F$$
  $Q_m = -8.207$ 

Angular distributions have been reported to many states of <sup>18</sup>F with  $E_x \leq 6$  MeV: see Table 18.20 in (83AJ01). See also (87AJ02). Spectroscopic factors derived from measurements at  $E_{\rm p} = 18.6$  MeV are discussed in (87VA28). See also (89VAZM).

41. <sup>19</sup>F(d, t)<sup>18</sup>F 
$$Q_{\rm m} = -4.174$$

See (72AJ02, 78AJ03), and see (89VAZM) for cross section measurements and deduced level energies and spectroscopic factors. A recent measurement of total cross sections at  $E_{\rm d} = 5-12$  MeV (93AB18) detected eight resonances with widths  $\Gamma \approx 200-400$  keV.

42. <sup>19</sup>F(<sup>3</sup>He, 
$$\alpha$$
)<sup>18</sup>F  $Q_{\rm m} = 10.146$ 

See (78AJ03, 87VA1I, 88GO1E), and see (89VAZM) for cross section measurements and deduced level energies and spectroscopic factors.

43. <sup>20</sup>Ne(p, <sup>3</sup>He)<sup>18</sup>F 
$$Q_{\rm m} = -15.557$$

See (78AJ03).

44. <sup>20</sup>Ne(d,  $\alpha$ )<sup>18</sup>F  $Q_{\rm m} = 2.796$ 

At  $E_{\rm d} = 11$  MeV  $\alpha$ -groups are observed to many states of <sup>18</sup>F with  $E_{\rm x} < 7$  MeV. Weak or absent (each  $\leq 0.3\%$  of the total yield at 30°) are the groups corresponding to <sup>18</sup>F\*(1.04, 3.06, 4.66, 4.74, 4.96 MeV): T = 1. Measurements of the TAP for  $E_{\rm d} = 10.25$ to 12.0 MeV leads to assignments of 2<sup>-</sup>, 1<sup>+</sup>, 0<sup>+</sup>, 1<sup>-</sup>, 1<sup>+</sup>, 3<sup>+</sup>, 3<sup>+</sup> to <sup>18</sup>F\*(4.23, 4.36, 4.75, 4.86, 5.603, 6.16, 6.48 MeV). See (72AJ02, 78AJ03, 83AJ01) for references and for other results and (87HI1B) for applications. Use of this reaction for <sup>18</sup>F production is discussed in (91GU05).

45. <sup>21</sup>Ne(p, 
$$\alpha$$
)<sup>18</sup>F  $Q_{\rm m} = -1.741$   
See (87GO1G).

46.  ${}^{23}$ Na(p, X) ${}^{18}$ F

The <sup>18</sup>F yield from protons on <sup>23</sup>Na at  $E_p = 20-67.5$  MeV was measured (92LA25) and cross sections were deduced.

47. <sup>23</sup>Na(d, <sup>7</sup>Li)<sup>18</sup>F  $Q_{\rm m} = -12.175$ 

See (84NE1A).

48.  ${}^{27}\text{Al}({}^{16}\text{O}, {}^{25}\text{Mg}){}^{18}\text{F}$   $Q_{\rm m} = -9.616$ 

Cross sections have been measured for  $E(^{16}\text{O}) = 13.6 \text{ GeV/nucleon by (93CU05)}$ .

## $^{18}$ Ne

GENERAL: See Table 18.35.

For B(E2) of <sup>18</sup>Ne<sup>\*</sup> (1.89) and other parameters see (87RA01) and Table 2 (of the published version, *Nucl. Phys.* A595 (1995) 1).

1. 
$${}^{18}\text{Ne}(\beta^+){}^{18}\text{F}$$
  $Q_{\rm m} = 4.446$ 

| Table         | 18.35   |
|---------------|---------|
| $^{18}Ne - 6$ | General |

| Reference   | Description                                                                                               |
|-------------|-----------------------------------------------------------------------------------------------------------|
| Reviews:    |                                                                                                           |
| 87LE1B      | Strong interaction studies via meson-nucleus reactions                                                    |
| 87RA1D      | Nuclear processes and accelerated particles in solar flares                                               |
| 93EN03      | Strengths of $\gamma$ -ray transitions in $A = 5-44$ nuclei                                               |
| Other artic | les:                                                                                                      |
| 87BE1I      | Search for a nucleon-participant multiplicity effect on anomalous fragment production                     |
| 87BU12      | An ISOL/post-accelerator facility for nuclear astrophysics at TRIUMF                                      |
| 87CO31      | Simple parametrization for low energy octupole modes of s-d shell nuclei                                  |
| 87KA39      | Delta-hole approach to pion double charge exchange (DCX) reactions                                        |
| 87PA1H      | Anomalous behavior of low energy analog double charge exchange                                            |
| 88MA1Q      | Identification of one glue-like mechanism of the $\Lambda$ -hyperon in hypernuclei                        |
| 88YU04      | Contribution of the 2nd kind of meson exchange current to ${}^{18}O(\pi^+, \pi^-){}^{18}Ne(g.s.)$         |
| 89BA2N      | Strangeness production in relativistic heavy-ion collisions                                               |
| 89CH1P      | 1s-0d effective interactions of isospin triplet & ${}^{18}$ Ne- ${}^{18}$ O Coulomb displacement energies |
| 89RA16      | Predxns. from systematics & tabulation of B(E2; $0^+_1 \rightarrow 2^+_1)$ values for even-even nucl.     |
| 89TR18      | 2-nucleon and 4-nucleon clusters in light & heavy nuclei                                                  |
| 90BR13      | Empir. p-n interactions: global trends, configuration sensitivity & $N = Z$ enhancements                  |
| 90BR26      | Shell-model calcs. of isospin-forbidden $\beta$ -delayed proton emission of isobaric analog state         |
| 90LO11      | Self-consistent calculations of light nuclei                                                              |
| 90MAZW      | Hybrid quark hadron model of DCX in the delta resonance region (A)                                        |
| 90PO04      | New method of determining masses & quantum characteristics of light nuclei                                |
| 92AV03      | The proton-neutron interaction & mass calcs. for nuclei with $Z > N$                                      |
| 94CI02      | Specific heat and shape transitions in light sd nuclei                                                    |

(A) denotes that only an abstract was available for this reference.

The half-life of <sup>18</sup>Ne is  $1672 \pm 8$  msec: see (78AJ03) and (83AD03). The decay is primarily to <sup>18</sup>F<sup>\*</sup> (0, 1.04, 1.70 MeV). In addition there is an extremely weak branch  $[(2.07 \pm 0.28) \times 10^{-3}\%]$  to <sup>18</sup>F<sup>\*</sup> (1.08 MeV)  $[J^{\pi} = 0^{-}; T = 0]$  (83AD03): see Table 18.33 for the parameters of the decay. The parity mixing in the <sup>18</sup>F<sup>\*</sup> (1.04, 1.08) 0<sup>+</sup>-0<sup>-</sup> doublet has been studied by (83AD03). It has been proposed as a probe of *T*-odd nuclear forces (92HE12). See also (82HE04). For the earlier work see (83AJ01, 87AJ02).

2. 
$${}^{12}C({}^{12}C, {}^{6}He){}^{18}Ne$$
  $Q_m = -22.913$ 

This reaction was studied at <sup>6</sup>He angles from 0° to 10° with a magnetic spectrometer (92HAZZ). New levels at  $E_x > 6$  MeV, including <sup>18</sup>Ne(6.15, 7.35 MeV), were found. Astrophysical implications were discussed.

3. 
$${}^{14}O(\alpha, \gamma){}^{18}Ne$$
  $Q_m = 5.112$ 

| $E_{\rm x} \; ({\rm MeV} \pm {\rm keV})$ | $J^{\pi}; T$  | $\tau$ or $\Gamma_{\rm c.m.}$              | Decay     | Reactions      |
|------------------------------------------|---------------|--------------------------------------------|-----------|----------------|
| 0                                        | $0^+; 1$      | $\tau_{1/2} = 1672 \pm 8 \text{ ms}$       | $\beta^+$ | 1,  5,  9,  10 |
| $1.8873\pm0.2$                           | $2^{+}$       | $\tau_{\rm m}=0.67\pm0.06~{\rm ps}$        | $\gamma$  | 5, 9, 10       |
| $3.3762\pm0.4$                           | $4^{+}$       | $\tau_{\rm m}=4.4\pm0.6~{\rm ps}$          | $\gamma$  | 5,  7,  8,  10 |
| $3.5763 \pm 2.0$                         | $0^{+}$       | $\tau_{\rm m} = 4 \pm 2 \ {\rm ps}$        | $\gamma$  | 5, 10          |
| $3.6164\pm0.6$                           | $2^{+}$       | $\tau_{\rm m} = 63^{+30}_{-20} {\rm \ fs}$ | $\gamma$  | 5, 10          |
| $4.519\pm8$                              | $1^{-}$       | $\Gamma \leq 20 \text{ keV}$               | (p)       | 5, 10          |
| $4.561\pm9$                              | $3^{+}$       |                                            |           | 5              |
| $4.590\pm8$                              | $0^{+}$       | $\Gamma \leq 20 \text{ keV}$               | (p)       | 5,  10         |
| $5.090\pm8$                              | $(2^+, 3^-)$  | $\Gamma = 40 \pm 20 \ \mathrm{keV}$        | (p)       | 5,  10         |
| $5.146\pm7$                              | $(2^+,  3^-)$ | $\Gamma = 25 \pm 15 \ \mathrm{keV}$        |           | 5, 10          |
| $5.453 \pm 10$                           |               | $\Gamma \leq 50 \text{ keV}$               |           | 10             |
| $6.15^{\rm \ b,c})$                      | $(1^{-})$     |                                            |           | 2, 3           |
| $6.297 \pm 10$                           | $(4^{+})$     | $\Gamma \leq 60 \ \mathrm{keV}$            |           | 5,  10         |
| $6.353 \pm 10$                           |               | $\Gamma \leq 60 \ \mathrm{keV}$            |           | 10             |
| $7.059 \pm 10$                           | $(1^-, 2^+)$  | $\Gamma = 180 \pm 50 \ \mathrm{keV}$       |           | 5              |
| $7.35^{\rm c})$                          |               |                                            |           | 2              |
| $7.713 \pm 10$                           |               | $\Gamma \leq 50 \text{ keV}$               |           | 5, 10          |
| $7.910\pm10$                             | $(1^-, 2^+)$  | $\Gamma \leq 50 \text{ keV}$               |           | 5              |
| $7.950\pm10$                             |               | $\Gamma \le 60 \text{ keV}$                |           | 10             |
| $8.086 \pm 10$                           |               | $\Gamma \leq 50 \ {\rm keV}$               |           | 5              |
| $8.500\pm30$                             |               | $\Gamma \le 120 \text{ keV}$               |           | 5              |
| $9.201\pm9$                              |               | $\Gamma \leq 50 \text{ keV}$               |           | 10             |

Table 18.36 Energy levels of  $^{18}$ Ne  $^{a}$ )

<sup>a</sup>) See also Table 18.37.

<sup>b</sup>) (90GAZW).

<sup>c</sup>) (92HAZZ). This work reports the observation of several new levels in the region  $E_{\rm x} > 6$  MeV.

The thermonuclear reaction rates for this reaction have been estimated (87WI11) using information from the isobaric analog <sup>18</sup>O. A new <sup>18</sup>Ne level at  $E_x = 6.15$  MeV (see <sup>16</sup>O(<sup>3</sup>He, n)) has been observed (90GAZW) which may play a role in <sup>14</sup>O +  $\alpha$  burning. See also (88CA1N).

4. 
$${}^{14}O(\alpha, p){}^{17}F$$
  $Q_m = 1.190$ 

This reaction is considered important in the generation of  $Z \ge 10$  nuclei from products in the hot CNO cycle. Microscopic multichannel calculations for this reaction are discussed in (88FU02, 89FU01).

| $E_{\rm i}~({\rm MeV})$ | $J_{\mathrm{i}}^{\pi}$ | $E_{\rm f}~({\rm MeV})$ | Branch (%)           | $\tau_{\rm m}~({\rm ps})$        |
|-------------------------|------------------------|-------------------------|----------------------|----------------------------------|
| 1.89                    | $2^{+}$                | 0                       | 100                  | $0.67\pm0.06$                    |
| 3.38                    | $4^{+}$                | 1.89                    | 100 <sup>b</sup> )   | $4.4\pm0.6$                      |
| 3.58                    | $0^{+}$                | 1.89                    | 100 <sup>c</sup> )   | $4\pm 2$                         |
| 3.62                    | $2^{+}$                | 0                       | $9\pm 2$             |                                  |
|                         |                        | 1.89                    | $91\pm2$ $^{\rm d})$ | $0.063\substack{+0.030\\-0.020}$ |

Table 18.37 Branching ratios and lifetimes of  $^{18}\mathrm{Ne}$  states  $^{\mathrm{a}})$ 

<sup>a</sup>) For references see Table 18.24 in (78AJ03).

<sup>b</sup>) Ground state decay is < 1%.

<sup>c</sup>) Ground state decay is < 5%.

<sup>d</sup>) The mixing ratio,  $\delta$ , is consistent with 0.

5. <sup>16</sup>O(<sup>3</sup>He, n)<sup>18</sup>Ne 
$$Q_{\rm m} = -3.196$$

See Table 18.38. See also (83AJ01).

Recent work reported in (91GA03) found that the 3<sup>+</sup> level in <sup>18</sup>Ne predicted by (88WI08) occurs at  $E_x = 4.561 \pm 0.009$  MeV. Astrophysical consequences are discussed. New levels in <sup>18</sup>Ne at  $E_x \ge 6$  MeV observed in <sup>16</sup>O(<sup>3</sup>He, n) were reported in (90GAZW). [See discussion under <sup>14</sup>O( $\alpha$ ,  $\gamma$ )<sup>18</sup>Ne.] See also (89GAZW, 90GAZR). For applied work related to this reaction see (91GU05, 92DI04)

6. 
$${}^{16}O(\alpha, nn){}^{18}Ne$$
  $Q_m = -23.773$ 

See (91GU05) for measurements at  $E_{\alpha} = 40$  MeV.

7. <sup>16</sup>O(<sup>10</sup>B, <sup>8</sup>Li)<sup>18</sup>Ne 
$$Q_{\rm m} = -18.951$$

At  $E(^{10}\text{B}) = 100$  MeV, the angular distribution to  $^{18}\text{Ne}^*(3.38)$  [(d<sub>5/2</sub>)<sup>2</sup><sub>4+</sub> state], which is preferentially populated, has been studied.  $^{18}\text{Ne}^*(1.89)$  is also observed (see (83AJ01). See also (83OS07).

8. 
$${}^{16}O({}^{12}C, {}^{10}Be){}^{18}Ne \qquad \qquad Q_{m} = -22.663$$

Measurements at  $E(^{12}C) = 480$  MeV are reported in (88KR11, 88ME10). The 4<sup>+</sup> level at  $E_x = 3.38$  MeV is observed.

| $E_{\rm x}  \left( {\rm MeV \pm keV} \right)$ |                | $\Gamma_{\rm c.m.}$ <sup>b</sup> ) | $J^{\pi \ \mathrm{a,b}})$ |
|-----------------------------------------------|----------------|------------------------------------|---------------------------|
| А                                             | В              | $(\mathrm{keV})$                   |                           |
| 0                                             |                |                                    | $0^{+}$                   |
| $1.8873\pm0.2$                                | $1.886 \pm 10$ |                                    | $2^{+}$                   |
| $3.3762\pm0.4$                                | $3.375\pm10$   |                                    | $4^{+}$                   |
| $3.5763 \pm 2.0$                              | $3.580\pm10$   |                                    | $0^{+}$                   |
| $3.6164\pm0.6$                                | $3.612\pm10$   |                                    | $2^{+}$                   |
| $4.513 \pm 13$                                | $4.522 \pm 10$ | $\leq 20$                          | $1^{-}$                   |
| $4.561\pm9$ $^{\rm c})$                       |                | $25^{\rm c})$                      | $3^{+ c})$                |
| $4.587 \pm 13$                                | $4.592 \pm 10$ | $\leq 20$                          | $0^{+}$                   |
| $5.075 \pm 13$                                | $5.099 \pm 10$ | $40\pm20$                          | $(2^+,  3^-)$             |
| $5.141 \pm 10$                                | $5.151 \pm 10$ | $25\pm15$                          | $(2^+,  3^-)$             |
|                                               | $5.453 \pm 10$ | $\leq 50$                          |                           |
| $6.291 \pm 30^{\rm ~d})$                      | $6.297 \pm 10$ | $\leq 60$                          | $(4^{+})$                 |
|                                               | $6.353 \pm 10$ | $\leq 60$                          |                           |
| $7.062 \pm 12$ $^{\rm a})$                    |                | $180\pm50$                         | $(1^-, 2^+)$              |
| $7.712\pm20$                                  | $7.713 \pm 10$ | $\leq 50$                          |                           |
| $7.915\pm12$ $^{\rm a})$                      |                | $\leq 50$                          | $(1^-, 2^+)$              |
|                                               | $7.949 \pm 10$ | $\leq 60$                          |                           |
| $8.100\pm14$ $^{\rm a})$                      |                | $\leq 50$                          |                           |
| $8.50\pm30$                                   |                | $\leq 120$                         |                           |
|                                               | $9.198 \pm 10$ | $\leq 50$                          |                           |

Table 18.38 States in  $^{18}\mathrm{Ne}$  from  $^{16}\mathrm{O}(^{3}\mathrm{He},\,\mathrm{n})$  and  $^{20}\mathrm{Ne}(\mathrm{p},\,\mathrm{t})$   $^{\mathrm{a}})$ 

A:  $^{16}\mathrm{O}(^{3}\mathrm{He},\,\mathrm{n})^{18}\mathrm{Ne:}$  for references see Table 18.23 (78AJ03) and (81NE09).

B:  ${}^{20}$ Ne(p, t) ${}^{18}$ Ne: (81NE09).

<sup>a</sup>) See also Table 18.23 in (78AJ03).

<sup>b</sup>) (81NE09).

 $^{\rm c})$  (91GA03). The width  $\Gamma=25~{\rm keV}$  is estimated from a Woods Saxon calculation.

<sup>d</sup>)  $\Gamma = 180 \pm 60$  keV.

9. <sup>18</sup>O(
$$\pi^+, \pi^-$$
)<sup>18</sup>Ne  $Q_{\rm m} = -6.101$ 

Angular distributions have been studied at  $E(\pi^+) = 164$  and 292 MeV [see (83AJ01)] and at 48.3 MeV (85AL15; to <sup>18</sup>Ne<sub>g.s.</sub>) and 100 to 292 MeV (85SE08; to <sup>18</sup>Ne<sub>g.s.</sub>). The excitation functions for production of <sup>18</sup>Ne\* (0, 1.89) have been measured for  $E(\pi^+) = 80$ to 292 MeV: see (83AJ01, 85SE08). See also (87AJ02).

The behavior of double charge exchange (DCX) cross sections at low energies (50  $\pm$  30 MeV) was reviewed in (87PA1H, 88SE1A, 89BA1R). See also the review of (89ST1H). Measurements at energies of 300–500 MeV above the  $\Delta(1232)$  resonance were reported in (89WI02). More recently a search for an  $\eta$  bound state in this reaction is described in (92JOZZ, 93JO03).

The contribution of the two-nucleon pion absorption emission mechanism is discussed in (90CH14). See also (89CH1O, 90CH1U) and see (89YU1A). A quark-antiquark annihilation mechanism is proposed in (89CH21). A two-amplitude model for the DCX energy dependence is described in (89FO02). In other recent work, the contribution of sequential charge exchange and delta-nucleon charge exchange is examined in (93GI03). Absorption contributions near  $T_{\pi} = 50$  MeV are evaluated by (92OS05). High energy DCX and isovector renormalization is calculated and compared with data in (93OS01). See also (92MA46) for a discussion of dibaryon effects.

10. <sup>20</sup>Ne(p, t)<sup>18</sup>Ne 
$$Q_{\rm m} = -20.022$$

Observed triton groups are displayed in Table 18.38 as are  $J^{\pi}$  derived from a DWBA analysis of angular distributions: The  $0_3^+$  state, identified at  $E_x = 4.59$  MeV, appears to have a largely  $s_{1/2}^2$  configuration based on its large downward shift with respect to the analog state in <sup>18</sup>O (81NE09).

11. <sup>20</sup>Ne(<sup>3</sup>He, n
$$\alpha$$
)<sup>18</sup>Ne  $Q_{\rm m} = -7.926$ 

See (91GU05).

# $^{18}$ Na

#### (not observed)

 $^{18}$ Na has not been observed; its atomic mass excess has been estimated to be 25.32 MeV (93AU05); it is then unbound with respect to proton emission by 1.6 MeV: see (78AJ03). See also (86AN07) and (83ANZQ).

### $^{18}$ Mg, etc.

### (not observed)

See (86AN07) and (83ANZQ). See also the results of calculations of  $\beta^+$ /electron capture half lives for neutron deficient nuclei in (93HI08).

| <sup>18</sup> O         |           |                                                               | <sup>18</sup> F        |                                           |                         | <sup>18</sup> Ne             |                                         |
|-------------------------|-----------|---------------------------------------------------------------|------------------------|-------------------------------------------|-------------------------|------------------------------|-----------------------------------------|
| $E_{\rm x}~({\rm MeV})$ | $J^{\pi}$ | $E_{\rm x} \ ({\rm MeV})$                                     | $J^{\pi}; T$           | $\Delta E_{\rm x} \ ({\rm MeV})^{\rm b})$ | $E_{\rm x}~({\rm MeV})$ | $J^{\pi}$                    | $\Delta E_{\rm x}$ (MeV) <sup>c</sup> ) |
| 0                       | $0^{+}$   | 1.04                                                          | $0^+; 1$               |                                           | 0                       | $0^{+}$                      |                                         |
| 1.98                    | $2^{+}$   | 3.06                                                          | $2^+; 1$               | +0.04                                     | 1.88                    | $2^{+}$                      | -0.09                                   |
| 3.55                    | $4^{+}$   | 4.65                                                          | $4^+; 1$               | +0.06                                     | 3.38                    | $4^{+}$                      | -0.18                                   |
| 3.63                    | $0^+$     | 4.75                                                          | $0^+; 1$               | +0.08                                     | 3.57                    | $0^{+}$                      | -0.06                                   |
| 3.92                    | $2^{+}$   | 4.96                                                          | $2^+; 1$               | +0.002                                    | 3.62                    | $2^{+}$                      | -0.30                                   |
| 4.46                    | 1-        | $\begin{cases} 5.60\\ 5.67 \end{cases}$                       | $1^-; 0+1 \\ 1^-; 0+1$ | +0.11 +0.18                               | 4.52                    | 1-                           | +0.06                                   |
| 5.10                    | $3^{-}$   | $\left\{ \begin{array}{c} 6.240 \\ 6.242 \end{array} \right.$ | $3^-; 0+1  3^-; 0+1$   | +0.10 +0.10                               | $5.09 \\ 5.15$          | $(2^+, 3^-)$<br>$(2^+, 3^-)$ | -0.01 + 0.05                            |
| 5.25                    | $2^{+}$   | $\begin{cases} 6.28\\ 6.39 \end{cases}$                       | $2^+; 1  2^+; 1$       | -0.01 + 0.09                              |                         |                              |                                         |
| 5.34                    | $0^+$     | 6.14                                                          | $0^+; 1$               | -0.24                                     | 4.59                    | $0^{+}$                      | -0.75                                   |
| 5.38                    | $3^{+}$   | 6.16                                                          | $3^+; 1$               | -0.26                                     |                         |                              |                                         |
| 5.53                    | $2^{-}$   | 6.64                                                          | $2^{-}; 1$             | +0.07                                     |                         |                              |                                         |
| 6.19                    | $1^{-}$   | 7.34                                                          | $1^{-}; 1$             | +0.10                                     |                         |                              |                                         |

 $\label{eq:alpha} \begin{array}{l} \mbox{Table 18.39} \\ \mbox{Isospin triplet components } (T=1) \mbox{ in } A=18 \mbox{ nuclei}^{\rm a}) \end{array}$ 

<sup>a</sup>) As taken from Tables 18.9, 18.24 and 18.36. <sup>b</sup>) Defined as  $E_{\rm x}({}^{18}{\rm F}) - E_{\rm x}({}^{18}{\rm O}) - 1.04$  MeV. <sup>c</sup>) Defined as  $E_{\rm x}({}^{18}{\rm Ne}) - E_{\rm x}({}^{18}{\rm O})$ .

| $^{18}\mathrm{N}$       |                    | <sup>18</sup> O   |                |  |
|-------------------------|--------------------|-------------------|----------------|--|
| $E_{\rm x}~({\rm MeV})$ | $J^{\pi}$          | $E_{\rm x}$ (MeV) | $J^{\pi}; T$   |  |
| 0                       | 1 <sup>- b</sup> ) |                   |                |  |
| 0.11                    | $(2^{-})^{b,c})$   | 16.4              | $2^{-}; 2$     |  |
| 0.59                    | $(2^{-})^{b})$     |                   |                |  |
| 0.75                    | $(3^{-})^{b,c})$   | 17.03             | $(3^{-}); 2$   |  |
|                         |                    | 17.4              | $1^{-};(2)$    |  |
|                         |                    | 18.7              | $(4^{-}); 2$   |  |
|                         |                    | 18.9              | $1^+; 2$       |  |
|                         |                    | 19.24             | (>2); 2        |  |
|                         |                    | 19.4              | $1^{-};(2)$    |  |
|                         |                    | 20.36             | $(4^{-}); 2$   |  |
|                         |                    | 21.42             | $(4^{-}); (2)$ |  |
|                         |                    | 22.40             | $4^{-}; 2$     |  |
|                         |                    | 27                | $1^{-};(2)$    |  |

Table 18.40 (T=2) states in  $^{18}\mathrm{N}$  and  $^{18}\mathrm{O}$   $^{\mathrm{a}})$ 

<sup>&</sup>lt;sup>a</sup>) As taken from Tables 18.4 and 18.9. <sup>b</sup>) Coulomb-shift computations (R. Sherr, private communication) for these four levels suggest that the analogs of the <sup>18</sup>N 1<sup>-</sup> and (2<sup>-</sup>) levels at  $E_{\rm x} = 0$  and 0.59 MeV are the <sup>18</sup>O 1<sup>(-)</sup> and (3,2)<sup>-</sup> levels at  $E_{\rm x} = 16.21$  and 16.95 MeV respectively.

<sup>&</sup>lt;sup>c</sup>) It is noted (A.H. Wapstra, private communication) that the combined evidence on these two levels and their analogs in  $^{18}\mathrm{O}$  is an argument for assignments of  $2^-$  and  $(3^-)$  in both nuclei, and in <sup>18</sup>O they should lie above an unobserved  $1^-$ ; 2 state near 16.3 MeV.

## References

(Closed October 31, 1994)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author's name and then by two additional characters. Most of the references appear in National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requests for more informative citations, we have, when possible, included up to 10 authors per paper and added the authors' initials.

- 37LI1A M.S. Livingston and H.A. Bethe, Rev. Mod. Phys. 9 (1937) 245
- 48HO1A W.F. Hornyak and T. Lauritsen, Rev. Mod. Phys. 20 (1948) 191
- 49LA1A T. Lauritsen, N.R.C. Preliminary Report No. 5 (1949)
- 50HO1A W.F. Hornyak, T. Lauritsen, P. Morrison and W.A. Fowler, Rev. Mod. Phys. 22 (1950) 291
- 52AJ38 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 24 (1952) 321
- 55AJ61 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 27 (1955) 77
- 59AJ76 F. Ajzenberg and T. Lauritsen, Nucl. Phys. 11 (1959) 1
- 62HI06 S. Hinds, H. Marchant and R. Middleton, Nucl. Phys. 38 (1962) 81
- 64BA16 J.K. Bair, C.M. Jones and H.B. Willard, Nucl. Phys. 53 (1964) 209
- 66LA04 T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1
- 68AJ02 F. Ajzenberg-Selove, Nucl. Phys. A114 (1968) 1
- 69BL18 J. Bleck, D.W. Haag and W. Ribbe, Nucl. Instrum. Methods Phys. Res. 67 (1969) 169
- 69CE01 J. Cerny, R.A. Mendelson, Jr., G.J. Wozniak, J.E. Esterl and J.C. Hardy, Phys. Rev. Lett. 22 (1969) 612
- 70AJ04 F. Ajzenberg-Selove, Nucl. Phys. A152 (1970) 1
- 71AJ02 F. Ajzenberg-Selove, Nucl. Phys. A166 (1971) 1
- 72AJ02 F. Ajzenberg-Selove, Nucl. Phys. A190 (1972) 1
- 72RO01 D.W.O. Rogers, J.G. Aitken and A.E. Litherland, Can. J. Phys. 50 (1972) 268
- 73JO13 P.L. Jolivette, Phys. Rev. C8 (1973) 1230
- 73OL02 J.W. Olness, E.K. Warburton and J.A. Becker, Phys. Rev. C7 (1973) 2239
- 73RO03 C. Rolfs, A.M. Charlesworth and R.E. Azuma, Nucl. Phys. A199 (1973) 257
- 73RO04 C. Rolfs, W.E. Kieser, R.E. Azuma and A.E. Litherland, Nucl. Phys. A199 (1973) 274
- 73RO06 C. Rolfs, I. Berka and R.E. Azuma, Nucl. Phys. A199 (1973) 306
- 74AJ01 F. Ajzenberg-Selove and F. Lauritsen, Nucl. Phys. A227 (1974) 1
- 74ES02 J.L. Escudie, R. Lombard, M. Pignanelli, F. Resmini and A. Tarrats, Phys. Rev. C10 (1974) 1645
- 74SE01 S. Sen, S.E. Darden, H.R. Hiddleston and W.A. Yoh, Nucl. Phys. A219 (1974) 429
- 75AJ02 F. Ajzenberg-Selove, Nucl. Phys. A248 (1975) 1
- 75BE38 W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann and L.W. Robinson, Phys. Lett. B58 (1975) 46
- 75SO05 K.H. Souw, J.C. Adloff, D. Disdier and P. Chevallier, Phys. Rev. C11 (1975) 1899
- 76AJ04 F. Ajzenberg-Selove, Nucl. Phys. A268 (1976) 1

- 76AL07 D.E. Alburger, Phys. Rev. C13 (1976) 2593
- 76CH24 L.C. Chen, Phys. Rev. C14 (1976) 2069
- 76FR13 J.M. Freeman, Nucl. Instrum. Methods Phys. Res. 134 (1976) 153
- 76LA13 R.D. Lawson, F.J.D. Serduke and H.T. Fortune, Phys. Rev. C14 (1976) 1245
- 77AJ02 F. Ajzenberg-Selove, Nucl. Phys. A281 (1977) 1
- 77FO10 H.T. Fortune and H.G. Bingham, Nucl. Phys. A293 (1977) 197
- 78AJ03 F. Ajzenberg-Selove, Nucl. Phys. A300 (1978) 1
- 78LEZA C.M. Lederer, V.S. Shirley, E. Browne, J.M. Dairiki, R.E. Doebler, A.A. Shihab-Eldin, L.J. Jardine, J.K. Tuli and A.B. Buyrn, Table of Isotopes 7th ed. (New York: John Wiley & Sons, 1978)
- 78SY01 T.J.M. Symons, L.K. Fifield, M.J. Hurst, F. Watt, C.H. Zimmerman and K.W. Allen, J. Phys. G4 (1978) 411
- 79AJ01 F. Ajzenberg-Selove, Nucl. Phys. A320 (1979) 1
- 79FE06 M.P. Fewell, A.M. Baxter, D.C. Kean, R.H. Spear and T.H. Zabel, Nucl. Phys. A321 (1979) 457
- 79KI12 W.E. Kieser, R.E. Azuma, I. Berka, K.P. Jackson, A.B. McDonald, H.B. Mak, and W. McLatchie, Nucl. Phys. A327 (1979) 172
- 79KI13 W.E. Kieser, R.E. Azuma and K.P. Jackson, Nucl. Phys. A331 (1979) 155
- 79KO26 L. Koester, K. Knopf and W. Waschkowski, Z. Phys. A292 (1979) 95
- 79LO01 H. Lorenz-Wirzba, P. Schmalbrock, H.P. Trautvetter, M. Wiescher, C. Rolfs and W.S. Rodney, Nucl. Phys. A313 (1979) 346
- 79MU05 G. Murillo, M. Fernandez, P. Perez, J. Ramirez, S.E. Darden, M.C. Cobian-Rozak and L. Montestruque, Nucl. Phys. A318 (1979) 352
- 79WO04 J.G. Woodworth, K.G. McNeill, J.W. Jury, R.A. Alvarez, B.L. Berman, D.D. Paul and P. Meyer, Phys. Rev. C19 (1979) 1667
- 80AJ01 F. Ajzenberg-Selove, Nucl. Phys. A336 (1980) 1
- 80MA26 H.-B. Mak, G.T. Ewan, H.C. Evans, J.D. MacArthur, W. McLatchie and R.E. Azuma, Nucl. Phys. A343 (1980) 79
- 80NA14 F. Naulin, C. Detraz, M. Bernas, D. Guillemaud, E. Kashy, M. Langevin, F. Pougheon, P. Roussel and M. Roy-Stephan, J. Phys. Lett. 41 (1980) L79
- 80VE1A W.J. Vermeer, M.Sc. Thesis, Auckland University (1980)
- M. Wiescher, H.W. Becker, J. Gorres, K.-U. Kettner, H.P. Trautvetter, W.E. Kieser, C. Rolfs,
   R.E. Azuma, K.P. Jackson and J.W. Hammer, Nucl. Phys. A349 (1980) 165
- 81AD05 E.G. Adelberger, M.M. Hindi, C.D. Hoyle, H.E. Swanson and R.D. von Lintig, Phys. Rev. C24 (1981) 313
- 81AJ01 F. Ajzenberg-Selove, Nucl. Phys. A360 (1981) 1
- 81CO13 M.E. Cobern, L.C. Bland, H.T. Fortune, G.E. Moore, S. Mordechai and R. Middleton, Phys. Rev. C23 (1981) 2387
- 81CU07 A. Cunsolo, A. Foti, G. Imme, G. Pappalardo, G. Raciti and N. Saunier, Phys. Rev. C24 (1981) 476
- 81GL02 C.W. Glover and K.W. Kemper, Nucl. Phys. A366 (1981) 469
- 81LE1A F. Leccia, P. Mennrath, A. Morales, J. Morales, R. Nunez-Lagos and M. Plo, An. Fis. A77 (1981) 114
- 81ME13 M.C. Mermaz, J. Barrette and H.E. Wegner, Phys. Rev. C24 (1981) 2148

- 81MUZQ S.F. Mughabghab, M. Divadeenam and N.E. Holden, Neutron Cross Sections, Vol. 1, Neutron Resonance Parameters and Thermal Cross Sections, Part A, Z=1-60 (New York: Academic Press, 1981)
- 81NE09 A.V. Nero, E.G. Adelberger and F.S. Dietrich, Phys. Rev. C24 (1981) 1864
- 82AB04 M.S. Abdel-Wahab, L. Potvin, R. Roy, P. Bricault, R. Larue, D. Pouliot, C. Rioux and R.J. Slobodrian, Can. J. Phys. 60 (1982) 1595
- 82AH07 G. Ahrens, W. Harfst, J.R. Kass, E.V. Mason, H. Schober, G. Steffens, H. Waeffler, P. Bock and K. Grotz, Nucl. Phys. A390 (1982) 486
- 82AJ01 F. Ajzenberg-Selove, Nucl. Phys. A375 (1982) 1
- 82AN12 M.S. Antony, J. Phys. G8 (1982) 1659
- 82AV1A Averyanoy, Golubev and Sadovi, Sov. J. Nucl. Phys. 35 (1982) 484
- 82BA03 K. Bangert, U.E.P. Berg, G. Junghans, R. Stock and K. Wienhard, Nucl. Phys. A376 (1982) 15
- 82BA06 G.C. Ball, T.K. Alexander, W.G. Davies, J.S. Forster and I.V. Mitchell, Nucl. Phys. A377 (1982) 268
- 82BA40 G.C. Ball, T.K. Alexander, W.G. Davies, J.S. Forster, I.V. Mitchell, J. Keinonen and H. B. Mak, Nucl. Phys. A386 (1982) 333
- 82BA49 Z. Basrak, R. Caplar, C. Beck, R.M. Freeman and F. Haas, Phys. Rev. C26 (1982) 1774
- 82BE29 H.W. Becker, W.E. Kieser, C. Rolfs, H.P. Trautvetter and M. Wiescher, Z. Phys. A305 (1982) 319
- 82CU01 A. Cunsolo, A. Foti, G. Imme, G. Pappalardo, G. Raciti and N. Saunier, Phys. Lett. B112 (1982) 121
- 82DE30 L.C. Dennis, K.M. Abdo, A.D. Frawley and K.W. Kemper, Phys. Rev. C26 (1982) 981
- 82DI11 G.U. Din, J.A. Cameron, V. Janzen and R. Schubank, Nucl. Phys. A385 (1982) 256
- 82EL08 K. Elsener, W. Gruebler, V. Konig, C. Schweizer, P.A. Schmelzbach, J. Ulbricht, F. Sperisen and M. Merdzan, Phys. Lett. B117 (1982) 167
- 82FI10 L.K. Fifield, J.L. Durell, M.A.C. Hotchkis, J.R. Leigh, T.R. Ophel and D.C. Weisser, Nucl. Phys. A385 (1982) 505
- 82FR15 R.M. Freeman, P.A. DeYoung, L.J. Satkowiak, M.A. Xapsos and J.J. Kolata, Nucl. Phys. A385 (1982) 516
- 82GL08 C. Glashausser, R. de Swiniarski, K. Jones, S. Nanda, F.T. Baker, M. Grimm, V. Penumetcha,
   A. Scott, G. Adams, G. Igo et al, Phys. Lett. B116 (1982) 215
- 82HE04 A.M. Hernandez and W.W. Daehnick, Phys. Rev. C25 (1982) 2957
- 82HE07 B. Heusch, C. Beck, J.P. Coffin, P. Engelstein, R.M. Freeman, G. Guillaume, F. Haas and P. Wagner, Phys. Rev. C26 (1982) 542
- 82HU06 M. Hugi, J. Lang, R. Muller, J. Sromicki, E. Ungricht, K. Bodek, L. Jarczyk, B. Kamys, A. Strzalkowski and H. Witala, Phys. Rev. C25 (1982) 2403
- 82KO24 J.J. Kolata, E.G. Funk and J.D. Hinnefeld, Phys. Rev. C26 (1982) 1750
- 82KR05 H. Krawinkel, H.W. Becker, L. Buchmann, J. Gorres, K.U. Kettner, W.E. Kieser, R. Santo, P. Schmalbrock, H.P. Trautvetter, A. Vlieks et al, Z. Phys. A304 (1982) 307
- 82MA39 D.W. MacArthur, F.P. Calaprice, A.L. Hallin, M.B. Schneider and D.F. Schreiber, Phys. Rev. C26 (1982) 1753
- 82MO09 R. Moro, A. Brondi, A. D'Onofrio, V. Roca, M. Romano, F. Terrasi and B. Delaunay, Lett. Nuovo Cim. 33 (1982) 407
- B.E. Norum, M.V. Hynes, H. Miska, W. Bertozzi, J. Kelly, S. Kowalski, F.N. Rad, C.P. Sargent,
   T. Sasanuma, W. Turchinetz et al, Phys. Rev. C25 (1982) 1778

- 82OL01 J.W. Olness, E.K. Warburton, D.E. Alburger, C.J. Lister and D.J. Millener, Nucl. Phys. A373 (1982) 13
- 82OL02 J.W. Olness, E.K. Warburton and D.E. Alburger, Nucl. Phys. A378 (1982) 539
- 82PI06 E. Piasetzky, A. Altman, J. Lichtenstadt, A.I. Yavin, D. Ashery, W. Bertl, L. Felawka, H.K.
   Walter, F.W. Schleputz, R.J. Powers et al, Phys. Rev. C26 (1982) 2702
- 82RA1A J. Rapaport, Phys. Rep. 87 (1982) 25
- 82RE14 K.E. Rehm, W. Henning, J.R. Erskine and D.G. Kovar, Phys. Rev. C26 (1982) 1010
- 82VE05 W.J. Vermeer and A.R. Poletti, J. Phys. G8 (1985) 851
- 82VE13 J. Vernotte, G. Berrier-Ronsin, J. Kalifa and R. Tamisier, Nucl. Phys. A390 (1982) 285
- 83AD03 E.G. Adelberger, M.M. Hindi, C.D. Doyle, H.E. Swanson, R.D. von Lintig and W.C. Haxton, Phys. Rev. C27 (1983) 2833
- 83AJ01 F. Ajzenberg-Selove, Nucl. Phys. A392 (1983) 1
- 83AN05 B.D. Anderson, A. Fazely, R.J. McCarthy, P.C. Tandy, J.W. Watson, R. Madey, W. Bertozzi,
   T.N. Buti, J.M. Finn, J. Kelly et al, Phys. Rev. C27 (1983) 1387
- 83ANZQ Y. Ando, M. Uno and M. Yamada, JAERI-M-83-025 (1983)
- 83AR1B K.P. Artemov, V.Z. Gol'dberg, M.S. Golovkov, B.G. Novatskii, I.P. Petrov, V.P. Rudakov, I.N. Serikov and V.A. Timofeev, Sov. J. Nucl. Phys. 37 (1983) 805
- Bar, B.F. Geesaman, R.J. Holt, H.E. Jackson, J.R. Specht, K.E. Stephenson, R.E. Segel,
   P. Zupranski, H.W. Baer, J.D. Bowman et al, Phys. Rev. Lett. 50 (1983) 482
- 83BE36 D. Bender, A. Richter, E. Spamer, E.J. Ansaldo, C. Rangacharyulu and W. Knupfer, Nucl. Phys. A406 (1983) 504
- 83BI03 J. Billowes, J. Asher, D.W. Bennett, J.A.G. de Raedt, M.A. Grace and B.J. Murphy, J. Phys. G9 (1983) 293
- 83CA21 W.N. Catford, E.F. Garman, D.M. Pringle and L.K. Fifield, Nucl. Phys. A407 (1983) 255
- 83CU02 A. Cunsolo, A. Foti, G. Imme, G. Pappalardo, G. Raciti and N. Saunier, Phys. Lett. B124 (1983) 439
- 83CU03 A. Cunsolo, A. Foti, G. Imme, G. Pappalardo, G. Raciti and N. Saunier, Lett. Nuovo Cim. 37 (1983) 193
- 83DU13 G.G. Dussel, A.O. Gattone and E.E. Maqueda, Phys. Rev. Lett. 51 (1983) 2366
- 83EN02 F. Entezami, J.D. Brown, K.S. Dhuga, O. Karban, J.M. Nelson and S. Roman, Nucl. Phys. A405 (1983) 69
- 83ET02 M.C. Etchegoyen, D. Sinclair, A. Etchegoyen and E. Belmont Moreno, Nucl. Phys. A402 (1983)
   87
- 83GA02 M. Gai, M. Ruscev, A.C. Hayes, J.F. Ennis, R. Keddy, E.C. Schloemer, S.M. Sterbenz and D.A. Bromley, Phys. Rev. Lett. 50 (1983) 239
- 83GR10 E.E. Gross, J.R. Beene, K.A. Erb, M.P. Fewell, D. Shapira, M.J. Rhoades-Brown, G.R. Satchler and C.E. Thorn, Nucl. Phys. A401 (1983) 362
- 83GR28 E.E. Gross and M.P. Fewell, Nucl. Phys. A411 (1983) 329
- 83HA1B M.J. Harris, W.A. Fowler, G.R. Caughlin and B.A. Zimmerman, Ann. Rev. Astron. Astrophys. 21 (1983) 165
- 83JA09 L. Jarczyk, B. Kamys, Z. Rudy, A. Strzalkowski, H. Witala, M. Hugi, J. Lang, R. Muller, J. Sromicki and H.H. Wolter. Phys. Rev. C28 (1983) 700
- 83KI13 M.M. King Yen, S.T. Hsieh and D.S. Chuu, J. Phys. G9 (1983) 1347
- 83LE03 P.M. Lewis, A.K. Basak, J.D. Brown, P.V. Drumm, O. Karban, E.C. Pollacco and S. Roman, Nucl. Phys. A395 (1983) 204

- 83LE08 F. Leccia, Ph. Hubert, P. Mennrath, A. Morales, J. Morales, R. Nunez-Lagos and M. Plo, Nuovo Cim. A74 (1983) 28
- 83MA16 C.J. Martoff, J.A. Bistirlich, C.W. Clawson, K.M. Crowe, M. Koike, J.P. Miller, S.S. Rosenblum, W.A. Zajc, H.W. Baer, A.H. Wapstra et al, Phys. Rev. C27 (1983) 1621
- 83MO16 R. Moro, A. Brondi, A. D'Onofrio, V. Roca, M. Romano, F. Terrasi, B. Delaunay and H. Dumont, Lett. Nuovo Cim. 38 (1983) 7
- 83OS07 A. Osman and S.S. Abdel-Aziz, Acta Phys. Hung. 54 (1983) 9
- 83PU01 G.D. Putt, L.K. Fifield, M.A.C. Hotchkis, T.R. Ophel and D.C. Weisser, Nucl. Phys. A399 (1983) 190
- B. Pugh, W. Bertozzi, T.N. Buti, J.M. Finn, C. Hyde, J.J. Kelly, M.A. Kovash, B. Murdock,
   B.D. Anderson, A.R. Baldwin et al, Bull. Am. Phys. Soc. 28 (1983) 690
- 83RU09 K. Rusek, Z. Moroz, R. Caplar, P. Egelhof, K.-H. Mobius, E. Steffens, I. Koenig, A. Weller and D. Fick, Nucl. Phys. A407 (1983) 208
- 83SN03 K.A. Snover, E.G. Adelberger, P.G. Ikossi and B.A. Brown, Phys. Rev. C2 (1983) 1837
- 83WA05 C.E. Waltham, S.H. Chew, J. Lowe, J.M. Nelson and A.R. Barnett, Nucl. Phys. A395 (1983) 119
- 84AJ01 F. Ajzenberg-Selove, Nucl. Phys. A413 (1984) 1
- 84AL20 A. Altman, D. Ashery, E. Piasetzky, J. Lichtenstadt, A.I. Yavin, W. Bertl, L. Felawka, H.K. Walter, R.J. Powers, R.G. Winter et al, Phys. Lett. B144 (1984) 337
- 84AS03 J. Asher, D.W. Bennett, H.A. Doubt, M.A. Grace, T.J. Moorhouse and B.J. Murphy, J. Phys. G10 (1984) 1079
- 84AS05 D. Ashery, D.F. Geesaman, R.J. Holt, H.E. Jackson, J.R. Specht, K.E. Stephenson, R.E. Segel,
   P. Zupranski, H.W. Baer, J.D. Bowman et al, Phys. Rev. C30 (1984) 946
- 84BA24 F.C. Barker, Aust. J. Phys. 37 (1984) 17
- 84BH01 R.K. Bhowmik, W.D.M. Rae and B.R. Fulton, Phys. Lett. B136 (1984) 149
- 84BU1A Burks et al, Bull. Amer. Phys. Soc. 29 (1984) 1026
- 84CO05 J. Cook, L.C. Dennis, K.W. Kemper, T.R. Ophel, A.F. Zeller, C.F. Maguire and Z. Kui, Nucl. Phys. A415 (1984) 114
- 84DE1A P. DeBievre, M. Gallet, N.E. Holden and I.L. Barnes, J. Phys. Chem. Ref. Data 13 (1984) 809
- 84DE1B D.M. De Castro Rizzo, E. Bozek, S. Cavallaro, B. Delaunay, J. Delaunay, M.G. Saint-Laurent and F. Terrasi, Nucl. Phys. A427 (1984) 151
- 84FR14 R. Frick, H. Clement, G. Graw, P. Schiemenz, N. Seichert and Sun Tsu-Hsun, Z. Phys. A319 (1984) 133
- 84GI10 R. Gilman, H.T. Fortune, L.C. Bland, R.R. Kiziah, C.F. Moore, P.A. Seidl, C.L. Morris and W.B. Cottingame, Phys. Rev. C30 (1984) 962
- 84KE04 E. Kerkhove, H. Ferdinande, R. van de Vyver, P. Berkvens, P. van Otten, E. van Camp and D. Ryckbosch, Phys. Rev. C29 (1984) 2047
- 84MA32 C.F. Maguire, G.L. Bomar, L. Cleeman, J.H. Hamilton, R.B. Piercey, J.C. Peng, N. Stein and P.D. Bond, Phys. Rev. Lett. 53 (1984) 548
- 84MO06 Z. Moroz, K. Rusek, P. Egelhof, S. Kossionides, K.-H. Mobius, G. Tungate, E. Steffens, G. Grawert, I. Koenig and D. Fick, Nucl. Phys. A417 (1984) 498
- $84\mathrm{MO08}$   $\,$  S. Mordechai and H.T. Fortune, Phys. Rev. C29 (1984) 1765  $\,$
- 84MO28 S. Mordechai and H.T. Fortune, Phys. Rev. C30 (1984) 1924
- 84MU27 J.A. Musser and J.D. Stevenson, Phys. Rev. Lett. 53 (1984) 847
- 84NE1A Nemets, Rudchik and Chuvilski, 34th. Meeting on Nuclear Spectroscopy and the Structure of the At. Nucl., Alma Ata, USSR, 17-20 April 1984 (Nauka, 1984) 334

- 84OE02 W. Oelert, G. Palla, B. Rubio, M.G. Betigeri, C. Mayer-Boricke, P. Turek and H.T. Fortune, Phys. Rev. C30 (1984) 1378
- 84RA07 W.D.M. Rae and R.K. Bhowmik, Nucl. Phys. A420 (1984) 320
- 84RA17 W.D.M. Rae and R.K. Bhowmik, Nucl. Phys. A427 (1984) 142
- 84RA22 J. Rapaport, C. Gaarde, J. Larsen, C. Goulding, C.D. Goodman, C. Foster, D.J. Horen, T. Masterson, E. Sugarbaker and T.N. Taddeucci, Nucl. Phys. A431 (1984) 301
- 84SA28 V.S. Sadkovsky, G.A. Feofilov, A.E. Denisov, R.P. Kolalis and L. Peres Tamaio, Izv. Akad. Nauk SSSR Ser. Fiz. 48 (1984) 995
- 84SE1A Seestrom-Morris et al, Tenth Int. Conf. on Particles and nuclei, Heidelberg, 30 July-3 Aug. 1984 (Organizing Committee, 1984) F1
- 84TA08 T. Tachikawa, N. Kato, H. Fujita, K. Kimura, T. Sugimitsu, K. Morita, K. Anai, T. Inoue, H. Inoue, Y. Nakajima et al, Phys. Lett. B139 (1984) 267
- 84TA1A Tacik et al, Tenth Int. Conf. on Paricles and nuclei, Heidelberg, 30 July-3 Aug. 1984 (Organizing Committee, 1984) F13
- 85AJ01 F. Ajzenberg-Selove, Nucl. Phys. A449 (1985) 1
- A. Altman, R.R. Johnson, U. Wienands, N. Hessey, B.M. Barnett, B.M. Forster, N. Grion, D. Mills, F.M. Rozon, G.R. Smith et al, Phys. Rev. Lett. 55 (1985) 1273
- 85AN17 M.S. Antony, J. Britz, J.B. Bueb and V.B. Ndocko-Ndongue, Nuovo Cim. A88 (1985) 265
- 85BA1A J.M. Bang, F.G. Gareev, W.T. Pinkston and J.S. Vaagen, Phys. Rep. 125 (1985) 253
- B.M. Barnett, W. Gyles, R.R. Johnson, R. Tacik, K.L. Erdman, H.W. Roser, D.R. Gill, E.W.
   Blackmore, S. Martin, C.A. Wiedner et al, Phys. Lett. B156 (1985) 172
- 85BE40 C. Beck, F. Haas, R.M. Freeman, B. Heusch, J.P. Coffin, G. Guillaume, F. Rami and P. Wagner, Nucl. Phys. A442 (1985) 320
- 85BI03 M. Bini, T.F. Fazzini, G. Poggi and N. Taccetti, Phys. Rev. Lett. 55 (1985) 795
- 85BR15 B.A. Brown, B.H. Wildenthal, C.F. Williamson, F.N. Rad, S. Kowalski, H. Crannell and J.T. O'Brien, Phys. Rev. C32 (1985) 1127
- 85BR29 B.A. Brown and B.H. Wildenthal, At. Data Nucl. Data Tables 33 (1985) 347
- 85CA01 N. Carlin Filho, M.M. Coimbra, J.C. Acquadro, R. Liguori Neto, E.M. Szanto, E. Farrelly-Pessoa and A. Szanto de Toledo, Phys. Rev. C31 (1993) 152
- 85CA41 G.R. Caughlan, W. A. Fowler, M.J. Harris and B.A. Zimmerman, At. Data Nucl. Data Tables 32 (1985) 197
- 85DE1A C. Detraz, J. Phys. Soc. Jpn. 54 (1985) 27
- 85DI16 W.R. Dixon, D.W.O. Rogers, R.S. Storey and A.A. Pilt, Phys. Rev. C32 (1985) 2205
- 85DY05 P. Dyer, D. Bodansky, D.D. Leach, E.B. Norman and A.G. Seamster, Phys. Rev. C32 (1985) 1873
- 85EV03 H.C. Evans, G.T. Ewan, S.-P. Kwan, J.R. Leslie, J.D. MacArthur, H.-B. Mak, W. McLatchie,
   S.A. Page, P. Skensved, S.-S. Wang et al, Phys. Rev. Lett. 55 (1985) 791
- 85FO11 H.T. Fortune, L.C. Bland and W.D.M. Rae, J. Phys. G11 (1985) 1175
- 85GR1B C. Grama, N. Grama and Gh. Voiculescu, Rev. Roum. Phys. 30 (1985) 23
- 85HA11 J.S. Hanspal, R.J. Griffiths and N.M. Clarke, Phys. Rev. C31 (1985) 1138
- 85JO1A P.L. Jolivette, M.J. Honkanen, M. Young and E. Moser, Bull. Am. Phys. Soc. 30 (1985) 1248
- E. Kerkhove, R. van de Vyver, H. Ferdinande, D. Ryckbosch, P. van Otten, P. Berkvens and
   E. van Camp, Phys. Rev. C32 (1985) 368
- 85KE1C J. Keinonen, AIP Conf. Proc. 125 (1985) 557

- 85KO04 D. Konnerth, W. Trombik, K.G. Bernhardt, K.A. Eberhard, R. Singh, A. Strzalkowski and W. Trautmann, Nucl. Phys. A436 (1985) 538
- M. Langevin, E. Quiniou, M. Bernas, J. Galin, J.C. Jacmart, F. Naulin, F. Pougheon, R. Anne,
   C. Detraz, D. Guerreau et al, Phys. Lett. B150 (1985) 71
- 85MO20 S. Mordechai and H.T. Fortune, Phys. Rev. C32 (1985) 2207
- 85OH04 S. Ohkubo and Y. Ishikawa, Phys. Rev. C31 (1985) 1560
- 85PO10 N.A.F.M. Poppelier, L.D. Wood and P.W.M. Glaudemans, Phys. Lett. B157 (1985) 120
- 85RO01 G. Rosner, J. Pochodzalla, B. Heck, G. Hlawatsch, A. Miczaika, H.J. Rabe, R. Butsch, B. Kolb,
   B. Sedelmeyer, Phys. Lett. B150 (1985) 87
- P.A. Seidl, C.F. Moore, S. Mordechai, R. Gilman, K.S. Dhuga, H.T. Fortune, J.D. Zumbro,
   C.L. Morris, J.A. Faucett and G.R. Burleson, Phys. Lett. B154 (1985) 255
- 85SM04 A.E.Smith, S.C.Allcock, W.D.M.Rae, B.R.Fulton and D.W.Banes, Nucl. Phys. A441 (1985) 701
- 85TH03 J. Thomas, Y.T. Chen, S. Hinds, K. Langanke, D. Meredith, M. Olson and C.A. Barnes, Phys. Rev. C31 (1985) 1980
- 85VO12 K.F. von Reden, W.W. Daehnick, S.A. Dytman, R.D. Rosa, J.D. Brown, C.C. Foster, W.W. Jacobs and J.R. Comfort, Phys. Rev. C32 (1985) 1465
- 85WA02 A.H. Wapstra and G. Audi, Nucl. Phys. A432 (1985) 1
- 85WU03 J.Q. Wu, G. Bertsch and A.B. Balantekin, Phys. Rev. C32 (1985) 1432
- 86AD1A E. G. Adelberger, AIP Conf. Proc. 150 (1986) 1177
- 86AJ01 F. Ajzenberg-Selove, Nucl. Phys. A449 (1986) 1
- 86AJ04 F. Ajzenberg-Selove, Nucl. Phys. A460 (1986) 1
- A. Altman, D. Ashery, E. Piasetzky, J. Lichtenstadt, A.I. Yavin, W. Bertl, L. Felawka, H.K.
   Walter, R.J. Powers, R.G. Winter and J.v.d. Pluym, Phys. Rev. C34 (1986) 1757
- 86AN07 M.S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables 34 (1986) 279
- 86AN1E B.D. Anderson, J.W. Watson and R. Madey, AIP Conf. Proc. 142 (1986) 155
- 86BR04 G. Bruge, A. Chaumeaux, P. Birien, D.M. Drake, D. Garreta, S. Janouin, D. Legrand, M.C. Lemaire, B. Mayer, J. Pain et al, Phys. Lett. B169 (1986) 14
- 86CH29 A.E. Champagne and M.L. Pitt, Nucl. Phys. A457 (1986) 367
- 86CO1F D.D. Cohen, A. Katsaros and S. Frisken, 11th Ainse Nucl. Phys. Conf., Melbourne, Australia, 1986 (Australian Inst. Nucl. Sci. & Eng., 1986) 16
- 86CU02 B. Cujec, B. Dasmahapatra, Q. Haider, F. Lahlou and R.A. Dayras, Nucl. Phys. A453 (1986) 505
- 86DO10 A.J.H. Donne, G. van Middelkoop, L. Lapikas, T. Suzuki, P.W.M. Glaudemans and D. Zwarts, Nucl. Phys. A455 (1986) 453
- 86DR03 P.V. Drumm, O. Karban, A.K. Basak, P.M. Lewis, S. Roman and G.C. Morrison, Nucl. Phys. A448 (1986) 93
- 86DU07 J.P. Dufour, R. Del Moral, A. Fleury, F. Hubert, D. Jean, M.S. Pravikoff, H. Delagrange, H. Geissel and K.-H. Schmidt, Z. Phys. A324 (1986) 487
- 86FUZV H. Fujita, N. Kato, T. Tachikawa, T. Sugimitsu, K. Kimura, Y. Ikeda, H. Yamaguchi, Y. Nakajima, Y. Sugiyama, Y. Tomita et al, Proc. Int. Nucl. Phys. Conf., Harrogate, UK (1986) 317
- 86GA13 E.N. Gazis, C.T. Papadopoulos, R. Vlastou and A.C. Xenoulis, Phys. Rev. C34 (1986) 872
- 86GL02 K. Glasner, L. Ricken and E. Kuhlmann, Nucl. Phys. A452 (1986) 150
- 86HA1H A.A. Haddou, M. Berrada and G. Paic, J. Radioanal. & Nucl. Chem. Artic. 102 (1986) 159
- 86HA1I W.C. Haxton, AIP Conf. Proc. 150 (1986) 738

- 86HA1J A.C. Hayes, D.A. Bromley and D.J. Millener, unpublished manuscript
- 86HEZW R. Helmer, W.P. Alford, A. Celler, O. Hausser, K. Hicks, K.P. Jackson, S. Yen, R. Henderson, C.A. Miller, A. Yavin et al, Bull. Am. Phys. Soc. 31 (1986) 1214
- 86IC01 H. Ichihara and H. Yoshida, Nucl. Phys. A448 (1993) 546
- 86IS09 B.S. Ishkhanov, I.M. Kapitonov and V.I. Mokeev, Izv. Akad. Nauk SSSR Ser. Fiz. 50 (1986)
   1974; Bull. Russ. Acad. Sci. 50:10 (1986) 101
- 86KA1C M. Kamimura, Y. Sakuragi, M. Yahiro and M. Tanifuji, J. Phys. Soc. Jpn. Suppl. 55 (1986) 205
- 86KA36 Y. Kadota, K. Ogino, K. Obori, Y. Taniguchi, T. Tanabe, M. Yasue and J. Schimizu, Nucl. Phys. A458 (1986) 523
- 86KE04 J.J. Kehayias, R.D. Bent, M.C. Green, M. Hugi, H. Nann and T.E. Ward, Phys. Rev. C33 (1986) 1388
- 86KE05 J. Kelly, W. Bertozzi, T.N. Buti, J.M. Finn, F.W. Hersman, M.V. Hynes, C. Hyde-Wright,
   B.E. Norum, A.D. Bacher, G.T. Emery et al, Phys. Lett. B169 (1986) 157
- 86KE1C J.J. Kelly, AIP Conf. Proc. 142 (1986) 27
- 86KO10 P.E. Koehler, H.D. Knox, D.A. Resler, R.O. Lane and G.F. Auchampaugh, Nucl. Phys. A453 (1986) 429
- 86KO1E H. Koch, AIP Conf. Proc. 150 (1986) 490
- 86KO22 Th. Kohler, P. Blum, G. Buche, A.D. Hancock, H. Koch, A. Kreissl, H. Poth, U. Raich, D. Rohmann, G. Backenstoss et al, Phys. Lett. B176 (1986) 327
- 86KR04 A. Krasznahorkay, T. Kibedi and Zs. Dombradi, Z. Phys. A323 (1986) 125
- 86LA07 K. Langanke, M. Wiescher, W.A. Fowler and J. Gorres, Astrophys. J. 301 (1986) 629
- M.-C. Lemaire, P. Birien, G. Bruge, D.M. Drake, D. Garreta, S. Janouin, D. Legrand, B. Mayer,
   J. Pain, J.C. Peng et al, Nucl. Phys. A456 (1986) 557
- 86MA13 J.F. Mateja, A.D. Frawley, R.A. Parker and K. Sartor, Phys. Rev. C33 (1986) 1307
- 86MA32 N. Matsuoka, H. Sakai, T. Saito, K. Hosono, M. Kondo, H. Ito, K. Hatanaka, T. Ichihara, A. Okihana, K. Imai et al, Nucl. Phys. A455 (1986) 413
- 86MA48 D.M. Manley, B.L. Berman, W. Bertozzi, J.M. Finn, F.W. Hersman, C.E. Hyde-Wright, M.V. Hynes, J.J. Kelly, M.A. Kovash, S. Kowalski et al, Phys. Rev. C34 (1986) 1214
- 86OU01 S. Ouichaoui, H. Beaumevielle, N. Bendjaballah and A. Genoux-Lubain, Nuovo Cim. A94 (1986) 133
- F. Pougheon, D. Guillemaud-Mueller, E. Quiniou, M.G. Saint Laurent, R. Anne, D. Bazin, M. Bernas, D. Guerreau, J.C. Jacmart, S.D. Hoath et al, Europhys. Lett. 2 (1986) 505
- 86SE1B N. Seichert, W. Assmann, H. Clement, G. Graw, C. Hategan, H. Kader, F. Merz and P. Schiemenz, J. Phys. Soc. Jpn. Suppl. 55 (1986) 646
- 86SE1C H.M. Sen Gupta, M.A. Zaman, F. Watt and M.J. Hurst, Nuovo Cim. A93 (1986) 217
- 86SM01 M.J. Smithson, D.L. Watson and H.T. Fortune, Phys. Rev. C33 (1986) 509
- 86ST1C S.M. Sterbenz, M. Gai, J.F. Shriner, Jr., P.D. Cottle, D.A. Bromley, M. Morando and R.A. Ricci, Bull. Am. Phys. Soc. 31 (1986) 839
- 86TA1B Tanaka et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 764
- 86TAZO T. Tachikawa, N. Kato, H. Fujita, K. Kimura, T. Sugimitsu, K. Anai, Y. Nakajima, K. Morita,
   M. Tanaka and S. Kubono, Proc. Int. Nucl. Phys. Conf., Harrogate, UK (1986) 313
- 86TH01 J. Thomas, Y.T. Chen, S. Hinds, D. Meredith and M. Olson, Phys. Rev. C33 (1986) 1679
- 86VI09 D.J. Vieira, J.M. Wouters, K. Vaziri, R.H. Kraus, Jr., H. Wollnik, G.W. Butler, F.K. Wohn and A.H. Wapstra, Phys. Rev. Lett. 57 (1986) 3253

- 86VO10 K.F. von Reden, W.W. Daehnick, S.A. Dytman, R.D. Rosa, J.D. Brown, C.C. Foster, W.W. Jacobs and J.R.Comfort, Phys. Rev. C34 (1986) 375
- 86VO12 G. Vourvopoulos, C.F. Maguire, Z. Kui, LC. Dennis, K.W. Kemper and D.P. Sanderson, Phys. Rev. C34 (1986) 2180
- 86YA12 T. Yamaya, J.I. Hirota, K. Takimoto, S. Shimoura, A. Sakaguchi, S. Kubono, M. Sugitani, S. Kato, T. Suehiro and M. Fukada, Phys. Rev. C34 (1986) 2369
- 87AB03 H. Abele, H.J. Hauser, A. Korber, W. Leitner, R. Neu, H. Plappert, T. Rohwer, G. Staudt, M. Strasser, S. Welte et al, Z. Phys. A326 (1987) 373
- 87AD04 S. Adachi and H. V. Von Geramb, Nucl. Phys. A470 (1987) 461
- 87AJ02 F. Ajzenberg-Selove, Nucl. Phys. A475 (1987) 1
- 87AN1A R. Anne, D. Bazin, A.C. Mueller, J.C. Jacmart and M. Langevin, Nucl. Instrum. Methods Phys. Res. A257 (1987) 215
- 87AS05 H.J. Assenbaum, K. Langanke and C. Rolfs, Z. Phys. A327 (1987) 461
- 87BE1F B. Berthier, R. Boisgard, J. Julien, J.M. Hisleur, R. Lucas, C. Mazur, C. Ngô, M. Ribrag and C. Cerruti, Phys. Lett. B193 (1987) 417
- 87BE1H B. Bézard, J.P. Baluteau, A. Marten and N. Coron, Icarus 72 (1987) 623
- M. Bedjidian, D. Contardo, E. Descroix, S. Gardien, J.Y. Grossiord, A. Guichard, M. Gusakow,
   R. Haroutunian, M. Jacquin, J.R. Pizzi et al, Z. Phys. A327 (1987) 337
- 87BH1A K. Bharuth-Ram, S. Connell, J.P.F. Sellschop, M.C. Stemmet, H. Appel and G.M. Then, Hyperfine Interactions 34 (1987) 189
- 87BL18 R. Blumel and K. Dietrich, Nucl. Phys. A471 (1987) 453
- 87BO16 N. Bordes, G. Blondiaux, C.J. Maggiore, M. Valladon, J.L. Debrun, R. Coquille and M. Gauneau, Nucl. Instrum. Methods Phys. Res. B24-25 (1987) 722
- 87BR30 B.A. Brown and B.H. Wildenthal, Nucl. Phys. A474 (1987) 290
- 87BU07 M. Bürgel, H. Fuchs, H. Homeyer, G. Ingold, U. Jahnke and G. Thoma, Phys. Rev. C36 (1987)
   90
- 87BU12 L. Buchmann, J.M. D'Auria, J.D. King, G. Mackenzie, H. Schneider, R.B. Moore and C. Rolfs, Nucl. Instrum. Methods Phys. Res. B26 (1987) 151
- 87BU1E N.T. Burtebaev, A.D. Duisebaev, V.S. Sadkovskii and G.A. Feofilov, Izv. Akad. Nauk SSSR Ser. Fiz. 51 (1987) 615; Bull. Acad. Sci. USSR 51:3 (1987) 191
- 87CH14 S. Chakravarti, D. Dehnhard, M.A. Franey, S.J. Seestrom-Morris, D.B. Holtkamp, C.L. Blilie, A.C. Hayes, C.L. Morris and D.J. Millener, Phys. Rev. C35 (1987) 2197
- 87CH1J W.H. Chung, Singapore J. Phys. 4 (1987) 15
- 87CO07 J. Cook, Nucl. Phys. A465 (1987) 207
- 87CO31 P.D. Cottle and K.W. Kemper, Phys. Rev. C36 (1987) 2034
- 87DJ01 C. Djalali, G.M. Crawley, B.A. Brown, V. Rotberg, G. Caskey, A. Galonsky, N. Marty, M. Morlet and A. Willis, Phys. Rev. C35 (1987) 1201
- 87DO10 A.J.H. Donne, L. Lapikás, A.G.M. Van Hees and D. Zwarts, Nucl. Phys. A469 (1987) 518
- 87DUZU J.P. Dufour, R. Del Moral, F. Hubert, D. Jean, M.S. Pravikoff, A. Fleury, H. Delagrange, A. Mueller, K.-H. Schmidt, E. Hanelt et al, Contrib. Proc. 5th Int. Conf. Nuclei far from Stability, Rosseau Lake, Canada, (1987) D1
- 87DW1A R. Dwyer and P. Meyer, Astrophys. J. 322 (1987) 981
- 87EL03 K. Elsener, W. Gruebler, V. Konig, P.A. Schmelzbach, J. Ulbricht, B. Vuaridel, D. Singy, C. Forstner and W.Z. Zhang, Nucl. Phys. A461 (1987) 579
- B.A. England, L. Zybert, G.T.A. Squier, O. Karban, R. Zybert, J.M. Nelson, D. Barker, B.R.
   Fulton, M.C. Mannion, C.A. Ogilvie et al, Nucl. Phys. A475 (1987) 422

- 87ER05 T. Erikson, K.F. Quader, G.E. Brown and H.T. Fortune, Nucl. Phys. A465 (1987) 123
- 87FA1C A.J. Fahey, J.N. Goswami, K.D. McKeegan and E.K. Zinner, Astrophys. J. 323 (1987) L91
- M.A.G. Fernandes, F.E. Bertrand, R.L. Auble, R.O. Sayer, B.L. Burks, D.J. Horen, E.E. Gross,
   J.L. Blankenship, D. Shapira and M. Beckerman, Phys. Rev. C36 (1987) 108
- 87FO03 H.T. Fortune, Phys. Rev. C35 (1987) 1141
- 87FR1F M. Frank, F. Gubitz, W. Kreische, A. Labahn, C. Ott, B. Röseler, F. Schwab and G. Weeske, Hyperfine Interactions 34 (1987) 193
- 87GA15 M. Gai, R. Keddy, D.A. Bromley, J.W. Olness and E.K. Warburton, Phys. Rev. C36 (1987) 1256
- 87GA1G M. Gai, Z. Zhao and B.A. Brown, Bull. Am. Phys. Soc. 32 (1987) 1579
- 87GI05 A. Gillebert, W. Mittig, L. Bianchi, A. Cunsolo, B. Fernandez, A. Foti, J. Gastebois, C. Grégoire, Y. Schutz and C. Stephan, Phys. Lett. B192 (1987) 39
- 87GI1C W.R. Gibbs and B.F. Gibson, Ann. Rev. Nucl. Part. Sci. 37 (1987) 411
- 87GO1G J. Görres, M. Wiescher, U. Giesen, H.W. Becker, C. Rolfs and H.P. Trautvetter, Bull. Am. Phys. Soc. 32 (1987) 1062
- 87GO1V C.D. Goodman, Can. J. Phys. 65 (1987) 549
- 87GR16 J.M. Greben, Phys. Lett. B192 (1987) 287
- 87GR11 A.M. Green and J.A. Niskanen, Prog. Part. Nucl. Phys. 18 (1987) 93
- 87GR20 A.M. Green and S. Wycech, Nucl. Phys. A467 (1987) 744
- 87GU1D Gulkarov and Mansurov, 37th Meeting on Nuclear Spectroscopy and the Structure of the At. Nucl., Jurmala, USSR, 14-17 April 1987 (Nauka, 1987) 516
- 87GU1K D. Guillemaud-Mueller, Dubna (1987) 350
- 87HA1J P. Haapakoski, Mod. Phys. Lett. A2 (1987) 359
- 87HE1H T.K. Hemmick, D. Elmore, P.W. Kubik, S.L. Olsen, T. Gentile, D. Nitz, D. Ciampa, H. Kagan,
   P. Haas, P.F. Smith et al, Nucl. Instrum. Methods Phys. Res. B29 (1987) 389
- B. Hilscher, H. Rossner, A. Gamp, U. Jahnke, B. Cheynis, B. Chambon, D. Drain, C. Pastor,
   A. Giorni, C. Morand et al, Phys. Rev. C36 (1987) 208
- 87HI1B R.D. Hichwa, E.A. Hugel, J.J. Moska and R.R. Raylman, Nucl. Instrum. Methods Phys. Res. B24-25 (1987) 932
- 87HO18 D.J. Horen, M.A.G. Fernandes, G.R. Satchler, B.L. Burks, R.L. Auble, F.E. Bertrand, E.E. Gross, D.C. Hensley, R.O. Sayer and D. Shapira, Z. Phys. A328 (1987) 189
- 87JU07 J.W. Jury, P.C.-K. Kuo, K.G. McNeill, C.K. Ross, H.R. Weller and S. Raman, Phys. Rev. C36 (1987) 1243
- 87KA39 T. Karapiperis and M. Kobayashi, Ann. Phys. 177 (1987) 1
- 87KN01 M. Knopp, K.-H. Speidel, F. Hagelberg, H.-J. Simonis, P.N. Tandon and J. Gerber, Z. Phys. D4 (1987) 329
- 87LE15 W. Leitner and H. Müther, Nucl. Phys. A469 (1987) 61
- 87LE1B F. Lenz, Prog. Theor. Phys. Suppl. 91 (1987) 27
- 87LE1L B.-K. Lee, M.-H. Cha and S.-K. Nam, New. Phys. (S. Korea) 27 (1987) 405
- 87L11F X.-Y. Li, S.-H. Yao and Q.-Y. Zhang, High Energy Phys. Nucl. Phys. 11 (1987) 397
- 87LY04 W.G. Lynch, Nucl. Phys. A471 (1987) 309c
- 87MA22 E. Maglione, G. Poullarolo, A. Vitturi, R.A. Broglia and A. Winther, Phys. Lett. B191 (1987) 237
- 87MA31 P.V. Magnus, M.S. Smith, P.D. Parker, R.E. Azuma, C. Campbell, J.D. King and J. Vise, Nucl. Phys. A470 (1987) 206

- 87MA40 D.M. Manley and J.J. Kelly, Phys. Rev. C36 (1987) 1646
- 87MC1A K.D. McKeegan, Science 237 (1987) 1468
- 87ME12 O. Meirav, E. Friedman, A. Altmann, M. Hanna, R.R. Johnson and D.R. Gill, Phys. Rev. C36 (1987) 1066
- 87MI1C A. Middleton, J.D. Brown, L. Herold, K.E. Luther, M.L. Pitt, D. Barker, H.S. Camarda and S. Aziz, Bull. Am. Phys. Soc. 32 (1987) 1578
- 87MI25 D.J. Millener, Phys. Rev. C36 (1987) 1643
- 87MI27 W. Mittig, J.M. Chouvel, W.L. Zhan, L. Bianchi, A. Cunsolo, B. Fernandez, A. Foti, J. Gastebois, A. Gillibert, C. Gregoire et al, Phys. Rev. Lett. 59 (1987) 1889
- 87MO27 M.H. Cha, J.Y. Park and W. Scheid, Phys. Rev. C36 (1987) 2341
- 87MU16 H. Müther, R. Machleidt and R. Brockmann, Phys. Lett. B198 (1987) 45
- Nguyen Van Sen, Ye Yanlin, J. Arvieux, G. Gaillard, B. Bonin, A. Boudard, G. Bruge, J.C.
   Lugol, T. Hasegawa, F. Soga et al, Nucl. Phys. A464 (1987) 717
- 87PA07 S.A. Page, H.C. Evans, G.T. Ewan, S.-P. Kwan, J.R. Leslie, J.D. MacArthur, W. McLatchie,
   P. Skensved, S.-S. Wang, H.-B. Mak et al, Phys. Rev. C35 (1987) 1119
- 87PA12 S.J. Padalino, K. Sartor, L.C. Dennis and K.W. Kemper, Phys. Rev. C35 (1987) 1692
- 87PA1D M. Paul, D. Fink and G. Hollos, Nucl. Instrum. Methods Phys. Res. B29 (1987) 393
- 87PA1H B. Parker, K. Seth and R. Soundranayagam, In Panic (1987) 356
- 87PO01 A. Poves and J. Retamosa, Phys. Lett. B184 (1987) 311
- 87PO11 V. Pönisch and S.E. Koonin, Phys. Rev. C36 (1987) 633
- 87RA01 S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor, Jr. and P.H. Stelson, At. Data Nucl. Data Tables 36 (1987) 1
- 87RA1D R. Ramaty and R.J. Murphy, Space Sci. Rev. 45 (1987) 213
- 87RA28 M. Rajasekaran, N. Arunachalam and V. Devanathan, Phys. Rev. C36 (1987) 1860
- 87RA36 M. Rahman, H.M. Sen Gupta, Md.A. Rahman and A.B. Siddique, Nuovo Cim A98 (1987) 513
- 87RI03 J. Richert and P. Wagner, Nucl. Phys. A466 (1987) 132
- 87SA15 H. Sagawa and H. Toki, J. Phys. G13 (1987) 453
- M.G. Saint-Laurent, J.P. Dufour, R. Anne, D. Bazin, V. Borrel, H. Delagrange, C. Détraz, D.
   Guillemaud-Mueller, F. Hubert, J.C. Jacmart et al, Phys. Rev. Lett. 59 (1987) 33
- 87SA25 M.G. Saint-Laurent, Nucl. Instrum. Methods Phys. Res. B26 (1987) 273
- 87SC11 L. Schmieder, D. Hilscher, H. Rossner, U. Jahnke, M. Lehmann, K. Ziegler and H.-H. Knitter, Nucl. Instrum. Methods Phys. Res. A256 (1987) 457
- 87SC34 A. Scalia, Nuovo Cim. A98 (1987) 571
- 87SE1D J.P.F. Sellschop, Nucl. Instrum. Methods. Phys. Res. B29 (1987) 439
- 87SH10 H.-Q. Song, Z. Wang, Y. Cai and W. Huang, Chin. Phys. 7 (1987) 471
- 87SH23 W. Shen, Y. Zhu, W. Zhan, Z. Guo, S. Yin, W. Qiao and X. Yu, Nucl. Phys. A472 (1987) 358
- 87SN1A K. Sneppen, Nucl. Phys. A470 (1987) 213
- 87SO1E C.P. Sonett, G.E. Morfill and J.R. Jokipii, Nature 330 (1987) 458
- 87TA07 Y. Tagishi, Y. Aoki, M. Kurokawa, T. Murayama, T. Sakai, M. Takei, M. Tomizawa and K. Yagi, Phys. Rev. C35 (1987) 1153
- T.N. Taddeucci, C.A. Goulding, T.A. Carey, R.C. Byrd, C.D. Goodman, C. Gaarde, J. Larsen,
   D. Horen, J. Rapaport and E. Sugarbaker, Nucl. Phys. A469 (1993) 125
- 87TA21 M. Tanaka, T. Yamagata, S. Nakayama, M. Inoue, Y. Sakuragi, M. Kamimura, K. Goto, K. Katori, M. Yanagi and H. Ogata, Phys. Rev. C36 (1987) 2146
- 87TI07 D.R. Tilley, H.R. Weller and H.H. Hasan, Nucl. Phys. A474 (1987) 1

- 87VA19 S.P. Van Verst, K.W. Kemper and J.A. Carr, Phys. Rev. C36 (1987) 628
- 87VA11 Valiev et al, 37th Meeting on Nuclear Spectroscopy and the Structure of the At. Nucl., Jurmala, USSR, 14-17 April 1987 (Nauka, 1987) 346
- 87VA28 G.S. Valiev, I.R. Gulamov, Yu.I. Denisov, T. Iskhakov, A.M. Mukhamedzhanov, G.K. Ni, E.A. Romanovskii, V.A. Stepanenko and R.Ya. Yarmukhamedov, Izv. Akad. Nauk. SSSR Ser. Fiz. 51 (1987) 964
- 87VD1A A.I. Vdovin, A.V. Golovin and I.I. Loschakov, Sov. J. Part. Nucl. 18 (1987) 573
- 87VO1B T. von Egidy, Nature 328 (1987) 773
- 87WA1F P.G. Wannier and R. Sahai, Astrophys. J. 319 (1987) 367
- 87WI11 M. Wiescher, V. Harms, J. Gorres, F.-K. Theilemann and L.J. Rybarcyk, Astrophys. J. 316 (1987) 162
- 87YA1E A.I. Yavin, Can. J. Phys. 65 (1987) 647
- 87YI1A S.-Z. Yin, Y.-T. Zhu, W.-Q. Shen, Z.-Y. Guo, W.-L. Zhan, W.-M. Qiao, E.-C. Wu and Z.-H. Zheng, Phys. Energ. Fortis and Phys. Nucl. 11 (1987) 259
- 87ZH13 Z. Zhu and X. Zhao, Chin. J. Nucl. Phys. 9 (1987) 333
- 87ZH1F Z. Zhao, M. Gai, B.J. Lund, S.M. Rugari, D. Mikolas, B.A. Brown, J.A. Nolen, Jr. and M. Samuel, Bull. Am. Phys. Soc. 32 (1987) 1579
- 87ZU1A H.-C. zur Loye, K.J. Leary, S.W. Keller, W.K. Ham, T.A. Faltens, J.N. Micheals and A.M. Stacy, Science 238 (1987) 1558
- 88AJ01 F. Ajzenberg-Selove, Nucl. Phys. A490 (1988) 1
- 88AL1K M.M. Al-Kofahi, A.B. Hallak, H.A. Al-Juwair and A.K. Saafin, Bull. Am. Phys. Soc. 33 (1988) 1730
- 88AP1A J.H. Applegate, Phys. Rep. 163 (1988) 141
- 88AR1I A. Arima, Hyperfine Interactions 43 (1988) 47
- 88BA82 H. Bando, Nucl. Phys. A478 (1988) 697C
- 88BA83 S. Banik, Ind. J. Pure Appl. Phys. 26 (1987) 387
- 88BE1B J. Beer, U. Siegenthaler, G. Bonani, R.C. Finkel, H. Oeschger, M. Suter and W. Wölfli, Nature 331 (1988) 675
- B.L. Berman, "Energy In Physics, War, and Peace", A Festschrift Celebrating E. Teller's 80th
   Birthday, Ed. Hans Mark and Lowell Wood (Kluwer Academic Publ., Norwell, MA 1988) 49
- 88BE1W M. Beckerman, Rep. Prog. Phys. 51 (1988) 1047
- 88BE56 A.V. Belozerov, K.C. Borcea, J. Wincour, M. Lewitowicz, N.H. Chau, Yu.E. Penionzhkevich, N.K. Skobelev and A. Chasha, Izv. Akad. Nauk SSSR 52 (1988) 2171
- 88BI07 M. Bini, T.F. Fazzini, G. Poggi and N. Taccetti, Phys. Rev. C38 (1988) 1195
- 88BL11 R. Blendowske and H. Walliser, Phys. Rev. Lett. 61 (1988) 1930
- 88BR11 B.A. Brown, W.A. Richter, R.E. Julies and B.H. Wildenthal, Ann. Phys. 182 (1988) 191
- 88BR1D B.A. Brown and B.H. Wildenthal, MSUCL-637 (1988)
- 88BR1P B.A. Brown and B.H. Wildenthal, Ann. Rev. Nucl. Part. Soc. 38 (1988) 29
- 88BRZY J.D. Brown, A. Middleton and S.M. Aziz, Bull. Am. Phys. Soc. 33 (1988) 1022
- 88BU01 L. Buchman, J.M. D'Auria and P. McCorquodale, Astrophys. J. 324 (1988) 953
- B.L. Burks, M.A.G. Fernandes, G.R. Satchler, D.J. Horen, F.E. Bertrand, J.L. Blankenship,
   J.L.C. Ford, Jr., E.E. Gross, D.C. Hensley, R.O. Sayer et al, Phys. Rev. C38 (1988) 1680
- 88CA1G G. Cardella, M. Papa, G. Pappalardo, F. Rizzo, A. De Rosa, G. Inglima, M. Sandoli, G. Fortuna, G. Montagnoli, A.M. Stefanini et al, Nucl. Phys. A482 (1988) 235c
- 88CA1N G.R. Caughlan and W.A. Fowler, At. Data Nucl. Data Tables 40 (1988) 283

- 88CO15 E. Comay, I. Kelson and A. Zidon, Phys. Lett. B210 (1988) 31
- 88CR1B Crawley et al, IPNO-ORE 88.21 (1988)
- 88DE31 R. de Swiniarski and D.L. Pham, Nuovo Cim. A99 (1988) 117
- 88DE37 P. Descouvemont, Phys. Rev. C38 (1988) 2397
- 88DI02 S.S. Dietrich and B.L. Berman, At. Data Nucl. Data Tables 38 (1988) 199
- 88DI08 J. Ding and G. He, J. Phys. G14 (1988) 1315
- 88DO07 G. Doukellis, Phys. Rev. C37 (1988) 2233
- 88DU1C J.P. Dufour, R. Del Moral, F. Hubert, D. Jean, M.S. Pravikoff, A. Fleury, H. Delagrange, A.C. Mueller, K.-H. Schmidt, E. Hanelt et al, AIP Conf. Proc. 164 (1988) 344
- 88EL1B J.P. Elliott, Interactions and Structures in Nuclei, Proc. in Honor of D.H. Wilkinson, Sussex, 9/87, A. Hilger Publ. (1988) 1
- 88ET01 M.C. Etchegoyen, A. Etchegoyen, B.H. Wildenthal, B.A. Brown and J. Keinonen, Phys. Rev. C38 (1988) 1382
- 88FA1A G. Faure, J. Hoefs, L.M. Jones, J.B. Curtis and D.E. Pride, Nature 332 (1988) 352
- 88FI01 J. Fiase, A. Hamoudi, J.M. Irvine and F. Yazici, J. Phys. G14 (1988) 27
- 88FI1C H.J. Fischbeck, Bull. Am. Phys. Soc. 33 (1988) 1691
- 88FU02 C. Funck and K. Langanke, Nucl. Phys. A480 (1988) 188
- 88GA10 E. Gadioli and P.E. Hodgson, Rep. Prog. Phys. 52 (1989) 247
- 88GO1E Goncharov, Romanovsky and Timofeyok, 38th Meeting on Nucl. Spectroscopy and the Structure of the At. Nucl., Baku, USSR, 12-14 April 1988 (Nauka, 1988) 349
- 88GU03 I.S. Gul'karov, M.M. Mansurov and A.A. Khomich, Sov. J. Nucl. Phys. 47 (1988) 25
- 88GU12 I.S. Gul'karov, Sov. J. Part. Nucl. 19 (1988) 149
- BagulA D. Guillemaud-Mueller, R. Anne, D. Bazin, C. Détraz, J. Galin, D. Guerreau, A.C. Mueller,
   E. Roeckl, M.G. Saint-Laurent, M. Bernas et al, AIP Conf. Proc. 164 (1988) 757
- 88GU1B Gulkarov, 38th Meeting on Nucl. Spectroscopy and the Structure of the At. Nucl., Baku, USSR, 12-14 April 1988 (Nauka, 1988) 169
- 88HA1T W.C. Haxton and S.E. Woosley, Bull. Am. Phys. Soc. 33 (1988) 1566
- 88HA22 W.C. Haxton, Phys. Rev. C37 (1988) 2660
- 88HAZZ A.C. Hayes, P.J. Ellis and D.J. Millener, Bull. Am. Phys. Soc. 33 (1988) 929
- 88HE03 S.K.B. Hesmondhalgh, E.F. Garman and K.W. Allen, Nucl. Phys. A476 (1988) 375
- 88HE1C E.M. Henley, Interactions and Structures in Nuclei, Proc. in Honor of D.H. Wilkinson, Sussex, 9/87, A. Hilger Publ. (1988) 151
- 88HE1E E.M. Henley, Prog. Part. Nucl. Phys. 20 (1988) 387
- 88HE1G E.M. Henley, Can. J. Phys. 66 (1988) 554
- 88HI05 M. Hino, K. Muto and T. Oda, Phys. Rev. C37 (1988) 1328
- 88HI1F R.D. Hichwa, Bull. Am. Phys. Soc. 33 (1988) 1747
- 88HI1G D.G. Hinks, D.R. Richards, B. Dabrowski, D.T. Marx and A.W. Mitchell, Nature 335 (1988) 419
- 88HU1E R. Hutchison, C.M.O. Alexander and D.J. Barber, Phil. Trans. Roy. Soc. London A325 (1988) 445
- 88IS02 Y. Iseri, H. Kameyama, M. Kamimura, M. Yahiro and M. Tanifuji, Nucl. Phys. A490 (1988) 383
- 88JO1B G. A. Jones, Interactions and Structures in Nuclei, Proc. in honor of D.H. Wilkinson, Sussex,
   9/87; Adam Hilger Publ. (1988) 9
- 88KA1U N. Kaiser and U.-G. Meissner, Nucl. Phys. A489 (1988) 671

- 88KA39 Sh.S. Kayumov, A.M. Mukhamedzhanov and R. Yarmukhamedov, Sov. J. Nucl. Phys. 48 (1988) 268
- 88KE01 J.J. Kelly, Phys. Rev. C37 (1988) 520
- 88KH06 H.A. Khan, J. Phys. G14 (1988) 701
- 88KO18 L. Koester, W. Waschkowski, J. Meier, G. Rau and M. Salehi, Z. Phys. A330 (1988) 387
- 88KO25 P.E. Koehler and H.A. O'Brien, Phys. Rev. C38 (1988) 2019
- 88KR11 L. Kraus, A. Boucenna, I. Linck, B. Lott, R. Rebmeister, N. Schulz, J.C. Sens, M.C. Mermaz,
   B. Berthier, R. Lucas et al, Phys. Rev. C37 (1988) 2529
- 88KU17 R. Kuchta, Phys. Rev. C38 (1988) 1460
- 88LE05 G. Lévai and J. Cseh, J. Phys. G14 (1988) 467
- 88LI10 Y. Li, High Energy Phys. Nucl. Phys. 12 (1988) 501; Phys. Abs. 5798
- 88MA07 J.F. Mateja, G.L. Gentry, N.R. Fletcher, L.C. Dennis and A.D. Frawley, Phys. Rev. C37 (1988) 1004
- 88MA1Q L. Majling, J. Zofka, T. Sakuda and H. Bando, Prog. Theor. Phys. 79 (1988) 561
- 88MA1U R.A. Malaney and W.A. Fowler, Astrophys. J. 333 (1988) 14
- 88MA53 G. Mairle, K.T. Knöpfle and M. Seeger, Nucl. Phys. A490 (1988) 371
- 88MCZT V. McLane, C.L. Dunford and P.F. Rose, Neutron Cross Sections, Vol. 2 (Academic Press, Inc. 1988)
- 88ME10 M.C. Mermaz, Rev. Roum. Phys. 33 (1988) 739
- 88MI1B A.C. Mix and N.G. Pisias, Nature 331 (1988) 249
- 88MI1G D. Mikolas, B.A. Brown, W. Benenson, Y. Chen, M.S. Curtin, L.H. Harwood, E. Kashy, J.A. Nolen, Jr., M. Samuel, B. Sherrill et al, AIP Conf. Proc. 164 (1988) 708
- 88MI1J D.J. Millener, AIP Conf. Proc. 163 (1988) 402
- A.C. Mueller, D. Bazin, W.D. Schmidt-Ott, R. Anne, D. Guerreau, D. Guillemaud-Mueller,
   M.G. Saint-Laurent, V. Borrel, J.D. Jacmart, F. Pougheon et al, Z. Phys. A330 (1988) 63
- A. Nadasen, M. McMaster, G. Gunderson, A. Judd, S. Villanueva, P. Schwandt, J.S. Winfield,
   J. van der Plicht, R.E. Warner, F.D. Becchetti et al, Phys. Rev. C37 (1988) 132
- 88NW1A S.N. Nwosu, D.E. Menzie and H.J. Fischbeck, Bull. Am. Phys. Soc. 33 (1988) 1735
- 88PO1E N.A.F.M. Poppelier, J.H. de Vries, A.A. Wolters and P.W.M. Glaudemans, AIP Conf. Proc. 164 (1988) 334
- 88PR1C P.B. Price, G. Ren and W.T. Williams, Bull. Am. Phys. Soc. 33 (1988) 1591
- 88SA04 M. Samuel, B.A. Brown, D. Mikolas, J. Nolen, B. Sherrill, J. Stevenson, J.S. Winfield and Z.Q. Xie, Phys. Rev. C37 (1988) 1314
- 88SA10 Y. Sakuragi, M. Yahiro, M. Kamimura and M. Tanifuji, Nucl. Phys. A480 (1988) 361
- 88SA12 N.V. Samsonenko, A.L. Samgin and Ch.L. Katkhat, Sov. J. Nucl. Phys. 47 (1988) 220
- S.J. Seestrom-Morris, D. Dehnhard, M.A. Franey, D.B. Holtkamp, C.L. Blilie, C.L. Morris,
   J.D. Zumbro and H.T. Fortune, Phys. Rev. C37 (1988) 2057
- 88SE11 N. Severijns, J. Wouters, J. Vanhaverbeke, W. Vanderpoorten and L. Vanneste, Hyperfine Interact. 34 (1988) 415
- 88SE1A K.K. Seth, Nucl. Phys. A478 (1988) 591C
- 88SH03 B. Shivakumar, D. Shapira, P.H. Stelson, S. Ayik, B.A. Harmon, K. Teh and D.A. Bromley, Phys. Rev. C37 (1988) 652
- 88SM01 M.J. Smithson, D.L. Watson and H.T. Fortune, Phys. Rev. C37 (1988) 1036
- 88TA08 M. Tanaka, T. Yamagata, S. Nakayama, M. Inoue, K. Goto, K. Katori, M. Yanagi and H. Ogata, Nucl. Instrum. Methods Phys. Res. A267 (1988) 139

- T. Tachikawa, N. Kato, H. Fujita, K. Anai, H. Inoue, T. Sugimitsu, K. Kimura, Y. Nakajima,
   K. Morita, S. Kubono et al, Nucl. Phys. A484 (1988) 125
- 88TR02 M. Trajdos and K. Zajac, J. Phys. G14 (1988) 869
- 88TR1C J.W. Truran, AIP Conf. Proc. 16 (1988) 543
- 88UM1A K. Umezawa, T. Kurio, J. Yamane, F. Shoji, K. Oura, T. Hanawa and S. Yano, Nucl. Instrum. Methods Phys. Res. B33 (1988) 634
- 88UT02 H. Utsunomiya and R.P. Schmitt, Nucl. Phys. A487 (1988) 162
- 88VAZY S.P. Van Verst, K.W. Kemper, D.E. Trcka, G.A. Hall, V. Hnizdo, K.R. Chapman and B.G. Schmidt, Bull. Am. Phys. Soc. 33 (1988) 1101
- 88VO1D J.R. Votaw, Bull. Am. Phys. Soc. 33 (1988) 1748
- 88VO1E J.R. Votaw and R.J. Nickles, Bull. Am. Phys. Soc. 33 (1988) 1738
- 88WA17 E.K. Warburton, Phys. Rev. C38 (1988) 935
- 88WI08 M. Wiescher, J. Görres and F.-K. Thielemann, Astrophys. J. 326 (1988) 384
- 88WO09 J.M. Wouters, R.H. Kraus, Jr., D.J. Vieira, G.W. Butler and K.E.G. Löbner, Z. Phys. A331 (1988) 229
- 88WO1C S.E. Woosley and W.C. Haxton, Nature 334 (1988) 45
- 88YU04 Z.-Q. Yu, C.-H. Cai, W.-H. Ma and S.-P. Zhao, Phys. Rev. C38 (1988) 272
- 89AJ1A F. Ajzenberg-Selove, "Heavy Ions In Nucl. and Atomic Physics" (1988 Mikolajki Summer Sch. on Nucl. Phys.); Ed. Wilhelmi and Szeflinska; Adam Hilger Publs. (1989) 1
- 89AN12 I. Angeli, Z. Phys. A334 (1989) 377
- 89AN1D Anjos et al, Sao Paulo (1989) 339
- M. Arnould, F. Baeten, D. Darquennes, Th. Delbar, C. Dom, M. Huyse, Y. Jongen, P. Leleux,
   M. Lacroix, P. Lipnik et al, Nucl. Instrum. Methods Phys. Res. B40-41 (1989) 498
- 89BA1E H. Bando, M. Sano, J. Zoofka and M. Wakai, Nucl. Phys. A501 (1989) 900
- 89BA1R H.W. Baer, Bull. Am. Phys. Soc. 34 (1989) 1210
- 89BA2N H. Bando, Nuovo Cim. A102 (1989) 627
- 89BA2P J.N. Bahcall, Neutrino Astrophys. (Publ. Cambridge Univ. Press 1989)
- 89BE1R Belyanin et al, Proc. 39th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, USSR, 18-21 April 1989 (Nauka, 1989) 360
- 89BEZC J.A. Behr, K.A. Snover, C.A. Gossett, J.H. Gundlach and W. Hering, Bull. Am. Phys. Soc. 34 (1989) 1832
- 89BO01 G. Bogaert, V. Landré, P. Aguer, S. Barhoumi, M. Kious, A. Lefebvre, J.P. Thibaud and D. Bertault, Phys. Rev. C39 (1989) 265
- 89BR14 I.M. Brancus, I. Berceanu, A. Buta, A. Demian, C. Grama, I. Lazar, I. Mihai, M. Petrascu, V. Simion and A. Constantinescu, Z. Phys. A333 (1989) 71
- 89BR1G C. Brechtmann, W. Heinrich and E.V. Benton, Phys. Rev. C39 (1989) 2222
- 89BR1J Brown, Proc. 1989 Intl. Nucl. Phys. Conf., Sao Paulo, Brasil, 20-26 August 1989 (World Scientific, 1989) 187
- 89CA15 S. Cavallaro, S.Z. Yin, G. Prete and G. Viesti, Phys. Rev. C40 (1989) 98
- 89CA25 W.N. Catford, L.K. Fifield, N.A. Orr and C.L. Woods, Nucl. Phys. A503 (1989) 263
- 89CH13 D.C. Choudhury and T. Guo, Phys. Rev. C39 (1989) 1883
- 89CH10 Ching, Ho, Zou and Johnson, Commun. Theor. Phys. 11 (1989) 171
- 89CH1P X. Chen and S. Wu, High Energy Phys. Nucl. Phys. 13 (1989) 50; Phys. Abs. 68985
- 89CH21 H.-C. Chiang and B.-S. Zou, Nucl. Phys. A496 (1989) 739

- 89CI1C N. Cindro and M. Bozin, "Heavy Ions in Nucl. and Atomic Phys." (1988 Mikolajki Summer Schl. on Nucl. Phys. ); eds. Wilhelmi and Szeflinska; A. Hilger Publs. (1989) 239
- 89DE1X C. Detraz and D.J. Vieira, Ann. Rev. Nucl. Part. Sci. 39 (1989) 407
- 89DO03 G. Doukellis, Phys. Rev. C39 (1989) 2088
- 89FO02 H.T. Fortune, Phys. Rev. C39 (1989) 192
- 89FR05 P. Fröbrich, Phys. Rev. C39 (1989) 2085
- 89FU01 C. Funck, B. Grund and K. Langanke, Z. Phys. A332 (1989) 109
- 89FU06 C. Funck and K. Langanke, Astrophys. J. 344 (1989) 46
- 89FU08 C. Funck, B. Grund and K. Langanke, Z. Phys. A334 (1989) 1
- 89FU1H C. Funck and K. Langanke, Proc. int. Symp. on Heavy Ion Phys. and Nucl. Astrophys. Problems, Tokyo, 21-23 July 1988, ed. S. Kubono, M. Ishihara, T. Nomura (World Scientific, 1989) 67
- 89GA01 M. Gai, S.L. Rugari, R.H. France, III, B.J. Lund, Z. Zhao, D.A. Bromley, B.A. Lincoln, W.W. Smith, M.J. Zarcone and Q.C. Kessel, Phys. Rev. Lett. 62 (1989) 874
- 89GA06 E.F. Garman, S.K.B. Hesmondhalgh and K.W. Allen, Nucl. Phys. A491 (1989) 383
- 89GA09 C. García-Recio, M.J. López, J. Navarro and F. Roig, Phys. Lett. B222 (1989) 329
- 89GAZW A. Garcia, E.G. Adelberger, D. Markoff and K. Swartz, Bull. Am. Phys. Soc. 34 (1989) 1802
- 89GE10 P.M. Gensini, Nuovo Cim. A102 (1989) 1563
- 89GE1A C.K. Gelbke, Nucl. Phys. A495 (1989) 27C
- 89GR13 K. Grotowski, J. Ilnicki, T. Kozik, J. Lukasik, S. Micel, Z. Sosin, A. Wieloch, N. Heide, H. Jelitto, I. Kiener et al, Phys. Lett. B223 (1989) 287
- 89GR1F M. Gruszczynski, S. Halas, A. Hoffman and K. Malkowski, Nature 337 (1989) 64
- 89GR1M Grion and Rui, Proc. 1989 Intl. Nucl. Phys. Conf., Sao Paulo, Brasil, 20–26 August 1989 (World Scientific, 1989) 22
- 89GU06 I.S. Gul'karov and V.I. Kuprikov, Sov. J. Nucl. Phys. 49 (1989) 21
- B. Guerreau, J.L. Charvet, H. Doubre, J. Galin, G. Ingold, D. Jacquet, U. Jahnke, D.X. Jiang,
  B. Lott, M. Morjean et al, Heavy Ions in Nucl. At. Phys., 1988 Mikolajki Summer School on Nucl. Phys., eds. Z. Wilhelmi and G. Szeflinska (Adam Hilger Publs., 1989) 159
- 89GU1L B. Gustafsson, Ann. Rev. Astron. Astrophys. 27 (1989) 701
- 89GU25 I.P. Gulamov, A.I. Mukhamedzhanov and G.K. NI, Bull. Acad. Sci. USSR 53: 5 (1989) 172;
   Izv. Akad. Nauk SSSR Ser. Fiz 53 (1989) 1004
- 89HA08 H.Y. Han, K.X. Jing, E. Plagnol, D.R. Bowman, R.J. Charity, L. Vinet, G.J. Wozniak and L.G. Moretto, Nucl. Phys. A492 (1989) 138
- 89HA22 W.C. Haxton, E.M. Henley and M.J. Musolf, Phys. Rev. Lett. 63 (1989) 949
- 89HE21 H. Heiselberg, A.S. Jensen, A. Miranda and G.C. Oades, Phys. Scr. 40 (1989) 141
- 89HJ03 M. Hjorth-Jensen and E. Osnes, Phys. Lett. B228 (1989) 281
- 89HO1H R. Hou, X. Zhao and Z. Zhu, Commun. Theor. Phys. 12 (1989) 57
- 89JI1A L. Jin, W.D. Arnett and S.K. Chakrabarti, Astrophys. J. 336 (1989) 572
- 89KA1K Kajino, Mathews and Fuller, Proc. int. Symp. on Heavy Ion Phys. and Nucl. Astrophys. Problems, Tokyo, 21-23 July 1988, ed. S. Kubono, M. Ishihara, T. Nomura (World Scientific, 1989) 51
- 89KA1S Katoh, Kawade and Yamamoto, JAERI-M 89-083 (1989)
- 89KA24 F. Käppeler, H. Beer and K. Wisshak, Rep. Prog. Phys. 52 (1989) 945
- 89KA37 G. Kalbermann, E. Friedman, A. Gal and C.J. Batty, Nucl. Phys. A503 (1989) 632

- 89KAZH A.B. Kabulov, Proc. 39th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, USSR, 18-21 April 1989 (Nauka, 1989) 192
- 89KO16 P.E. Koehler and H.A. O'Brien, Nucl. Instrum. Methods Phys. Res. B40/41 (1989) 494
- 89KU10 P.C.-K. Kuo, J.W. Jury, K.G. McNeill, N.K. Sherman and W.F. Davidson, Nucl. Phys. A499 (1989) 328
- 89KU1P A.G. Kudziev, Nucl. Instrum. Methods Phys. Res. A282 (1989) 267
- 89LA19 V. Landre, P. Aguer, G. Bogaert, A. Lefebvre, J.P. Thibaud, S. Fortier, J.M. Maison and J. Vernotte, Phys. Rev. C40 (1989) 1972
- 89LE16 M. Lewitowicz, Yu.E. Penionzhkevich, A.G. Artukh, A.M. Kalinin, V.V. Kamanin, S.M. Lukyanov, Nguyen Hoai Chau, A.C. Mueller, D. Guillemaud-Mueller, R. Anne et al, Nucl. Phys. A496 (1989) 477
- 89LE1L Leitch, "Fundamental Symmetries and Nucl. Structure", eds. Ginocchio & Rosen, Santa Fe, NM 1988 (World Sci. 1989) 163
- 89MA24 J. Mahalanabis and H.V. Von Geramb, Nucl. Phys. A493 (1989) 412
- 89MA45 Z. Majka, V. Abenante, Z. Li, N.G. Nicolis, D.G. Sarantites, T.M. Semkow, L.G. Sobotka, D.W. Stracener, J.R. Beene, D.C. Hensley et al, Phys. Rev. C40 (1989) 2124
- 89MC1C A.B. McDonald, Can. J. Phys. 67 (1989) 785
- 89ME1C R.A. Mewaldt and E.C. Stone, Astrophys. J. 337 (1989) 959
- 89MO1J R.N. Mohapatra, WEIN 89 (1989) 133
- 89NA1M Nagashima et al, Proc. 1989 Intl. Nucl. Phys. Conf., Sao Paulo, Brasil, 20-26 August 1989 (World Scientific, 1989) 340
- 89NI1D H. Nifenecker and J.A. Pinston, Prog. Part. Nucl. Phys. 23 (1989) 271
- 89NO1A Nomoto, Hashimoto, Arai and Kaminisi, Proc. int. Symp. on Heavy Ion Phys. and Nucl. Astrophys. Problems, Tokyo, 21-23 July 1988, ed. S. Kubono, M. Ishihara, T. Nomura (World Scientific, 1989) 9
- 89NO1C J.W. Norbury, Phys. Rev. C40 (1989) 2621
- 89NW1A S.N. Nwosu and H.J. Fischbeck, Nucl. Instrum. Methods Phys. Res. B40-41 (1989) 833
- 89OG1B A.A. Ogloblin and Y.E. Penionzhkevich, Treatise on Heavy-Ion Science, vol. 8, ed. D.A. Bromley (Plenum Publ. Corp. 1989) 261
- 89OR02 W.E. Ormand and B.A. Brown, Nucl. Phys. A491 (1989) 1
- 89PA06 D.J. Parker, J.J. Hogan and J. Asher, Phys. Rev. C39 (1989) 2256
- 89PLZV A.V. Plavko and M.S. Onegin, Proc. 39th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, USSR, 18-21 April 1989 (Nauka, 1989) 288
- 89PO1K Poppelier, Ph.D. Thesis, Univ. of Utrecht (1989)
- 89PR01 D.M. Pringle and W.J. Vermeer, Nucl. Phys. A499 (1989) 117
- 89RA16 S. Raman, C.W. Nestor, Jr. , S. Kahane and K.H. Bhatt, At. Data Nucl. Data Tables 42 (1989) 1
- 89RA17 P. Raghavan, At. Data Nucl. Data Tables 42 (1989) 189
- 89RA1G J. Rapaport, Fundamental Symmetries and Nucl. Structure, eds. J.N. Ginocchio & S. P. Rosen, Santa Fe, NM, 1988 (World Sci. 1989) 186
- M.G. Saint-Laurent, R. Anne, D. Bazin, D. Guillemaud-Mueller, U. Jahnke, Jin Gen-Ming,
   A.C. Mueller, J.F. Bruandet, F. Glasser, S. Kox et al, Z. Phys. A332 (1989) 457
- 89SA1H N.V. Samsonenko, C.L. Kathat and A.L. Samgin, Nucl. Phys. A491 (1989) 642
- 89SA1P Sakutal, Proc. 39th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, USSR, 18-21 April 1989 (Nauka, 1989) 380

- 89SA55 N.V. Samsonenko, A.L. Samgin, M.I. Suvorov and E.V. Brilev, Izv. Akad. Nauk SSSR Ser. Fiz.
  53 (1989) 2110; Bull. Acad. Sci. USSR Phys. Ser. 53 (1989) 47
- 89SP01 R.H. Spear, At. Data Nucl. Data Tables 42 (1989) 55
- 89ST1H Strottman, "Fundamental Symmetries and Nucl. Structure", eds. Ginocchio & Rosen, Santa Fe, NM 1988 (World Sci. 1989) 247
- 89TA1N C. Tan, Y. Xia, H. Yang, X. Sun, J. Liu, Z. Zheng and P. Zhu, Nucl. Instrum. Methods Phys. Res. B42 (1989) 1
- 89TA10 I. Tanihata, Treatise on Heavy-Ion Science, Vol. 8, Ed. D.A. Bromley (Plenum Publ. Corp 1989) 443
- 89TA1T Y. Tanaka, Phys. Lett. B227 (1989) 195
- 89TA1Y N. Tanaka, K. Hosoya, K. Nomura, T. Yoshimura, T. Ohki, R. Yamaoka, K. Kimata and M. Araki, Nature 341 (1989) 727
- 89TE02 F. Terrasi, A. Brondi, G. La Rana, G. De Angelis, A. D'Onofrio, R. Moro, E. Perillo and M. Romano, Phys. Rev. C40 (1989) 742
- 89TH1C Thielemann and Wiescher, Proc. Int. Symp. on Heavy Ion Phys. and Nucl. Astrophys. Problems, Tokyo, 21-23 July 1988, ed. S. Kubono, M. Ishihara, T. Nomura (World Scientific, 1989) 27
- 89TR18 M. Traidos and K. Zaionts, Izv. Akad. Nauk SSSR 53 (1989) 2225
- 89VA04 S.P. Van Verst, D.P. Sanderson, D.E. Trcka, K.W. Kemper, V. Hnizdo, B.G. Schmidt and K.R. Chapman, Phys. Rev. C39 (1989) 853
- 89VAZM G.S. Valiev, I.R. Gulamov, T. Iskhakov, A.A. Karakhodzhaev, A.M. Mukhamedzhanov, G.K. Ni and E.A. Pak, Proc. 39th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, USSR, 18-21 April 1989 (Nauka, 1989) 274
- 89VO1F V.V. Volkov, Treatise on Heavy-Ion Science, Vol. 8, Ed. D.A. Bromley, (Plenum Publ. Corp. 1989) 101
- 89WAZZ J.W. Watson, B.D. Anderson, A.R. Baldwin, R. Madey, M.R. Plumley, J. Schambach, P.J. Pella and C.C. Foster, Bull. Am. Phys. Soc. 34 (1989) 1142
- 89WH1B J.C. Wheeler, C. Sneden and J.W. Truran, Jr., Ann. Rev. Astron. Astrophys. 27 (1989) 279
- A.L. Williams, L. Agnew, L.G. Atencio, H.W. Baer, M. Burlein, G.R. Burleson, K.S. Dhuga,
   H.T. Fortune, G.S. Kyle, J.A. McGill et al, Phys. Lett. B216 (1989) 11
- 89WO1B R.W. Wood, Bull. Am. Phys. Soc. 34 (1989) 1133
- 89YO02 A. Yokoyama, T. Saito, H. Baba, K. Hata, Y. Nagame, S. Ichikawa, S. Baba, A. Shinohara and N. Imanishi, Z. Phys. A332 (1989) 71
- W. Yokota, T. Nakagawa, M. Ogihara, T. Komatsubara, Y. Fukuchi, K. Suzuki, W. Galster,
   Y. Nagashima, K. Furuno, S.M. Lee et al, Z. Phys. A333 (1989) 379
- 89YU1A Yu, Cai and Ma, Proc. 1989 Intl. Nucl. Phys. Conf., Sao Paulo, Brasil, 20-26 August 1989 (WorLD SCIentific, 1989) 9
- 89ZH04 Z. Zhao, M. Gai, B.J. Lund, S.L. Rugari, D. Mikolas, B.A. Brown, J.A. Nolen, Jr. and M. Samuel, Phys. Rev. C39 (1989) 1985
- 89ZH05 R.-R. Zheng, K.W. Schmid, F. Grümmer and A. Faessler, Nucl. Phys. A494 (1989) 214
- 89ZHZY X.L. Tu, V.G. Lind, D.J. Vieira, J.M. Wouters, K.E.G. Löbner, Z.Y. Zhou, H.L. Seifert, Bull. Am. Phys. Soc.34 (1989) 1800
- 90AB1G F. Abel, G. Amsel, E. d'Artemare, C. Ortega, J. Siejka and G. Vizkelethy, Nucl. Instrum. Methods Phys. Res. B45 (1990) 100
- 90AJ01 F. Ajzenberg-Selove, Nucl. Phys. A506 (1990) 1
- 90AL40 D.V. Aleksandrov, E.Yu. Nikol'skii and D.N. Stepanov, Yad. Fiz. 52 (1990) 933; Sov. J. Nucl. Phys. 52 (1990) 593

- 90AN14 R.M. Anjos, V. Guimarães, N. Added, N. Carlin Filho, M.M. Coimbra, L. Fante, Jr., M.C.S.
   Figueira, E.M. Szanto, C.F. Tenreiro and A. Szanto de Toledo, Phys. Rev. C42 (1990) 354
- 90AR10 M. Arnould and M. Rayet, Ann. Physique 15 (1990) 183
- 90BA1S E.H. Bakraji, A. Giovagnoli, G. Blondiaux and J.-L. Debrun, Nucl. Instrum. Methods Phys. Res. B50 (1990) 65
- 90BO04 J. Boger, S. Kox, G. Auger, J.M. Alexander, A. Narayanan, M.A. McMahan, D.J. Moses, M. Kaplan and G.P. Gilfoyle, Phys. Rev. C41 (1990) R801
- 90BR13 D.S. Brenner, C. Wesselborg, R.F. Casten, D.D. Warner and J.-Y. Zhang, Phys. Lett. B243 (1990) 1
- 90BR26 B.A. Brown, Phys. Rev. Lett. 65 (1990) 2753
- 90CH12 H.C. Chiang, E. Oset, R.C. Carrasco, J. Nieves and J. Navarro, Nucl. Phys. A510 (1990) 573
- 90CH13 H.C. Chiang, E. Oset and P. Fernández de Córdoba, Nucl. Phys. A510 (1990) 591
- 90CH14 C. Ching, T. Ho and B. Zou, Nucl. Phys. A510 (1990) 630
- 90CH11 R.J. Chater, J.A. Kilner, K.J. Reeson, A.K. Robinson and P.L.F. Hemment, Nucl. Instrum. Methods Phys. Res. B45 (1990) 110
- 90CH1U Ching, Ho and Zou, Int. Conf. on Particles and Nucl., Cambridge, Mass., 25-29 June 1990 (Organizing Committee, 1990) Paper III-77
- 90CO1K D.D. Cohen, S.D. Bradshaw, F.J. Bradshaw and A. Katsaros, Nucl. Instrum. Methods Phys. Res. B50 (1990) 43
- 90DE14 A. De Rosa, E. Fioretto, G. Inglima, M. Romoli, M. Sandoli, R. Setola, G. Cardella, M. Papa,
   G. Pappalardo, F. Rizzo et al, Phys. Rev. C41 (1990) 2062
- 90EN08 P.M. Endt and C. van der Leun, Nucl. Phys. A521 (1990) 1
- 90FO04 S. Fortier, S. Gales, S.M. Austin, W. Benenson, G.M. Crawley, C. Djalali, J.S. Winfield and G. Yoo, Phys. Rev. C41 (1990) 2689
- 90GAZR A. Garcia, E.G. Adelberger, D. Markoff, K. Swartz, M.S. Smith, P.V. Magnus and K.I. Hahn, Bull. Am. Phys. Soc. 35 (1990) 1400
- 90GAZW A. Garcia, E.G. Adelberger, D.K. Swartz, M.S. Smith, P.V. Magnus and K.I. Hahn, Bull. Am. Phys. Soc. 35 (1990) 1074
- 90GL01 A. Glaesner, W. Dünnweber, M. Bantel, W. Hering, D. Konnerth, R. Ritzka, W. Trautmann,
   W. Trombik and W. Zipper, Nucl. Phys. A509 (1990) 331
- 90GU10 I.S. Gul'karov, Sov. J. Nucl. Phys. 51 (1990) 61
- 90HA07 W.C. Haxton, Nucl. Phys. A507 (1990) 179c
- 90HJ01 M. Hjorth-Jensen and E. Osnes, Phys. Scr. 41 (1990) 207
- 90HJ03 M. Hjorth-Jensen, E. Osnes, H. Müther and K.W. Schmid, Phys. Lett. B248 (1990) 243
- 90HUZY W. Huang, C.D. Goodman, G.C. Kiang, Y. Wang, T. Carey, R. Byrd, L. Rybarcyk, T. Taddeucci, D. Marchlenski, E. Sugarbaker et al, Bull. Am. Phys. Soc. 35 (1990) 1059
- 90JO01 T.M. Jørgensen, A.S. Jensen, A. Miranda and G.C. Oades, Nucl. Phys. A506 (1990) 615
- 90KA1F N. Kaiser and U.-G. Meissner, Nucl. Phys. A510 (1990) 759
- 90KOZG F. Komori, S. Katsumoto, S. Kobayashi, S. Ikehata, N. Ikeda, O. Hashimoto, T. Fukuda, T. Nomura and T. Yamazaki, Inst. Nucl. Study, Univ. Tokyo, 1989 Ann. Rept. (1990) 27
- 90KU1H Kume and Nose, Int. Conf. on Particles and Nucl., Cambridge, Mass., 25-29 June 1990 (Organizing Committee, 1990) Paper III-81, 82
- 90LE08 JH. Lee, W. Benenson and D.J. Morrissey, Phys. Rev. C41 (1990) 1562
- 90LI1J D. Lissauer and H. Takai, Phys. Rev. C41 (1990) 2410
- 90LO11 R.J. Lombard, J. Phys. G16 (1990) 1311

- 90MA05 P.V. Magnus, M.S. Smith, A.J. Howard, P.D. Parker and A.E. Champagne, Nucl. Phys. A506 (1990) 332
- 90MA06 D.M. Manley, D.J. Millener, B.L. Berman, W. Bertozzi, T.N. Buti, J.M. Finn, F.W. Hersmann, C.E. Hyde-Wright, M.V. Hynes, J.J. Kelly et al, Phys. Rev. C41 (1990) 448
- 90MA1Z R.A. Malaney, Workshop on Primordial Nucleosynthesis, Chapel Hill, NC, 1989, ed. W.J. Thompson, B.W. Carney, H.J. Karwowski (World Scientific, 1990) 49
- 90MAZW W.-H. Ma, L.S. Kisslinger and S.-W. Wang, Bull. Am. Phys. Soc. 35 (1990) 1017
- 90MI01 H. Miyake and A. Mizukami, Phys. Rev. C41 (1990) 329
- 90MI15 I.V. Mitchell, G.R. Massoumi, W.N. Lennard, S.Y. Tong, P.F.A. Alkemade, K. Griffiths, S.J.
   Bushby and P.R. Norton, Nucl. Instrum. Methods Phys. Res. B45 (1990) 107
- 90MO13 M. Moosburger, E. Aschenauer, H. Dennert, W. Eyrich, A. Lehamnn, R. Rudeloff, H. Schlösser,
  H. Wirth, H.J. Fils, H. Rebel et al, Phys. Rev. C41 (1990) 2925
- 90NA24 S. Nakayama, T. Yamagata, K. Yuasa, M. Tanaka, M. Inoue, T. Itahashi and H. Ogata, Phys. Lett. B246 (1990) 342
- 90NO1A J.W. Norbury, Phys. Rev. C42 (1990) 711
- 90OS03 A. Osman and A.A. Farra, Nuovo Cim. A103 (1990) 1693
- 90PH02 D.L. Pham and R. de Swiniarski, Nuovo Cim. A103 (1990) 375
- 90PI1G Yu.L. Pivovarov, A.A. Shirokov and S.A. Vorobiev, Nucl. Phys. A509 (1990) 800
- 90PO04 I.V. Poplavskii, Yad. Fiz. 51 (1990) 1258; Sov. J. Nucl. Phys. 51 (1990) 799
- 90SA1J A. Sarkar, R. Ramesh, S.K. Bhattacharya and G. Rajagopalan, Nature 343 (1990) 549
- 90SA27 S.K. Saha, W.W. Daehnick, S.A. Dytman, P.C. Li, J.G. Hardie, G.P.A. Berg, C.C. Foster,
   W.P. Jones, D.W. Miller and E.J. Stephenson, Phys. Rev. C42 (1990) 922
- 90SC18 A. Scalia, R. Giordano, S. Sambataro, F. Porto, P. Figuera and S. Pirrone, Nuovo Cim. A103 (1990) 269
- 90SEZZ R.M. Sellers, D.M. Manley, R.A. Lindgren, B.L. Clausen, M. Farkhondeh, B.E. Norum, R.J. Peterson, B.L. Berman and C.E. Hyde-Wright, Bull. Am. Phys. Soc. 35 (1990) 927
- 90SI1D R. Silberberg and C.H. Tsao, Phys. Rev. 191 (1990) 351
- 90SK04 L.D. Skouras and J.C. Varvitsiotis, Nucl. Phys. A513 (1990) 239
- 90SK1C L.D. Skouras and H. Müther, Nucl. Phys. A515 (1990) 93
- 90SN1A K. Snover, Bull. Am. Phys. Soc. 35 (1990) 1032
- 90ST08 A. Staudt, E. Bender, K. Muto and H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 44 (1990) 79
- 90ST1G J. Stutzki and R. Güsten, Astrophys. J. 356 (1990) 513
- 90SZ1C A. Szanto de Toledo, Proc. 1989 Intl. Nucl. Phys. Conf., Sao Paulo, Brasil, 20–26 August 1989 (World Scientific, 1989) 607
- 90TH1C F.-K. Thielemann, M.-A. Hashimoto and K. Nomoto, Astrophys. J. 349 (1990) 222
- 90TH1E F.-K. Thielemann and M. Wiescher, Wksp. on Primordial Nucleosynthesis, Chapel Hill, NC, 1989, ed. Thompson, Carney, Karwowski (World Sci., 1990) 92
- 90TO1F M. Toriseva, L. Bronfman and K. Mattila, Astrophys. Space Sci. 171 (1990) 219
- 90VO06 R.B. Vogelaar, T.R. Wang, S.E. Kellogg and R.W. Kavanagh, Phys. Rev. C42 (1990) 753
- 90WA10 S. Wa-Kitwanga, P. Leleux, P. Lipnik and J. Vanhorenbeeck, Phys. Rev. C42 (1990) 748
- 90WAZT J.W. Watson, M. Rahi, B.D. Anderson, A.R. Baldwin, R. Madey, M.R. Plumley, J. Schambach, P.J. Pella and C.C. Foster, Bull. Am. Phys. Soc. 35 (1990) 1659
- 90WE1A W.R. Webber, J.C. Kish and D.A. Schrier, Phys. Rev. C41 (1990) 520
- 90WE1I W.R. Webber, A. Soutoul, P. Ferrando and M. Gupta, Astrophys. J. 348 (1990) 611

- 90WI1K Williams et al, Int. Conf. on Particles and Nucl., Cambridge, Mass., 25-29 June 1990 (Organizing Committee, 1990) Paper III-68
- 90WIZP M. Wiescher, J. Görres, S. Graff, R.E. Azuma, C.a. Barnes and T.R. Wang, Bull. Am. Phys. Soc. 35 (1990) 1673
- 90XE01 A.C. Xenoulis, A.E. Aravantinos, G.P. Eleftheriades, C.T. Papadopoulos, E.N. Gazis and R. Vlastou, Nucl. Phys. A516 (1990) 108
- 90YE02 S.J. Yennello, K. Kwiatkowski, S. Rose, L.W. Woo, S.H. Zhou and V.E. Viola, Phys. Rev. C41 (1990) 79
- 90ZI04 E.P. Zironi, J. Rickards, A. Maldonado and R. Asomoza, Nucl. Instrum. Methods Phys. Res. B45 (1990) 115
- 90ZS01 H.-E. Zschau, F. Plier, G. Otto, C. Wyrwich and A. Treide, Nucl. Instrum. Methods Phys. Res. B50 (1990) 74
- 91AJ01 F. Ajzenberg-Selove, Nucl. Phys. A523 (1991) 1
- 91BA54 G. Battistig, G. Amsel, E. d'Artemare and I. Vickridge, Nucl. Instrum. Methods Phys. Res. B61 (1991) 369
- 91BA62 E.H. Bakraji, G. Ducouret, G. Blondiaux and J.L. Debrun, Nucl. Instrum. Methods Phys. Res. B56/57 (1991) 819
- 91CI08 A. Cieply, M. Gmitro, R. Mach and S.S. Kamalov, Phys. Rev. C44 (1991) 713
- 91CI11 A. Cieply, M. Gmitro and R. Mach, Czech. J. Phys. B41 (1991) 1091
- 91CR06 S. Croft, Nucl. Instrum. Methods Phys. Res. A307 (1991) 353
- 91FR02 J. Fritze, R. Neu, H. Abele, F. Hoyler, G. Staudt, P.D. Eversheim, F. Hinterberger and H. Müther, Phys. Rev. C43 (1991) 2307
- 91GA03 A. Garcia, E.G. Adelberger, P.V. Magnus, D.M. Markoff, K.B. Swartz, M.S. Smith, K.I. Hahn, N. Bateman and P.D. Parker, Phys. Rev. C43 (1991) 2012
- 91GA08 M. Gai, M. Ruscev, D.A. Bromley and J.W. Olness, Phys. Rev. C43 (1991) 2127
- 91GU05 M. Guillaume, A. Luxen, B. Nebeling, M. Argentini, J.C. Clark and V.W. Pike, Appl. Radiat. Isot. 42 (1991) 749
- 91HA17 C.L. Hartmann and P.M. DeLuca, Jr., Nucl. Sci. Eng. 109 (1991) 319
- 91HE16 H. Herndl, H. Abele, G. Staudt, B. Bach, K. Grün, H. Scsribany, H. Oberhummer and G. Raimann, Phys. Rev. C44 (1991) R952
- 91HI15 K. Hida and S. Iijima, J. Nucl. Sci. Technol. 28 (1991) 447
- 91IG1A M. Igashira, H. Kitazawa, S. Kitamura, H. Anze and M. Horiguchi, AIP Conf. Proc. 238 (1991) 624
- 91KO1P P.E. Koehler and H.A. O'Brien, AIP Conf. Proc. 238 (1991) 892
- 91KO31 P.E. Koehler and S.M. Graff, Phys. Rev. C44 (1991) 2788
- 91LE07 G. Lévai and J. Cseh, Phys. Rev. C44 (1991) 152
- 91LE08 G. Lévai and J. Cseh, Phys. Rev. C44 (1991) 166
- 91LE33 J.A. Leavitt and L.C. McIntyre Jr., Nucl. Instrum. Methods Phys. Res. B56/57 (1991) 734
- 91MA14 D.M. Manley, B.L. Berman, W. Bertozzi, T.N. Buti, J.M. Finn, F.W. Hersman, C.E. Hyde-Wright, M.V. Hynes, J.J. Kelly and M.A. Kovash et al, Phys. Rev. C43 (1991) 2147
- 91MA41 E. Maglione and L.S. Ferreira, Phys. Lett. B262 (1991) 179
- 91MC01 K.G. McNeill, J.W. Jury, M.N. Thompson, B.L. Berman and R.E. Pywell, Phys. Rev. C43 (1991) 489

- 91MC02 F.D. McDaniel, D.K. Marble, J.L. Duggan, M.R. McNeir, Y.C. Yu, Z.Y. Zhao, C.L. Weathers, P.S. Elliott, R.M. Wheeler, R.P. Chaturvedi et al, Nucl. Instrum. Methods Phys. Res. B53 (1991) 531
- 91MO13 C.L. Morris, Nucl. Phys. A527 (1991) 433C
- 91MU19 A.C. Mueller and R. Anne, Nucl. Instrum. Methods Phys. Res. B56/57 (1991) 559
- 91NA05 O. Naviliat-Cuncic, T.A. Girard, J. Deutsch and N. Severijns, J. Phys. G17 (1991) 919
- 91OR01 N.A. Orr, W. Mittig, L.K. Fifield, M. Lewitowicz, E. Plagnol, Y. Schutz, W.L. Zhan, L. Bianchi,
   A. Gillibert, A.V. Belozyorov et al, Phys. Lett. B258 (1991) 29
- 91OS01 E. Oset and D. Strottman, Phys. Rev. C44 (1991) 468
- 91OS04 A. Osman and A.A. Farra, Nuovo Cim. A104 (1991) 1563
- 91PI09 C.N. Pinder, C.O. Blyth, N.M. Clarke, D. Barker, J.B.A. England, B.R. Fulton, O. Karban,
   M.C. Mannion, J.M. Nelson, C.A. Ogilvie et al, Nucl. Phys. A533 (1991) 25
- 91PI12 Yu.L. Pivovarov and A.A. Shirokov, JETP Lett. 53 (1991) 298
- 91PR03 M.S. Pravikoff, F. Hubert, R. Del Moral, J.-P. Dufour, A. Fleury, D. Jean, A.C. Mueller, K.-H. Schmidt, K. Summerer, E. Hanelt et al, Nucl. Phys. A528 (1991) 225
- 91RE02 P.L. Reeder, R.A. Warner, W.K. Hensley, D.J. Vieira and J.M. Wouters, Phys. Rev. C44 (1991) 1435
- 91RE10 G. Reffo, M.H. Mac Gregor and T. Komoto, Nucl. Instrum. Methods Phys. Res. A307 (1991) 380
- 91RY1A O.G. Ryazhskaya, JETP Lett. 53 (1991) 135
- 91SA1F L.J. Sage, R. Mauersberger and C. Henkel, Astron. and Astrophys. 249 (1991) 31
- 91SAZX E.R.J. Saettler, A.L. Hallin, F.P. Calaprice and M.M. Lowry, Bull. Am. Phys. Soc. 36 (1991) 1300
- 91SU17 M. Suehiro, T. Nozaki, T. Sasaki, H. Suzuki, M. Senda, H. Toyama and S.-I. Ishii, Appl. Radiat. Isot. 42 (1991) 1231
- 91UE01 K. Ueta and G.W. Bund, Phys. Rev. C43 (1991) 2887
- 91ZH19 Z. Zhao and D. Zhou, Chin. J. Nucl. Phys. 13 (1991) 37
- 92AR18 K.P. Artemov, M.S. Golovkov, V.Z. Goldberg, V.V. Pankratov, A.E. Pakhomov, I.N. Serikov and V.A. Timofeev, SOV. J. Nucl. Phys. 55 (1992) 1460
- 92AV03 M.P. Avotina, K.I. Erokhina and I.Kh. Lemberg, Sov. J. Nucl. Phys. 55 (1992) 1777
- 92BE21 M. Berheide, C. Rolfs, U. Schröder and H.P. Trautvetter, Z. Phys. A343 (1992) 483
- 92CA12 A.S. Carnoy, J. Deutsch, R. Prieels, N. Severijns and P.A.Quin, J. Phys. G18 (1992) 823
- 92CO08 D.D. Cohen, G.M. Bailey and N. Dytlewski, Nucl. Instrum. Methods Phys. Res. B64 (1992) 413
- 92DI04 F. Ditrói, S. Takàcs, I. Mahunka, P. Mikecz and GY. Tòth, Nucl. Instrum. Methods Phys. Res. B68 (1992) 166
- 92DO11 V.Yu. Dobretsov, A.B. Dobrotsvetov and S.A. Fayans, Yad. Fiz. 55 (1992) 2126; Sov. J. Nucl.
   Phys. 55 (1992) 1180
- 92FR01 G. Fricke, J. Herberz, Th. Hennemann, G. Mallot, L.A. Schaller, L. Schellenberg, C. Piller and R. Jacot-Guillarmod, Phys. Rev. C45 (1992) 80
- 92GA03 S.B. Gazes, J.E. Mason, R.B. Roberts and S.G. Teichmann, Phys. Rev. Lett. 68 (1992) 150
- 92GA11 M. Gai, Phys. Rev. C45 (1992) R2548
- 92GO10 J. Görres, M. Wiescher, K. Scheller, D.J. Morrissey, B.M. Sherrill, D. Bazin and J.A. Winger, Phys. Rev. C46 (1992) R833
- 92GO14 J. Görres, S. Graff, M. Wiescher, R.E. Azuma, C.A. Barnes and T.R. Wang, Nucl. Phys. A548 (1992) 414

- 92GO1Q N.G. Goncharova, Fiz. Elem. Chastits At. Yadra 23 (1992) 1715; Sov. J. Part. Nucl. 23 (1992) 748
- 92GU11 I.S. Gulkarov, Sov. J. Nucl. Phys. 55 (1992) 1123
- 92GU16 I.S. Gulkarov, M.G. Karimov and M.M. Mansurov, Bull. Russ. Acad. Sci. Phys. 56 (1992) 759;
   Izv. Ross. Akad. Nauk Ser. Fiz. 56:5 (1992) 155
- 92HAZZ K.I. Hahn, N. Bateman, B.J. Lund, S. Utku, A.J. Howard and P.D. Parker, Bull. Am. Phys. Soc. 37 (1992) 868
- 92HE12 E.M. Henley and I.B. Khriplovich, Phys. Lett. B289 (1992) 223
- 92HJ01 M. Hjorth-Jensen, E. Osnes and H. Müther, Ann. Phys. 213 (1992) 102
- 92JI04 M.F. Jiang, R. Machleidt, D.B. Stout and T.T.S. Kuo, Phys. Rev. C46 (1992) 910
- 92JOZZ J.D. Johnson, C.F. Moore, K.W. Johnson, H. Ward, C. Whitley, A. Hussein, R.W. Garnett, L.C. Liu, C.L. Morris, J.M. O'Donnell et al, Bull. Am. Phys. Soc. 37 (1992) 916
- 92KA1G K. Kawade, H. Yamamoto, T. Kobayashi, T. Katoh, T. Iida and A. Takahashi, Report JAERI-M 92-020
- 92LA08 D.W. Lane, Nucl. Instrum. Methods Phys. Res. B64 (1992) 448
- 92LA13 M. Lassaut and R.J. Lombard, Z. Phys. A341 (1992) 125
- 92LA25 M.C. Lagunas-Solar, O.F. Carvacho and P.M. Smith-Jones, Appl. Radiat. Isot. 43 (1992) 1005
- 92LI1K G. Liu, D. Fu and X. Cheng, Chin. Phys. Lett. 9 (1992) 577
- 92MA46 W. Ma, D. Strottman, Q. Wu, L.S. Kisslinger and S. Wang, Chin. J. Nucl. Phys. 14 (1992) 197
- 92MO31 L.B. Moran, J.K. Berkowitz and J.P. Yesinowski, Phys. Rev. B45 (1992) 5347
- 92OS01 E. Osnes and D. Strottman, Phys. Rev. C45 (1992) 662
- 92OS05 E. Oset, M. Khankhasayev, J. Nieves, H. Sarafian and M.J. Vicente-Vacas, Phys. Rev. C46 (1992) 2406
- 92PY1A P. Pyykkö, Z. Naturforsch. A47 (1992) 189
- 92RA1N S. Raman and J.E. Lynn, Beijing Int. Symp. on Fast Neutron Phys., Beijing, 9-13 Sep. 1991 (World Sci., 1992) 107
- 92ROZZ J.G. Ross, C.P. Browne, J. Görres, C. Iliadis, K. Scheller and M. Wiescher, Bull. Am. Phys. Soc. 37 (1992) 869
- 92SA27 T. Sakuda, Prog. Theor. Phys. 87 (1992) 1159
- 92SE08 A.P. Serebrov and N.V. Romanenko, JETP Lett. 55 (1992) 503
- 92TA08 K. Tamura, Y. Oki, Y. Sakamoto and J. Mahalanabis, Nuovo Cim. A105 (1992) 203
- 92TEZY A. Terakawa, T. Tohei, T. Nakagawa, J. Takamatsu, A. Narita, K. Hosomi, H. Orihara, K. Ishii, T. Niizeki, M. Ohura et al, Cyclotron Rad. Center, Tohoku Univ., Ann. Rept. 1991 (1992) 12
- 92TI02 D.R. Tilley, H.R. Weller and G M. Hale, Nucl. Phys. A541 (1992) 1
- 92WA04 T.F. Wang, R.N. Boyd, G.J. Mathews, M.L. Roberts, K.E. Sale, M.M. Farrell, M.S. Islam and G.W. Kolnicki, Nucl. Phys. A536 (1992) 159
- 92WA22 E.K. Warburton and B.A. Brown, Phys. Rev. C46 (1992) 923
- 92YA08 M. Yasue, T. Hasegawa, S.I. Hayakawa, K. Ieki, J. Kasagi, S. Kubono, T. Murakami, K. Nisimura, K. Ogawa. H. Ohnuma et al, Phys. Rev. C46 (1992) 1242
- 92ZH15 Z. Zhao, C.Y. Fu and D.C. Larson, Chin. J. Nucl. Phys. 14 (1992) 67
- 92ZS01 H.-E. Zschau, F. Plier, J. Vogt, G. Otto, H. Duschner, J. Arends, D. Grambole, F. Herrmann,
   R. Klabes, R. Salomonovic et al, Nucl. Instrum. Methods Phys. Res. B68 (1992) 158
- 93AB02 H. Abele and G. Staudt, Phys. Rev. C47 (1993) 742

- 93AB18 S.N. Abramovich, B. Ya. Guzhovsky, L.N. Generalov, S.A. Dunaeva, V.N. Protopopov, A.P. Solodovnikov and V.V. Chulkov, Bull. Russ. Acad. Sci. Phys. 57:10 (1993) 1832; Izv. Akad. Nauk Ser. Fiz. 57:10 (1993) 187
- 93AN08 R.M. Anjos, C. Tenreiro, A. Szanto de Toledo and S.J. Sanders, Nucl. Phys. A555 (1993) 621
- 93AT04 H. Atasoy and S. Dokmen, Nucl. Instrum. Methods Phys. Res. B73 (1993) 5
- 93AU05 G. Audi and A.H. Wapstra, Nucl. Phys. A565 (1993) 1
- 93BO40 I. Bogdanovic, S. Fazinic, M. Jaksic, T. Tadic, O. Valkovic and V. Valkovic, Nucl. Instrum. Methods Phys. Res. B79 (1993) 524
- 93BR12 B.A. Brown, A.E. Champagne, H.T. Fortune and R. Sherr, Phys. Rev. C48 (1993) 1456
- 93CA1K F.P. Calaprice, W.S. Anderson, G.L. Jones and A.R. Young, AIP Conf. Proc. 270 (1993) 153
- 93CH06 W.T. Chou, E.K. Warburton and B.A. Brown, Phys. Rev. C47 (1993) 163
- 93CU01 B. Cujec, Nucl. Phys. A552 (1993) 267
- 93CU05 J.B. Cumming, Y.Y. Chun and P.E. Haustein, Phys. Rev. C48 (1993) 2068
- 93DA17 B. Dasmahapatra, B. Cujec, G. Kajrys and J.A. Cameron, Nucl. Phys. A564 (1993) 314
- 93DA1L S.O.F. Dababneh, K. Toukan and I. Khubeis, Nucl. Instrum. Methods Phys. Res. B83 (1993) 319
- 93DR03 M. Drosg and D.M. Drake, Nucl. Instrum. Methods Phys. Res. B73 (1993) 387
- 93DR04 M. Drosg, D.M. Drake, R.C. Haight and R.O. Nelson, Nucl. Instrum. Methods Phys. Res. B73 (1993) 392
- 93EG04 J.L. Egido, L.M. Robledo and Y. Sun, Nucl. Phys. A560 (1993) 253
- 93EN03 P.M. Endt, At. Data Nucl. Data Tables 55 (1993) 171
- 93EV01 M.V. Evlanov and Yu.O. Vasil'ev, Phys. At. Nucl. 56 (1993) 598
- 93FI08 M.L. Firouzbakht, D.J. Schlyer, S.J. Gatley and A.P. Wolf, Appl. Radiat. Isot. 44 (1993) 1081
- 93GA1G M. Gai, Prog. Part. Nucl. Phys. 30 (1993) 415
- 93GI03 R. Gilman, H.T. Fortune and M. Kagarlis, Phys. Rev. C48 (1993) 366
- 93GO09 T.P. Gorringe, B.L. Johnson, J. Bauer, M.A. Kovash, R. Porter, P. Gumplinger, M.D. Hasinoff, D.F. Measday, B.A. Moftah, D.S. Armstrong et al, Phys. Lett. B309 (1993) 241
- 93HA17 K.I. Hahn, C.R. Brune and P.R. Wrean, Phys. Rev. C48 (1993) 914
- 93HA1D W.C. Haxton, Nucl. Phys. A553 (1993) C397
- 93HI08 M. Hirsch, A. Staudt, K. Muto and H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 53 (1993) 165
- J.D. Johnson, G.R. Burleson, C. Edwards, M. El-Ghossain, M.A. Espy, R. Garnett, A. Hussein,
   K. Johnson, C.F. Moore, C.L. Morris et al, Phys. Rev. C47 (1993) 2571
- 93LA1E D.W. Lane, A.J. Avery, G. Partridge and M. Healy, Nucl. Instrum. Methods Phys. Res. B73 (1993) 583
- 93MA1M R.A. Malaney and G.J. Mathews, Phys. Rep. 229 (1993) 145
- 93MC02 K.G. McNeill, M.N. Thompson, A.D. Bates, J.W. Jury and B.L. Berman, Phys. Rev. C47 (1993) 1108
- 93NA08 S. Nakamura, K. Muto and T. Oda, Phys. Lett. B311 (1993) 15
- 93NI03 J. Nieves and E. Oset, Phys. Rev. C47 (1993) 1478
- 93OS01 E. Oset and D. Strottman, Phys. Rev. Lett. 70 (1993) 146
- 93PA14 S.K. Patra, Nucl. Phys. A559 (1993) 173
- 93PA19 S.K. Patra, Phys. Rev. C48 (1993) 1449
- 93PE19 R.J. Peterson, Acta Phys. Pol. B24 (1993) 1877

- 93PI10 Yu.L. Pivovarov, Izv. Akad. Nauk Ser. Fiz. 57 (1993) 114; Bull. Russ. Acad. Sci. 57 (1993) 867
- 93PO11 N.A.F.M. Poppelier, A.A. Wolters and P.W.M. Glaudemans, Z. Phys. A346 (1993) 11
- 93RE03 G. Reidemeister and F. Michel, Phys. Rev. C47 (1993) R1846
- 93SE1B A.P. Serebrov and N.V. Romanenko, Proc. III Int. Symp. Weak & EM Interactions in Nucl. (WEIN-92), Dubna, 16-22 June 1992 (World Scientific, 1993) 469
- 93SO13 O. Sorlin, J. Phys. G19 (1993) S127
- 93SU08 T. Suzuki, M. Fujimaki, S. Hirenzaki, N. Inabe, T. Kobayashi, T. Kubo, T. Nakagawa, Y. Watanabe, I. Tanihata and S. Shimoura, Phys. Rev. C47 (1993) 2673
- 93SZ02 A. Szanto de Toledo, E.M. Szanto, M. Wotfe, B.V. Carlson, R. Donangelo, W. Bohne, K. Grabish, H. Morgenstern and S. Proshitzki, Phys. Rev. Lett. 70 (1993) 2070
- 93TI07 D.R. Tilley, H.R. Weller and C.M. Cheves, Nucl. Phys. A564 (1993) 1
- 93UTZZ S. Utku, N. Bateman, B.J. Lund, P. Parker, J.G. Ross, J. Gorres, C. Iliadis, M. Wiescher, R.B. Vogelaar and M.S. Smith, Bull. Amer. Phys. Soc. 38 (1993) 983
- 93VO01 P. Vogel and W.E. Ormand, Phys. Rev. C47 (1993) 623
- 93ZH17 M.A. Zhusupov and T.G. Usmanov, Bull. Russ. Acad. Sci. 57 (1993) 63
- 94BA1V P.H. Barker, Nucl. Instrum. Methods Phys. Res. A345 (1994) 445
- 94BE29 H. Beer, Acta Phys. Pol. B25 (1994) 629
- 94BO1H R.N. Boyd, Int. J. Mod. Phys. E1 Suppl. (1994) 249
- 94CI02 O. Civitarese and M. Schvellinger, Phys. Rev. C49 (1994) 1976
- 94EJ01 H. Ejiri, Nucl. Phys. A574 (1994) C311
- 94LU01 D.H. Lu and R.H. Landau, Phys. Rev. C49 (1994) 878
- 94ME02 B. Meltzow, E.K. Warburton, Ch. Ender, J. Gerl, D. Habe, U. Lauff, J. Schirmer, D. Schwalm and P. Thirolf, Phys. Rev. C49 (1994) 743
- 94ME07 D.J. Mercer, J. Rapaport, C.A. Whitten, D. Adams, R. Byrd, X.Y. Chen, A. Fazely, T. Gaussiran, E. Gülmez, C. Goodman et al, Phys. Rev. C49 (1994) 3104
- 94PI1A Yu.L. Pivovarov, Bull. Russ. Acad. Sci. Phys. 58 (1994) 81; Izv. Ross. Akad. Nauk Ser. Fiz. 58: (1994) 94
- 94RA1P G. Raimann, private communication, 28 December 1994
- 94RE01 E.L. Reber, K.W. Kemper, P.V. Green, P.L. Kerr, A.J. Mendez, E.G. Myers and B.G. Schmidt, Phys. Rev. C49 (1994) R1
- 94SC01 K.W. Scheller, J. Gorres, J.G. Ross, M. Wiescher, R. Harkewicz, D.J. Morrissey, B.M. Sherrill,
   M. Steiner, N.A. Orr and J.A. Winger, Phys. Rev. C49 (1994) 46
- 94TA1B C.Y. Tan, Y.Y. Xia, J.T. Liu and X.D. Liu, Phys. Lett. A189 (1994) 379
- 94VE04 J. Vernotte, G. Berrier-Ronsin, J. Kalifa, R. Tamisier and B.H. Wildenthal, Nucl. Phys. A571 (1994) 1
- 95MA1A Z.Q. Mao, H.T. Fortune and A.G. Lacate, Phys. Rev. Lett. 74 (1995) 3760
- 95OZ1A A. Ozawa, G. Raimann, R.N. Boyd, F.R. Chloupek, M. Fujimaki, K. Kimura, T. Kobayashi, J.J. Kolata, S. Kubono, I. Tanihata et al, to be published in Nucl. Phys. A
- 95SE1A R.M. Sellers, D.M. Manley, M.M. Niboh, D.S. Weerasundara, R.A. Lindgren, B.L. Clausen, M. Farkhondeh, B.E. Norum and B.L. Berman, Phys. Rev. C51 (1995) 1926