Energy Levels of Light Nuclei A = 20

D.R. Tilley^{a,b}, C.M. Cheves^{a,c}, J.F. Guillemette^{a,c}, S. Raman^d and H.R. Weller^{a,c}

^a Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308
 ^bDepartment of Physics, North Carolina State University, Raleigh, NC 27695-8202
 ^cDepartment of Physics, Duke University, Durham, NC 27708-0305
 ^dOak Ridge National Laboratory, Oak Ridge, TN 37831

Abstract: This is a preliminary version the A = 20 evaluation which we plan to submit to Nuclear Physics in the fall of 1996. Your comments on this draft will be greatly appreciated.

(References closed September 15, 1995)

This work is supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).

^{20}n , ^{20}He , ^{20}Li , ^{20}Be

(Not observed)

See (77CE1A, 83ANZQ, 86AN07, 87SI1E).

^{20}B

(Not observed)

The mass excess of 20 B is predicted to be 69.08 MeV (74TH01). 20 B is then unstable with respect to breakup into 19 B + n by 0.9 MeV: see 19 B in (95TI1C) and (78AJ03, 83ANZQ) and see the work on effective interactions for the (0p1s0d) nuclear shell-model space (92WA22).

^{20}C

(Not illustrated)

²⁰C has been observed in heavy ion projectile fragmentation reactions (87GI05, 90MU06, 91MU19) and in proton-induced target-fragmentation reactions (87VI1D, 88MU08, 92WO1G). The atomic mass excess is 37.560 ± 0.200 MeV (93AU05). It is then stable with respect to ¹⁹C + n and ¹⁸C + 2n by 3.3 and 3.9 MeV, respectively. β -delayed neutron emission has been observed (87GI05, 90MU06, 91MU19).

The half life and neutron emission probability have been measured to be $\tau_{1/2} = 16^{+14}_{-7}$ ms, $P_n = 50 \pm 30$ (89LE16) and $\tau_{1/2} = 14^{+6}_{-5}$ ms, $P_n = 72 \pm 14$ (90MU06).

Shell model calculations for exotic light nuclei are described in (88PO1E, 93PO11). Shell model interactions constructed for the 0p1s0d nuclear shell model space are reported in (92WA22). Self-consistent calculations of light nuclei using the density functional method are reported in (90LO11). Microscopic calculations of beta-decay half-lives for $6 \le Z \le 108$ neutron-rich nuclei are reported in (90ST08). See also (87SN1A, 93SA16, 94HA39).

^{20}N

(Not illustrated)

 20 N is particle stable. Its atomic mass excess is 21.770 ± 0.050 MeV (93AU05). It has been observed in heavy-ion transfer (89OR03) and projectile fragmentation reactions (88DU1C, 87GI05, 88MU08, 90MU06, 91OR01) and in target fragmentation reactions (88WO09, 91RE02, 92WO1G). See also the review (88VI1D). Mass

measurements were reported in (89OR03, 87GI05, 91OR01, 88WO09, 92WO1G). Measurements of beta-delayed neutron emission are described in (88DU1C).

The half-life of 20 N is 70 ± 40 ms (88DU1C), 100 ${}^{+30}_{-20}$ ms (88MU08, 90MU06), 142 ± 19 ms (91RE02).

The delayed neutron probability is $53^{+11}_{-7}\%$ (88MU08, 90MU06), $66.1 \pm 5.0\%$ (91RE02). See also (87BAZI, 87DE1O, 87DUZU, 87SI1E, 89HU1E, 92RE1I, 93REZX).

A review of the production of nuclei far from stability is presented in (89VO1F). Production mechanisms are discussed in (88BA1J). Predictions of beta-decay halflives are described in (90ST08). Results of shell model calculations related to exotic light nuclei are discussed in (92WA22, 93PO11). Bulk properties have been calculated with relativistic mean field theory in (93PA14).

^{20}O

(Figs. 20.1 and 20.5)

GENERAL: See Table 20.0.5

1. ${}^{20}O(\beta^-){}^{20}F$ $Q_m = 3.814$

²⁰O decays with a half-life of 13.51 ± 0.05 s to the 1⁺ states ²⁰F^{*} (1.06, 3.49) with branching ratios (99.973 \pm 0.003) and $(0.027 \pm 0.003)\%$, log $f_0t = 3.740 \pm 0.006$ and 3.65 ± 0.06 , respectively (87AL06). Upper limits for the branching to other states of ²⁰F are shown in Table II of (87AL06). See also (85BR29).

2. ${}^{18}O(t, p){}^{20}O$ $Q_m = 3.082$

 $Q_0 = 3082.4 \pm 1.3 \text{ keV}$ (85AN17). See also (82AN12).

Observed proton groups are displayed in Tables 20.1 and 20.1.2. ²⁰O* (4.07) decays to ²⁰O* (0, 1.67) with branchings of (26 ± 4) and $(74 \pm 4)\%$. The p- γ angular correlations lead to J = 2; the strength of the transition favors $\pi = +$, $[\delta(\text{E2/M1}) = -0.18 \pm 0.08$ for the 2⁺ \rightarrow 2⁺ transition.] ²⁰O*(4.46) and ²⁰O*(5.39) decay primarily via ²⁰O*(1.67); the direct ground-state decay is < 4% for the first and < 7% for the second of these states. The angular correlations are essentially isotropic, favoring $J^{\pi} = 0^+$. The transition ²⁰O*(5.39) \rightarrow 4.07) is not observed: the upper limit is 8%. See also (78AJ03, 83AJ01). For a discussion of A = 20 isobaric states see (82AN12, 85AN17).

Figure 1: Energy levels of 20 O. In these diagrams, energy values are plotted vertically in MeV, based on the ground state as zero. Uncertain levels or transitions are indicated by dashed lines; levels which are known to be particularly broad are cross-hatched. Values of total angular momentum J, parity, and isobaric spin T which appear to be reasonably well established are indicated on the levels; less certain assignments are enclosed in parentheses. For reactions in which 20 O is the compound nucleus, some typical thin-target excitation functions are shown schematically, with the yield plotted horizontally and the bombarding energy vertically. Bombarding energies are indicated in laboratory coordinates and plotted to scale in c.m. coordinates. Excited states of the residual nuclei involved in these reactions have generally not been shown; where transitions to such excited states are known to occur, a brace is sometimes used to suggest reference to another diagram. For reactions in which the present nucleus occurs as a residual product, excitation functions have not been shown. Further information on the levels illustrated, including a listing of the reactions in which each has been observed, is contained in the master table, entitled "Energy levels of 20 O".

Table	20.0.5
$^{20}O - O$	General

Reference Description

Models

87BL18	Gogny's effective inter. used to calc. gnd. & excited states of specific spin-isospin order
87CH1J	Nucl. struc. calcs. using mixed-config. shell model: effective & surface δ -interactions
87CO31	Simple parametrization for low energy octupole modes of sd-shell nuclei
87KR08	Discontinuity in ground state band plot of even-even nuclei is traced to p-n interaction
87LI1F	Double delta & surface delta interactions used to calc. low-lying spectra of $^{17-22}O$
88BR11	Semi-empirical effective interactions for the 1s-0d shell
88HI05	Effect on GT strength of config. mixing and p-n correl. in even-even sd-shell nucl.
90SK04	A = 18 nuclei, effective interaction in the sd shell (also calc. $A = 20$ energy spectra)
90ZH01	Nuclear structure studies of double Gamow-Teller and double beta decay strength
91MA41	Finite nuclei calculations with realistic potential models (Bonn, Paris, Argonne)
91WA11	Composite particle representation theory calcs. for $A = 20$ states compared to shell model
92JI04	Bonn potential used to evaluate energy spectra of some light sd-shell nuclei
93AM08	$6p-2h$ core excitations in ^{20}O
93PO11	Shell-model calcs. of several properties of exotic light nuclei $(A = 4-30)$

Complex reactions

Review:

88JO1B	Exp. & theor. liquid drop & microscopic study of heavy ion radioactivity
Other artic	les:
87MU03	Evaporation model calc. of the emission of clusters by excited compound nuclei
88BL11	Systematics of cluster-radioactdecay constants from microscop. calcs. compared to data
88IV02	Microscopic approach to the rates of radioactive decay by emission of heavy clusters
89SA10	Total cross sections of reactions induced by neutron-rich light nuclei
90 GU02	Particle stability of O & Ne isotopes in the reaction 44 MeV/nucleon $^{48}Ca + Ta$

Other topics

Reviews:	
89RA16	Predxns. from systematics & tabulation of B(E2; $0_1^+ \rightarrow 2_1^+)$ values for even-even nucl.
89SP01	Reduced electric-octupole transition probabilities, $B(E3; 0_1^+ \rightarrow 3_1^-)$, for even-even nucl.
90TH1E	Summary of topics presented at Workshop on Primordial Nucleosynthesis
Other artic	les:
87LI1F	Double delta & surface delta interactions used to calc. low-lying spectra of $^{17-22}O$
90ZH01	Nuclear structure studies of double Gamow-Teller and double beta decay strength

Ground state properties

Review:

89RA17 Compilation of exp. data on nuclear moments for ground & excited states of nucl.

Table 20.0.5 (continued) ^{20}O – General

Reference Description

Ground state properties (continued)

Other articles:

87BL18	Gogny's-plus-tensor inter. for gnd. & excited states with specific spin-isospin order
89SA10	Total cross sections of reactions induced by neutron-rich light nuclei
90LO11	Self-consistent calcs. of light neutron-rich nuclei using density-functional method
93PA14	Relativistic mean field theory; calc. binding energy, rms radii, deformation parameters
93PA19	Continuation of 93PA14: effects of pairing correlations
94CI02	Nuclear SU3 scheme used to calc. specific heat and shape transitions in light sd nuclei

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	au	Decay	Reactions
0	$0^+; 2$	$\tau_{1/2} = 13.51 \pm 0.05 \ {\rm s}$	β^{-}	1, 2, 3, 4
1.67368 ± 0.15	2^{+}	$\tau_{\rm m} = 10.5 \pm 0.4~\rm ps$	γ	2, 3, 4
		$g = -0.352 \pm 0.015$		
3.570 ± 7	4^{+}		(γ)	2, 3, 4
4.072 ± 4	2^{+}		γ	2, 4
4.456 ± 5	0^{+}		γ	2, 4
4.850 ± 15	4^{+}		(γ)	2
5.002 ± 6			(γ)	2
5.234 ± 5	2^{+}		(γ)	2
5.304 ± 6	2^{+}		(γ)	2
5.387 ± 6	0^{+}		γ	2
5.614 ± 3	(3^{-})		(γ)	2
6.555 ± 8	(2)		(γ)	2
7.252 ± 8	5^{-}		(γ)	2
7.622 ± 7	$3^{-} + 4^{-}$			2
7.754 ± 5	4^{+}			2, 3
7.855 ± 6	(5^{-})			2, 3
8.554 ± 8	4^{+}			2
8.804 ± 9	3^{-}			2, 3
8.962 ± 21	(0^+)			2
9.770 ± 8	0^{+}			2
10.125 ± 11	2^{+}			2, 3

Table 20.1.0 Energy Levels of $^{20}\mathrm{O}$

$E_{\rm x}~({\rm keV})$	L	J^{π}
0.0	0	0^{+}
1674 ± 3 ^b)	2	2^{+}
3570 ± 7	4	4^{+}
4072 ± 4	2	2^{+}
4456 ± 5 ^c)	0	0^{+}
4850 ± 15	4	4^{+}
5002 ± 6		
5234 ± 5	2	2^{+}
5304 ± 6 °)	2	2^{+}
5387 ± 6	0	0^{+}
5614 ± 3	(3)	(3^{-})
6555 ± 8		(2)
7252 ± 8	5	5^{-}
7622 ± 7	3 + 4	$3^{-} + 4^{+}$
7754 ± 5	4	4^{+}
7855 ± 6	(5)	(5^{-})
8554 ± 8	4	4^{+}
8804 ± 9	3	3^{-}
8962 ± 21	(0)	(0^+)
9770 ± 8 $^{\rm d})$	0	0^{+}
10125 ± 11	2	2^{+}

Table 20.1.2 Energy Levels of $^{20}{\rm O}$ from $^{18}{\rm O}(t,\,p)^{20}{\rm O}$ $^{\rm a})$

^a) (79LA18): $E_t = 15$ MeV. See also Table 20.3 in (78AJ03) and (79FO17, 79PI01). ^b) E_{γ} leads to $E_x = 1673.68 \pm 0.15$ keV (73WA1A). ^c) 6p-2h structure: see (79LA04, 79LA18). ^d) This strong state suggests that (fp)² excitations are immediate (70LA18).

important (79LA18).

3.
$${}^{18}O(\alpha, 2p){}^{20}O$$
 $Q_m = -16.732$
See (83AJ01).

4. ${}^{18}O({}^{18}O, {}^{16}O){}^{20}O$ $Q_{\rm m} = -0.624$

See (83AJ01).

²⁰F (Figs. 20.2 and 20.5)

GENERAL: See table 20.1.5.

 $\begin{array}{l} \mu = +2.094(2) \ \mathrm{nm} \ (78\mathrm{LEZA}) \\ Q = 0.070(13) \ \mathrm{b} \ (78\mathrm{LEZA}) \end{array}$

Table 20.1.5 20 F – General

Reference Description

Model calculations

88BR11	Semi-empirical effective interactions for the 1s-0d shell
88ET01	Analysis of magnetic dipole transitions between sd-shell states
90DE34	20 F & 20 Na nuclei and the 19 Ne(p, $\gamma)^{20}$ Na reaction in a microscopic three-cluster model
90SH12	Extreme collective limits for the magnetic moments of odd-odd nuclei
90SK04	A = 18 nuclei, effective interaction in the sd shell (also calc. $A = 20$ energy spectra)
91BO45	Democratic mapping used to calc. low-lying states of sd- and fp-shell nuclei
91MA41	Calculations of sd-shell nuclei with realistic potential models (Bonn, Paris, Argonne)
91PI09	Differential cross section data analyzed using microscopic model; ²⁰ F levels deduced
91WA11	Composite Particle Representation Theory calcs. for $A = 20$ states compared to shell model
92BE14	Nuclear level densities and spin cut-off factors deduced from microscopic theory
92JI04	Bonn potential used to evaluate energy spectra of some light sd-shell nuclei using G-matrix
92WA22	Effective interactions for the 0p1s0d nuclear shell-model space
93PO11	Shell-model calcs. of properties of exotic (and normal) light nuclei $(A = 4-30)$
	Special States
90DE34	20 F & 20 Na nuclei and the 19 Ne(p. γ) 20 Na reaction; a possible 1 ⁻ state in 20 Na, 20 F
93BR12	Nature of the ²⁰ Na 2646-keV level and the stellar reaction rate for ¹⁹ Ne(p, γ) ²⁰ Na

Reference Description

Electromagnetic transitions

Review:

93EN03 Strengths of γ -ray transitions in A = 5-44 nuclei

Other articles:

88ET01 Analysis of magnetic dipole transitions between sd-shell states

90DE34 20 F & 20 Na nuclei and the 19 Ne(p, γ) 20 Na reaction in a microscopic three-cluster model

Astrophysics

Review:

88AP1A	Neutrino diffusion, primordial nucleosynthesis and the r-process
90 TH 1 E	Summary of topics presented at Workshop on Primordial Nucleosynthesis
93SO13	Methods for producing unstable nuclei & their relevance to major explosive stellar processes
Other artic	eles:
90MA1Z	Nuclear reaction uncertainties in standard and non-standard cosmologies
92CA1J	Quasi-static evolution of ONeMg cores, explosive ignition densities & the collapse explosion
93BR12	Nature of the ²⁰ Na 2646-keV level and the stellar reaction rate for ¹⁹ Ne(p, γ) ²⁰ Na

Complex reactions

87BA1T	Spin-isospin excitations in nuclei with relativistic	heavy	ions			
	D + (1 + 1) +	. •		1.	1	

87BU07 Projectile-like fragments from ${}^{20}Ne + {}^{197}Au$ — counting simultaneously emitted neutrons

87EL14 Isovector excitations in nuclei with composite projectiles: (³He, t), (d, ²He) & heavy ions

- 87MU03 Study of the emission of clusters by excited compound nuclei
- 89SA10 Total cross sections of reactions induced by neutron-rich light nuclei
- 89YO02 Quasi-elastic & deep inelastic transfer in ${}^{16}\text{O} + {}^{197}\text{Au}$ for E < 10 MeV/u

Other topics

- 88RO19 Predictions for observation of ${}^{20}F(\Lambda)$ levels using ${}^{20}Ne(\gamma, K^+)$ reaction
- 89GE10 Threshold pion-nucleus amplitudes as predicted by current algebra
- 90DE45 Searches for admixture of massive neutrinos into the electron flavour
- 93NA08 Charge-symmetry-breaking N-N interaction in 1s0d-shell nucl. from $\rho^0 \omega$ and $\pi^0 \eta$ mixing

Ground state properties

Reviews:

100110100	
89RA17	Compilation of exp. data on nuclear moments for ground & excited states of nuclei
92PY1A	Nuclear quadrupole moments for $Z = 1-20$: precise calcs. on atoms & small molecules
Other articl	les:
89SA10	Total cross sections of reactions induced by neutron-rich light nuclei
90SH12	Extreme collective limits for the magnetic moments of odd-odd nuclei
93RO22	Determination of k_0 - and Q_0 -factors of short-lived nuclides

Figure 2: Energy levels of ²⁰F. For notation see Fig. 1.

$E_{\rm x} \; ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	$ au$ ^b) or Γ	Decay	Reactions ^c)
0	$2^+; 1$	$\tau_{1/2} = 11.163 \pm 0.008 \text{ s}$	β^-	$\begin{array}{c}1,\ 2,\ 4,\ 5,\ 6,\ 7,\ 9,\ 10,\ 11,\ 14,\ 16,\\17,\ 17.5,\ 19,\ 20\end{array}$
0.65602 ± 0.03	3^{+}	$\tau_{\rm m} = 440 \pm 30~{\rm fs}$	γ	5, 6, 7, 9, 10, 11, 14, 17, 17.5, 19
0.82273 ± 0.03	4^{+}	$\tau_{\rm m} = 79 \pm 6 \ \rm ps$	γ	5, 6, 7, 9, 10, 11, 14, 17, 17.5, 19
0.98359 ± 0.03	1-	$\tau_{\rm m}=1.96\pm0.09~\rm ps$	γ	5, 6, 7, 9, 10, 11, 14, 15, 16, 17, 17.5, 19
1.056848 ± 0.004	1^{+}	$\tau_{\rm m}=7.4\pm1.6~{\rm fs}$	γ	6, 7, 9, 10, 11, 14, 15, 16, 17, 17.5, 19
1.30919 ± 0.03	2^{-}	$\tau_{\rm m}=1.87\pm0.09~\rm ps$	γ	5, 6, 7, 9, 11, 14, 16, 17, 17.5, 19
1.8238 ± 1.6	5^{+}	$\tau_{\rm m} \leq 65 ~{\rm fs}$	γ	2, 5, 6, 7, 9, 10, 14, 17.5, 19
1.84380 ± 0.03	2^{-}	$\tau_{\rm m} = 66 \pm 5 \text{ fs}$	γ	2, 7, 9, 11, 14, 17
1.97083 ± 0.04	(3^{-})	$\tau_{\rm m}=0.61\pm0.09~\rm ps$	γ	2, 5, 6, 7, 9, 11, 14, 17.5, 19
2.04398 ± 0.03	2^{+}	$\tau_{\rm m} = 3.9 \pm 0.7~{\rm fs}$	γ	2, 5, 6, 7, 9, 11, 14, 17, 17.5, 19
2.19430 ± 0.03	3^{+}	$\tau_{\rm m} = 4.1 \pm 1.2~{\rm fs}$	γ	2, 5, 6, 7, 9, 10, 11, 14, 17, 17.5, 19
2.86486 ± 0.10	(3^{-})	$\tau_{\rm m} = 29 \pm 4 \text{ fs}$	γ	5, 6, 7, 9, 11, 14, 17.5, 19
2.96611 ± 0.03	3^{+}	$\tau_{\rm m} = 5.2 \pm 1.1~{\rm fs}$	γ	$\underline{5}, \underline{6}, \underline{7}, \underline{9}, 11, \underline{14}, \underline{16.6}, \underline{17.5}, \underline{19}$
2.9680 ± 1.5	(4^{-})		γ	$\underline{5}, \underline{6}, \underline{7}, \underline{9}, \underline{14}, \underline{17.5}, \underline{19}$
3.17169 ± 0.14	$(0^-, 1^+)$		γ	5, 6, 7, 9, 11, 14, 17.5, 19
3.48841 ± 0.03	1^{+}	$\tau_{\rm m} = 11.7 \pm 0.7~{\rm fs}$	γ	5, 6, 7, 9, 11, 14, 15, 17.5, 19
3.52631 ± 0.04	(0^+)	$\tau_{\rm m} = 5.5 \pm 0.6~{\rm fs}$	γ	9,11,14,17.5
3.58654 ± 0.03	(2)	$\tau_{\rm m} = 1.1 \pm 0.6~{\rm fs}$	γ	$\underline{5}, \underline{6}, \underline{7}, \underline{9}, 11, \underline{14}, \underline{17.5}$
3.58980 ± 0.04	(3)			$\underline{5}, \underline{6}, \underline{7}, \underline{9}, 11, \underline{14}, \underline{17.5}$
3.669 ± 3	(4^{+})		(γ)	5, 6, 9
3.68017 ± 0.04	(2)	$\tau_{\rm m}=22.1\pm2.3~{\rm fs}$	γ	6, 7, 9, 11, 14, 17.5, 19
3.7610 ± 2.0	(≥ 3)		γ	5, 6, 7, 9, 14, 17.5, 19
3.96507 ± 0.04	(1^+)	$\tau_{\rm m} = 6.9 \pm 2.1~{\rm fs}$	γ	5, 6, 7, 9, 11, 14, 17.5, 19
4.08217 ± 0.04	(1^+)	$\tau_{\rm m} = 3.6 \pm 0.7~{\rm fs}$	γ	5, 6, 7, 8, 9, 11, 14, 17.5, 19
4.1993 ± 2.7	≥ 3		(γ)	5, 6, 14
4.2081 ± 2.6	≥ 3		(γ)	7, 9, 14, 19
4.27709 ± 0.04	$(1^+, 2^+)$	$\tau_{\rm m} = 7 \pm 4 \ {\rm fs}$	γ	5, 6, 7, 9, 11, 14, 19
4.3120 ± 2.6	(0^+)	$\tau_{\rm m} = 5.1 \pm 0.6~{\rm fs}$	(γ)	14
4.37147 ± 0.11		$\tau_{\rm m} < 4 ~{\rm fs}$	γ	6, 7, 11, 14, 19
4.509 ± 3			(γ)	$5, \underline{6}, \underline{7}, 14$

Table 20.2 Energy Levels of $^{20}{\rm F}$ $^{\rm a})$

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	τ $^{\rm b})$ or Γ	Decay	Reactions $^{\rm c}$)
4.518 ± 4			(γ)	$\underline{6}, \underline{7}, 9, 19$
4.5846 ± 3.0			(γ)	5, 6, 7, 14
4.59172 ± 0.07			γ	9,11,14,19
4.722 ± 12			(γ)	9
4.7312 ± 2.9			(γ)	6, 7, 14, 19
4.744 ± 12			(γ)	5, 9
4.7648 ± 2.7			(γ)	6, 7, 9, 14, 19
4.89276 ± 0.17			γ	5, 6, 11, 14, 19
4.8994 ± 2.8			(γ)	7, 9, 14
5.0415 ± 3.1			(γ)	$6, \underline{7}, 9, 14, 19$
5.0668 ± 3.1			(γ)	5, 6, <u>7</u> , 14
5.130 ± 3			(γ)	5,6,7,9,14,19
5.2261 ± 0.4		$\tau_{\rm m} = 1.4 \pm 1.1 ~\rm{fs}$	(γ)	6, 7, 9, 11, 14, 19
5.255 ± 15			(γ)	5
5.28279 ± 0.17		$\tau_{\rm m}=3.3\pm1.3~{\rm fs}$	γ	6, 9, 11, 14, 19
5.31917 ± 0.04		$\tau_{\rm m} = 4.9 \pm 1.1~{\rm fs}$	γ	$5, 6, \underline{7}, 9, 11, 14, 19$
5.3461 ± 3.3			(γ)	$\underline{7}, 9, 14$
5.352 ± 3			(γ)	6, 14
5.407 ± 3			(γ)	$\underline{5}, 6, 7, 9, 14, 19$
5.4521 ± 3.8			(γ)	5, 6, 7, 9, 14, 19
5.4572 ± 3.2			(γ)	<u>7</u> , 14
5.46589 ± 0.17			γ	<u>7</u> , 11, 14
5.55534 ± 0.04		$\tau_{\rm m} = 6.0 \pm 1.5~{\rm fs}$	γ	$\underline{7}, 9, 11, 14, 19$
5.574 ± 6			(γ)	$6, \underline{7}, 9, 19$
5.588 ± 2			(γ)	14
5.62313 ± 0.06			γ	6, 7, 9, 11, 14, 19
5.645 ± 12			(γ)	9
5.661 ± 12			(γ)	9
5.710 ± 6			(γ)	9, 14, 19
5.725 ± 10			(γ)	6
5.7649 ± 3.4			(γ)	$5, 6, \underline{7}, 9, 14, 19$
5.795 ± 14			(γ)	<u>7,</u> 9
5.8101 ± 0.4			(γ)	6, 11, 14, 19
5.93613 ± 0.03	2^{-}	$\tau_{\rm m} < 2 ~{\rm fs}$	γ	$\underline{5}, \underline{9}, 11, \underline{14}, \underline{19}$

Table 20.2 (continued) Energy Levels of 20 F ^a)

11

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	τ $^{\rm b})$ or Γ	Decay	Reactions ^c)
5.93910 ± 0.10			γ	$\underline{5}, \underline{9}, 11, \underline{14}, \underline{19}$
5.951 ± 4			(γ)	7
6.007 ± 14			(γ)	5, 9
6.01778 ± 0.03	2^{-}	$\tau_{\rm m}=3.3\pm1.2~{\rm fs}$	γ	$6, \underline{7}, 11, 14$
6.04498 ± 0.08			γ	$\underline{7}, 9, 11, 14, 19$
6.065 ± 14			(γ)	9
6.079 ± 14			(γ)	9
6.095 ± 14			(γ)	9
6.111 ± 14			(γ)	9
6.136 ± 14			(γ)	9
6.154 ± 14			(γ)	5, 6, 9, 19
6.189 ± 14			(γ)	6, <u>7</u> , 9
6.213 ± 14			(γ)	$\underline{7}, 9, 19$
6.251 ± 14			(γ)	9, 19
6.287 ± 14			(γ)	9
6.2991 ± 0.3			(γ)	6, 11, 19
6.335 ± 14			(γ)	6, 9, 19
6.355 ± 14			(γ)	$5, \underline{6}, 9, \underline{19}$
6.391 ± 14			(γ)	$\underline{6}, 9, \underline{19}$
6.413 ± 14			(γ)	6, 9, 19
6.444 ± 14			(γ)	9, 19
6.458 ± 14			(γ)	5, 9
6.481 ± 14			(γ)	6, 9, 19
6.509 ± 14			(γ)	9
6.519 ± 3	$0^+; T = 2$		γ	17
6.578 ± 14			(γ)	6, 9, 19
6.6270 ± 0.3	2^{-}	$\Gamma_{\rm cm} = 0.31 \pm 0.02 ~\rm keV$	γ , n	11, 12
6.6426 ± 0.3	(3, 4)	$\Gamma_{\rm cm} < 0.08~{\rm keV}$	γ , n	11
6.6475 ± 0.4	1-	$\Gamma_{\rm cm} = 1.59 \pm 0.10 ~\rm keV$	γ , n	11, 12
6.6934 ± 0.6	1-	$\Gamma_{\rm cm} = 13.8 \pm 0.8 ~\rm keV$	γ , n	6, 11, 12
6.7661 ± 0.9	$(2^-, 3, 4^+)$	$\Gamma_{\rm cm} \le 0.6 \ {\rm keV}$	γ , n	6, 11, 16.6, 19
6.825 ± 5			n	6, 12, 19
6.8567 ± 1.0	2	$\Gamma_{\rm cm} = 10 \pm 2 \ {\rm keV}$	γ , n	11
6.905 ± 8				19

Table 20.2 (continued) Energy Levels of 20 F ^a)

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	τ $^{\rm b})$ or Γ	Decay	Reactions ^c)
6.936 ± 4				6
6.9678 ± 1.0	1^{-}	$\Gamma_{\rm cm} = 5 \pm 1 \ {\rm keV}$	γ , n	6, 11, 12
(7.0670 ± 1.2)	0^{-}	$(\Gamma_{\rm cm}=2.4\pm0.6~{\rm keV})$	γ , n	11, 12
7.08	(1^+)	$\Gamma_{\rm cm} = 24 \ {\rm keV}$	n	6, 12
7.166 ± 2	$2^{(+)}$	$\Gamma_{\rm cm} = 8 \pm 1 ~\rm keV$	γ , n	6, 11, 12, 13
7.232 ± 7				6
7.283 ± 4				6
7.319 ± 8	(1)	$\Gamma_{\rm cm} = 33 \ {\rm keV}$	γ , n	6, 11, 12
7.37 ± 20	(1)	$\Gamma_{\rm cm} = 19 \ {\rm keV}$	n	6, 12
7.42 ± 20	(2^+)	$\Gamma_{\rm cm} = 10 \ {\rm keV}$	γ , n	6, 11, 12
7.495 ± 5	(2)	$\Gamma_{\rm cm}=80~{\rm keV}$	γ , n	6, 11, 12
7.655 ± 5	(2^+)	$\Gamma_{\rm cm} = 65 \ {\rm keV}$	γ , n	6, 11, 12
7.734 ± 6		$\Gamma_{\rm cm} = 140 \ {\rm keV}$	n	6, 12
7.843 ± 11	1^{-}	$(\Gamma_{\rm cm}=50\pm10~{\rm keV})$	$\gamma, {\rm n}$	6, 11
7.985 ± 4	1	$\Gamma_{\rm cm} = 14 \pm 2 \ {\rm keV}$	$\gamma, { m n}$	6, 11
8.05 ± 100	$2^+; T = 2$			18
8.062 ± 8				6
8.113 ± 4		$\Gamma_{\rm cm} = 195~{\rm keV}$	γ , n	6, 11, 12
8.147 ± 6		$\Gamma_{\rm cm} = 15 \ {\rm keV}$	n	6, 12
8.268 ± 12				6
8.349 ± 4				6
8.421		$\Gamma_{\rm cm} = 27 \ {\rm keV}$	n	12
8.50		$\Gamma_{\rm cm} = 140 \ {\rm keV}$	n	12
8.72		$\Gamma_{\rm cm} \leq 30 \ {\rm keV}$	n	6, 12
8.77		$\Gamma_{\rm cm} = 76 \ {\rm keV}$	n	6, 12
8.94		$\Gamma_{\rm cm} = 73 \ {\rm keV}$	n	6, 12
9.01				6
9.2			n	10, 12
9.52		$\Gamma_{\rm cm} = 110 \ {\rm keV}$	n	12
9.65		$\Gamma_{\rm cm} = 100 \ {\rm keV}$	n	12
9.83		$\Gamma_{\rm cm}=33~{\rm keV}$	n	12
9.85		$\Gamma_{\rm cm} = 120 \ {\rm keV}$	n	12
(9.886 ± 10)			n	12
9.90		$\Gamma_{\rm cm} \leq 30 \ {\rm keV}$	n	12

Table 20.2 (continued) Energy Levels of 20 F ^a)

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	τ $^{\rm b})$ or Γ	Decay	Reactions ^c)
(9.929 ± 10)			n	12
(9.981 ± 10)			n	12
10.024 ± 10		$\Gamma_{\rm cm} = 150~{\rm keV}$	n, α	12, 13
10.10 ± 50			n, α	13
10.228 ± 10	$0^{-}, 1$	$\Gamma_{\rm cm}\sim 200~{\rm keV}$	n, α	12, 13
10.480 ± 10		$\Gamma_{\rm cm}\sim 10~{\rm keV}$	n, α	12, 13
10.641 ± 10	1, 2	$\Gamma_{\rm cm}=70~{\rm keV}$	n	12
10.807 ± 10	$0^{-}, 1$	$\Gamma_{\rm cm}\sim 310~{\rm keV}$	n, α	12, 13
10.99		$\Gamma_{\rm cm} = 190 \ {\rm keV}$	n	12
(11.045 ± 10)		$\Gamma_{\rm cm}\sim 30~{\rm keV}$	n	12
(11.130 ± 10)		$\Gamma_{\rm cm} < 25 \ {\rm keV}$	n	12
(11.244 ± 10)		$\Gamma_{\rm cm} < 25 \ {\rm keV}$	n	12
(11.287 ± 10)			n	12
11.49 ± 50			n, α	13
12.0			n, α	13
12.2 ± 100			n, α	13
12.4			n, α	13
12.7			n, α	10, 13
13.2			n, α	13
13.7			n, α	12, 13
14.0				13

Table 20.2 (continued) Energy Levels of $^{20}{\rm F}$ $^{\rm a})$

^a) See also Tables 20.3–20.12.

b) Lifetimes quoted here are those adopted by (96RA04); see Table VII of that work.

^c) Reaction numbers are underlined in cases where the resolution of the experiment was inadequate for unequivocal identification of the level observed.

$E_{\rm i}~({\rm MeV}\pm{\rm keV})$	J_{i}^{π}	$E_{\rm f}~({\rm MeV}\pm{\rm keV})$	Branching $(\%)$	δ
0.65602 ± 0.03	3^{+}	0	100 ± 5	0.10 ± 0.05
0.82273 ± 0.03	4^{+}	0	33.2 ± 1.8	
		0.65602 ± 0.03	66.8 ± 6.1	
0.98359 ± 0.03	1-	0	100 ± 5	^b)
1.05682 ± 0.03	1^{+}	0	100 ± 4	
1.30919 ± 0.03	2^{-}	0	91.7 ± 3.6	^b)
		0.65602 ± 0.03	2.4 ± 0.4	
		0.98359 ± 0.03	4.9 ± 0.4	
		1.05682 ± 0.03	1.0 ± 0.2	
1.8238 ± 1.6	5^{+}	0.82273 ± 0.03	100 ± 5	-0.03 ± 0.07
1.84380 ± 0.03	2^{-}	0	91.3 ± 4.5	
		0.65602 ± 0.03	6.7 ± 0.4	
		1.30919 ± 0.03	1.9 ± 0.3	
1.97083 ± 0.04	(3^{-})	0	17.7 ± 1.8	-0.06 ± 0.14
		0.82273 ± 0.03	51.9 ± 2.9	$+0.27\pm0.30$
		0.98659 ± 0.03	0.8 ± 0.4	
		1.30919 ± 0.03	29.7 ± 3.9	
2.04398 ± 0.03	2^{+}	0	7.5 ± 0.6	
		0.65602 ± 0.03	91.8 ± 3.3	$0.08\substack{+0.06 \\ -0.1}$
		1.30919 ± 0.03	0.7 ± 0.2	
2.19430 ± 0.03	3^{+}	0	47.0 ± 2.1	0 ± 0.09
		0.82273 ± 0.03	51.2 ± 3.2	$+0.07\pm0.10$
		1.30919 ± 0.03	1.8 ± 0.4	
2.86486 ± 0.10	(3^{-})	0	38.1 ± 9.5	
		0.65602 ± 0.03	4.8 ± 2.4	
		0.82273 ± 0.03	11.9 ± 4.8	
		1.30919 ± 0.03	11.9 ± 2.4	
		1.84380 ± 0.03	7.1 ± 2.4	
		1.97083 ± 0.04	7.1 ± 2.4	
		2.04398 ± 0.03	11.9 ± 4.8	
		2.19430 ± 0.03	7.1 ± 2.4	
2.96611 ± 0.03	3^{+}	0	27.1 ± 1.5	
		0.65602 ± 0.03	12.2 ± 1.2	
		0.82273 ± 0.03	58.3 ± 2.7	
		2.19430 ± 0.03	2.4 ± 0.6	
2.96800 ± 1.50	(4^{-})	0.82273 ± 0.03	39 ± 4	
		1.97083 ± 0.04	61 ± 4	

Table 20.3 Radiative transitions in $^{20}{\rm F}$ $^{\rm a})$

$E_{\rm i}~({\rm MeV}\pm{\rm keV})$	$J_{ m i}^{\pi}$	$E_{\rm f}~({\rm MeV}\pm{\rm keV})$	Branching $(\%)$	δ
3.17169 ± 0.14	$(0^-, 1^+)$	0.98359 ± 0.03	100 ± 15	
3.48841 ± 0.03	1^{+}	0	72.6 ± 3.0	
		0.98359 ± 0.03	3.8 ± 0.4	
		1.05682 ± 0.03	7.1 ± 3.0	
		1.30919 ± 0.03	9.2 ± 0.6	
		1.84380 ± 0.03	7.4 ± 0.6	
3.52631 ± 0.04	(0^+)	1.05682 ± 0.03	100 ± 4	
3.58654 ± 0.03	(2)	0	32.9 ± 1.4	
		0.65602 ± 0.03	9.8 ± 0.6	
		0.98359 ± 0.03	4.0 ± 0.3	
		1.05682 ± 0.03	10.2 ± 3.4	
		1.84380 ± 0.03	0.7 ± 0.2	
		2.04398 ± 0.03	31.1 ± 1.4	
		2.19430 ± 0.03	8.8 ± 0.7	
		2.96611 ± 0.03	2.6 ± 0.2	
3.58980 ± 0.04	(3)	0	83.2 ± 3.3	
		0.65602 ± 0.03	10.7 ± 1.4	
		2.04398 ± 0.03	6.1 ± 0.9	
3.669 ± 3		0	100 ± 24	
3.68017 ± 0.04	(2)	0	46.5 ± 3.2	
		0.65602 ± 0.03	17.1 ± 2.1	
		1.05682 ± 0.03	23.5 ± 1.6	
		1.30919 ± 0.03	4.3 ± 1.1	
		1.84380 ± 0.03	8.6 ± 1.1	
3.96507 ± 0.04	(1^+)	0.98359 ± 0.03	26.1 ± 3.0	
		1.30919 ± 0.03	58.2 ± 4.5	
		1.84380 ± 0.03	10.4 ± 1.5	
		3.17169 ± 0.14	5.2 ± 1.5	
4.08217 ± 0.04	(1^+)	0	35.5 ± 2.6	
		0.98359 ± 0.03	4.6 ± 1.3	
		1.05682 ± 0.03	50.0 ± 3.3	
		2.04398 ± 0.03	9.9 ± 1.3	
4.27709 ± 0.04	$(1^+, 2^+)$	0.98359 ± 0.03	24.1 ± 2.8	
		1.05682 ± 0.03	56.5 ± 3.7	
		2.04398 ± 0.03	19.4 ± 2.8	
4.37147 ± 0.11		0.98359 ± 0.03	93.8 ± 7.7	
		3.68017 ± 0.04	6.2 ± 3.1	

Table 20.3 (continued) Radiative transitions in $^{20}{\rm F}$ $^{\rm a})$

$E_{\rm i} \ ({\rm MeV} \pm {\rm keV})$	J_{i}^{π}	$E_{\rm f}~({\rm MeV}\pm{\rm keV})$	Branching $(\%)$	δ
4.509 ± 3		0.65602 ± 0.03	100	
4.59172 ± 0.07		0.98359 ± 0.03	60.0 ± 8.6	
		1.05682 ± 0.03	40.0 ± 8.6	
4.89276 ± 0.17		0.82273 ± 0.03	35 ± 10	
		2.19430 ± 0.03	20 ± 5	
		3.58654 ± 0.03	45 ± 10	
5.28279 ± 0.17		0	57 ± 21	
		1.05682 ± 0.03	43 ± 7	
5.31917 ± 0.04		0	22.6 ± 3.6	
		0.98359 ± 0.03	56.0 ± 4.8	
		1.05682 ± 0.03	3.6 ± 1.2	
		1.30919 ± 0.03	11.9 ± 3.6	
		1.84380 ± 0.03	6.0 ± 1.2	
5.46589 ± 0.17		2.86486 ± 0.10	100 ± 50	
5.55534 ± 0.04		0	30.6 ± 2.4	
		0.65602 ± 0.03	4.1 ± 1.2	
		1.30919 ± 0.03	54.7 ± 2.9	
		1.84380 ± 0.03	7.1 ± 1.8	
		2.86486 ± 0.10	3.5 ± 0.6	
5.62313 ± 0.06		0	13.8 ± 3.4	
		0.98359 ± 0.03	39.7 ± 6.9	
		1.30919 ± 0.03	31.0 ± 5.2	
		2.04398 ± 0.03	15.5 ± 3.4	
5.93613 ± 0.03	2^{-}	0	6.6 ± 0.7	
		0.65602 ± 0.03	28.7 ± 1.4	
		0.98359 ± 0.03	4.0 ± 0.4	
		1.05682 ± 0.03	0.6 ± 0.1	
		1.30919 ± 0.03	0.5 ± 0.1	
		1.84380 ± 0.03	1.2 ± 0.2	
		1.97083 ± 0.04	30.0 ± 1.1	
		2.04398 ± 0.03	1.2 ± 0.2	
		2.19430 ± 0.03	4.0 ± 0.3	
		2.86486 ± 0.10	1.4 ± 0.2	
		2.96611 ± 0.03	1.1 ± 0.2	
		3.48841 ± 0.03	9.6 ± 0.5	
		3.58654 ± 0.03	2.1 ± 0.2	
		3.58980 ± 0.04	1.4 ± 0.3	

Table 20.3 (continued) Radiative transitions in $^{20}{\rm F}$ $^{\rm a})$

$E_{\rm i}~({\rm MeV}\pm{\rm keV})$	J_{i}^{π}	$E_{\rm f}~({\rm MeV}\pm{\rm keV})$	Branching $(\%)$	δ
		3.68017 ± 0.04	5.9 ± 0.3	
		3.96507 ± 0.04	0.7 ± 0.2	
		4.08217 ± 0.04	0.9 ± 0.1	
5.93910 ± 0.10		0	12.4 ± 3.4	
		0.98359 ± 0.03	23.6 ± 3.4	
		1.84380 ± 0.03	31.5 ± 3.4	
		2.04398 ± 0.03	13.5 ± 3.4	
		3.58654 ± 0.03	19.1 ± 3.4	
6.01778 ± 0.03	2^{-}	0	26.0 ± 1.1	
		0.65602 ± 0.03	3.3 ± 0.1	
		0.98359 ± 0.03	17.2 ± 0.7	
		1.05682 ± 0.03	0.7 ± 0.1	
		1.30919 ± 0.03	1.4 ± 0.1	
		1.84380 ± 0.03	4.6 ± 0.2	
		1.97083 ± 0.04	1.0 ± 0.1	
		2.04398 ± 0.03	0.7 ± 0.1	
		2.19430 ± 0.03	2.9 ± 0.2	
		2.86486 ± 0.10	0.4 ± 0.1	
		2.96611 ± 0.03	8.2 ± 0.3	
		3.48841 ± 0.03	16.0 ± 0.8	
		3.58654 ± 0.03	9.7 ± 0.8	
		3.58980 ± 0.04	5.3 ± 0.2	
		3.68017 ± 0.04	0.4 ± 0.1	
		3.96507 ± 0.04	0.14 ± 0.03	
		4.08217 ± 0.04	2.0 ± 0.1	
6.04498 ± 0.08		1.30919 ± 0.03	27.7 ± 2.1	
		1.84380 ± 0.03	55.4 ± 3.1	
		3.48841 ± 0.03	8.2 ± 1.5	
		3.58654 ± 0.03	3.1 ± 0.5	
		3.96507 ± 0.04	5.6 ± 1.0	
$6.60135 \pm 0.17 \ ^{\rm c})$		0	9.85 ± 0.42	
		0.98359 ± 0.03	1.45 ± 0.06	
		1.05682 ± 0.03	4.30 ± 0.17	
		1.30919 ± 0.03	2.47 ± 0.10	
		1.84380 ± 0.03	1.98 ± 0.08	
		1.97083 ± 0.04	0.06 ± 0.01	
		2.04398 ± 0.03	5.47 ± 0.21	

Table 20.3 (continued) Radiative transitions in $^{20}{\rm F}$ $^{\rm a})$

$E_{\rm i} ({\rm MeV}\pm{\rm keV})$	$J_{ m i}^{\pi}$	$E_{\rm f}~({\rm MeV}\pm{\rm keV})$	Branching $(\%)$	δ
		3.48841 ± 0.03	2.52 ± 0.09	
		3.52631 ± 0.04	1.98 ± 0.08	
		3.58654 ± 0.03	4.24 ± 0.17	
		3.68017 ± 0.04	0.99 ± 0.05	
		3.96507 ± 0.04	1.02 ± 0.05	
		4.08217 ± 0.04	0.73 ± 0.05	
		4.27709 ± 0.04	1.23 ± 0.05	
		4.37147 ± 0.11	0.54 ± 0.03	
		4.59172 ± 0.07	0.49 ± 0.04	
		4.89276 ± 0.17	0.27 ± 0.03	
		5.22610 ± 0.40	0.05 ± 0.02	
		5.28279 ± 0.17	0.24 ± 0.02	
		5.31917 ± 0.04	0.90 ± 0.05	
		5.46589 ± 0.17	0.09 ± 0.02	
		5.55534 ± 0.04	1.85 ± 0.09	
		5.62313 ± 0.06	0.64 ± 0.10	
		5.81010 ± 0.40	0.04 ± 0.01	
		5.93613 ± 0.03	15.62 ± 0.84	
		5.93910 ± 0.10	1.07 ± 0.16	
		6.01778 ± 0.03	37.70 ± 0.16	
		6.04498 ± 0.08	2.17 ± 0.14	
		6.29910 ± 0.03	0.05 ± 0.02	
d)				

Table 20.3 (continued) Radiative transitions in $^{20}{\rm F}$ $^{\rm a})$

^a) Branching ratios from (96RA04) renormalized to add to 100%.
^b) Pure E1.
^c) Capturing state. See Table 20.8 and (96RA04).
^d) For higher states see Tables 20.6. See also Table 20.7 in (87AJ02).

1. ${}^{20}F(\beta^{-}){}^{20}Ne$ $Q_m = 7.025$

The half-life of 20 F is 11.163 ± 0.008 s (92WA04). 20 F decays principally to 20 Ne* (1.63): see 20 Ne, reaction 33.

1.3 (a) ${}^{6}\text{Li}({}^{15}\text{N}, p){}^{20}\text{F}$ $Q_{\rm m} = 6.915$ (b) ${}^{7}\text{Li}({}^{15}\text{N}, d){}^{20}\text{F}$ $Q_{\rm m} = 1.068$

Excitation functions were measured for incident energies $E_i = 10-30$ MeV (89CO22).

1.5 ⁶Li(¹⁸O,
$$\alpha$$
)²⁰F $Q_{\rm m} = 10.896$

Activation cross sections were measured for $E_i = 10-40$ MeV by (87DI07).

1.8 (a) ${}^{10}B({}^{11}B, p){}^{20}F$ $Q_m = 13.447$ (b) ${}^{11}B({}^{11}B, d){}^{20}F$ $Q_m = 4.217$

Excitation functions have been measured at $E_i = 6-32$ MeV (88CO12).

2. ${}^{12}C({}^{9}Be, p){}^{20}F$ $Q_{m} = 4.076$

For excitation curves involving 20 F* (0, 1.82 + 1.84 + 1.97 + 2.04 + 2.19) see (82HU06, 83JA09). At $E({}^{9}$ Be) = 12 to 27 MeV angular distributions are reported for p₀ and p₁₊₂₊₃₊₄: see (83AJ01).

3. ¹³C(⁷Li, ⁷Li)¹³C $E_{\rm b} = 18.050$

For fusion cross sections see (82DE30). See also ^{13}C in (91AJ01).

4. ${}^{13}C({}^{9}Be, d){}^{20}F$ $Q_{\rm m} = 1.354$

See (83AJ01).

5. ¹³C(¹¹B,
$$\alpha$$
)²⁰F $Q_{\rm m} = 9.385$

The upper of the two states at 2.97 MeV has an excitation energy of 2968 ± 1.5 keV and γ branching ratios of (61 ± 4) and $(39 \pm 4)\%$, respectively, to ${}^{20}\text{F}^*$ (1.97, 0.82) $[J^{\pi} = (3^-), 4^+]$: this is consistent with $J^{\pi} = (4^-)$ for ${}^{20}\text{F}^*$ (2.968) (78LE19).

The reactions ${}^{13}C({}^{11}B, \alpha){}^{20}F$ and ${}^{11}B({}^{13}C, \alpha){}^{20}F$ were used to populate ${}^{20}F$ states up to $E_x = 10.1$ MeV by (88LI28). Comparisons with ${}^{14}N({}^{7}\text{Li}, p){}^{20}F$ were discussed.

6. ¹⁴N(⁷Li, p)²⁰F
$$Q_{\rm m} = 10.499$$

Tables 20.5 here and in (83AJ01) display ²⁰F states reported in this reaction.

7. ¹⁶O(⁷Li, ³He)²⁰F
$$Q_{\rm m} = -4.743$$

For reported states see Table 20.6 in (83AJ01).

8. (a) ${}^{18}O(d, n){}^{19}F$ $Q_m = 5.770$ $E_b = 12.371$ (b) ${}^{18}O(d, p){}^{19}O$ $Q_m = 1.731$ (c) ${}^{18}O(d, d){}^{18}O$ (d) ${}^{18}O(d, {}^{3}He){}^{17}N$ $Q_m = -10.448$ (e) ${}^{18}O(d, \alpha){}^{16}N$ $Q_m = 4.246$

See (83AJ01) for a listing of the polarization measurements. For VAP measurements at $E_{\rm d} = 52$ MeV (reaction (e)), see (82MA25). See also ¹⁹O and ¹⁹F in (95TI1C), and ¹⁶N and ¹⁷N in (93TI07). See also (86SE1B).

9. ¹⁸O(³He, p)²⁰F
$$Q_{\rm m} = 6.877$$

$E_{\rm x}~({\rm keV})$	J^{π}	$E_{\rm x}~({\rm keV})$	J^{π}	$E_{\rm x}~({\rm keV})$	J^{π}
0	2^{+}	5128 ± 5	$(2^-, 3, 4^+)$	6936 ± 4	
657 ± 6	3^{+}	5222 ± 4	$(1, 2)^{-}$	6968 ± 4	
820 ± 5	4^{+}	5282 ± 11	с)	6991 ± 7	
984 ± 5	1-	5316 ± 7	с)	$7034 \pm 9 {\rm ~d})$	
1049 ± 5	1+	5350 ± 5	3^{+}	7080 ± 7	
1310 ± 6	2^{-}	5405 ± 4	с)	7154 ± 5	
1826 ± 4 ^b)	5^{+}	5448 ± 6 ^b)		7232 ± 7	
1969 ± 5	(3^{-})	5560 ± 6 ^b)		7283 ± 4	
2040 ± 3	2^{+}	5612 ± 5 ^b)	с)	7319 ± 8	
2194 ± 6	3^{+}	5725 ± 10	$(2 \rightarrow 5)$	7370 ± 20	
2863 ± 5	(3^{-})	5765 ± 8	3^{+}	7419 ± 20	
2962 ± 3 $^{\rm b})$		5803 ± 7	1^{+}	7495 ± 5	
3171 ± 4	1+	5940 ± 5	c)	7655 ± 5	
3491 ± 3 $^{\rm b})$	0^{+}	6021 ± 4 ^b)		7734 ± 6	
3578 ± 5 $^{\rm e})$		6090 ± 7	(0^{-})	7865 ± 16	
3674.2 ± 2.8 ^e)		6160 ± 5	$((1^{-}), 2, 3^{+})$	7975 ± 5	
3756.5 ± 2.3	$(2^-, 3^+)^{f})$	6193 ± 6	$(2^-, 3, 4^+)$	8062 ± 8	
3967 ± 5	1+	6297 ± 5 ^b)	с)	8113 ± 4	
$4080 \pm 4 e$)		6344 ± 9 ^b)	c)	8147 ± 6	
4198 ± 3 ^b)		6379 ± 5 ^b)	с)	8268 ± 12	
4274 ± 3 ^b)		6417 ± 4	$(3^-, 4, 5, (6^+))$	8349 ± 4	
4366 ± 8	$0^{(-)}$	6470 ± 4	с)	8573	
4512 ± 4	$(3^-, 4^-, 5^+, 6^+)$	6565 ± 6 ^b)	с)	8697	
4579 ± 4 ^b)		6600 ± 8 ^b)	с)	8754	
4728 ± 5	$(3^{-}, 4^{-}, 4^{+}, 5^{+})$	6633 ± 3 ^b)		8792	
4760 ± 5	$(4 \rightarrow 6^-, 6 \rightarrow 8^+)$	6695 ± 3	с)	8907	
4889 ± 4 ^b)	c)	6756 ± 3	$(2^-, 3, 4^+)$	8946	
5032 ± 4	2^{-}	6823 ± 3		9022	
5064 ± 5	$(1^-, 2, 3^+)$				

Table 20.5 Some states of $^{20}{\rm F}$ reported in $^{14}{\rm N}(^{7}{\rm Li},\,{\rm p})$ $^{\rm a})$

^a) $E(^{7}\text{Li}) = 16$ MeV. Levels for $E_x = 0-4366$ keV are from (77FO11). Levels for 4512–9022 are from (85FO01). Please note that the density of states is very high and that when J^{π} assignments are made [based on cross sections and the $2J_f + 1$ relationship, with slopes which are different for evenand odd-parity states], these depend on the states having been resolved.

^b) Unresolved.

^c) See (85FO07).

d) All the observed groups for $E_{\rm x} \ge 7.0$ MeV appear to be due to unresolved states. See (85F007) for $\sigma_{\rm tot}(0^{\circ} - 90^{\circ})$ and J^{π} .

^e) Possible doublet.

^f) If single state.

$E_{\rm x}~({\rm keV})$	L transfer	J^{π}	$E_{\rm x}~({\rm keV})$	L transfer	J^{π}
0	2		5404 ± 10		$(3, 4, 5)^+$
656 ± 10	2		5445 ± 14	2	$(1, 2, 3)^+$
823 ± 10	4		5543 ± 12	1	$(0, 1, 2)^{-}$
997 ± 10			5562 ± 12	1	$(0, 1, 2)^{-}$
1058 ± 11	0 + 2		5627 ± 12	1	$(0, 1, 2)^{-}$
1317 ± 10	1		5645 ± 12	3	$(2, 3, 4)^{-}$
1824 ± 10	4		5661 ± 12		
1974 ± 11	3		5708 ± 12		
2047 ± 11	2		5761 ± 14	2	
2201 ± 11	2 + 4	3^{+}	5795 ± 14	0	
2860 ± 11	(2)	$(1,2,3)^+$	5930 ± 14	1	
2968 ± 10	2 + 4		6006 ± 14		
3176 ± 11	2		6049 ± 14		
3486 ± 10	0 + 2		6065 ± 14		
3587 ± 10	2		6079 ± 14		
3680 ± 11	4	$(3,4,5)^+$	6095 ± 14		
3762 ± 11	3	2^{-}	6111 ± 14		
3961 ± 12	0 + 2		6136 ± 14		
4082 ± 10	0	1^{+}	6154 ± 14	4	3^{+}
4210 ± 14	4	$(3, 4, 5)^+$	6189 ± 14		
4282 ± 10	4	$(3, 4, 5)^+$	6213 ± 14	1	2^{-}
4516 ± 10	3	2^{-}	6251 ± 14		
4590 ± 12			6287 ± 14		
4722 ± 12	4	$(3, 4, 5)^+$	6335 ± 14		
4744 ± 12	4	$(3, 4, 5)^+$	6355 ± 14		
4768 ± 11			6391 ± 14		
4904 ± 12			6413 ± 14		
5041 ± 10	1		6444 ± 14		
5126 ± 12			6458 ± 14		
5223 ± 10	1		6481 ± 14		
5278 ± 10	0	$(1)^+$	6509 ± 14	0	
5319 ± 10	1		6578 ± 14		
5340 ± 12	2				

Table 20.5.5 Some states in $^{20}{\rm F}$ from $^{18}{\rm O}(^{3}{\rm He},\,{\rm p})^{20}{\rm F}$ $^{\rm a})$

^a) (92CH39). For earlier work see table 20.8 in (78AJ03). ^b) Uncertainties in E_x were supplied by M.S. Chowdhury in a private communication to S. Raman, 22 March 1994.

In earlier work, proton groups have been observed to states of ²⁰F with $E_x < 4.1$ MeV: see Table 20.8 in (78AJ03). Angular distributions, γ -ray polarization data and branching ratios lead to the J^{π} values shown in that table. A state at $E_x = 6519 \pm 3$ keV is also populated. It decays primarily (>90%) to ²⁰F* (1.06) [$J^{\pi} = 1^+$]: the γ -rays are isotropic. ²⁰F* (6.52) is the 0⁺; T = 2 analog of the ground state of ²⁰O: see (78AJ03).

More recently, the reaction was studied at $E(^{18}\text{O}) = 18 \text{ MeV} (92\text{CH39})$. Energy levels were measured up to $E_x \approx 8 \text{ MeV}$. See Table 20.5.5. See also (87SE17).

10. ¹⁸O(
$$\alpha$$
, d)²⁰F $Q_{\rm m} = -11.476$

At $E_{\alpha} = 64.4$ MeV angular distributions have been reported to ${}^{20}\text{F}^*$ (0, 0.66, 0.82, 1.06, 1.82, 2.20, 2.97, 4.24, 5.07, 5.44, 5.80, 6.67, 7.29, 7.75, 8.34, 8.75, 9.00, 9.24, 9.78, 10.01, 10.51, 10.85, 11.56, 12.32, 12.72): *L* assignments are made [the groups above $E_{\rm x} \approx 2.9$ MeV are probably unresolved] (86KA36).

11. ¹⁹F(n,
$$\gamma$$
)²⁰F $Q_{\rm m} = 6.601$
 $Q_0 = 6601.35 \pm 0.04 \text{ keV} (96\text{RA04})$

The thermal capture cross section is 9.51 ± 0.09 mb. A number of resonances have been observed: see Table 20.6. The primary γ -rays resulting from capture at thermal energies ($^{20}F^*$ (6.60); $J^{\pi} = 1^+$) and at $E_n = 27, 44$, and 49 keV ($^{20}F^*$ (6.63, 6.643, 6.647); $J^{\pi} = 2^{-}$, (3, 4) and 1^{-}) have been studied by several groups: see (72A-J02) and Table 20.7 in (87AJ02). For more recent high precision work see (87KE09) and the very comprehensive study of (96RA04), which included measurements of excitation energies and lifetimes and comparison of level properties with a largebasis shell-model calculation. It appears that the thermal capture $[^{20}F^*$ (6.60)] is dominated by two intense transitions (E1) to ${}^{20}F^*$ (5.94, 6.02) [both $J^{\pi} = 2^{-}$]. If the ground-state transition is mainly M1, these two E1 transitions are about 150 times stronger (in terms of W.u.) than the M1 transition (68SP01). See also (83HU12). It appears also that at ${}^{20}F^*$ (6.63, 6.64, 6.65) $[J^{\pi} = 2^-, (3, 4) \text{ and } 1^-]$ the E1 transitions to the ground state are very weak, even though other E1 transitions in the decay of these three states have approximately normal strengths. The strongest transitions from the 27 keV resonance appear to be M1. On the basis of the J^{π} values of the final states involved in the decay of the 44 keV resonance, it appears that J = 3 or 4 for this resonance, assuming dipole transitions. Branching ratios for other ²⁰F states involved in this reaction are shown in Table 20.3.

Table 20.8 displays excitation energies for ²⁰F states involved in cascade and in primary γ -transitions from the recent work of (96RA04). For earlier references see (78AJ03). See also (91IG1A, 91HI23).

Resonances in $(\eta, \gamma) (\eta, \gamma)$				
$E_{\rm n}~({\rm keV})$	$J^{\pi b}$)	$\Gamma_{\gamma} \ (eV)$	$\Gamma_{\rm c.m.}~(\rm keV)$	$E_{\rm x}$ in ²⁰ F (MeV)
27.07 ± 0.05	2-	1.4 ± 0.3	0.355 ± 0.03	6.6270
43.5 ± 0.1	(3, 4)	c)	< 0.08	6.6426
48.7 ± 0.3	1-	1.6 ± 0.3	1.96 ± 0.3	6.6475
97.0 ± 0.5	1-	6.0 ± 1.8 ^d)	13.5 ± 1.5	6.6934
173.5 ± 0.9		e)	≤ 0.6	6.7661
269 ± 1	2	3.5 ± 0.8	10 ± 2	6.8567
(270 ± 8)	1	≤ 4.4		(6.859)
386 ± 1	1-	2.4 ± 0.8	5 ± 1	6.9678
(490.5 ± 1)	0^{-}	$(\geq 10 \pm 3)$	(2.4 ± 0.6)	(7.0671)
595 ± 2	2	6.3 ± 1.2	8 ± 1	7.166
760		2.9	60	7.32
865			60	7.42
950		2.8	95	7.50
1125		3.9	80	7.67
(1295 ± 12)	1-	8.6	(50 ± 10)	(7.831)
1460 ± 3	1	$\geq 11 \pm 3$	14 ± 2	7.988
1635		11 ± 3	180	8.15

Table 20.6 res in 19 F(n γ) 20 F ^a) р.

^a) For complete references see Table 20.9 in (78AJ03).

^b) Assumed.

^{c)} $g\Gamma_{\rm n} = 0.086 \pm 0.02$ eV. ^d) May be two resonances. ^e) $g\Gamma_{\rm n} = 0.35 \pm 0.1$ eV.

States of T involved in T(ii, 7) T			
$E_{\rm x}~({\rm keV})$	$E_{\rm x}~({\rm keV})$	$E_{\mathbf{x}}$ (keV)	$E_{\rm x}~({\rm keV})$
0	2864.86 ± 0.10	4082.17 ± 0.04	5555.34 ± 0.04
656.02 ± 0.03	2966.11 ± 0.03	4277.09 ± 0.04	5623.13 ± 0.06
822.73 ± 0.03	3171.69 ± 0.14	4371.47 ± 0.11	5810.1 ± 0.4
983.59 ± 0.03	3488.41 ± 0.03	4591.72 ± 0.07	5936.13 ± 0.03
1056.82 ± 0.03	3526.31 ± 0.04	4892.76 ± 0.17	5939.10 ± 0.10
1309.19 ± 0.03	3586.54 ± 0.03	5226.1 ± 0.4	6017.78 ± 0.03
1843.80 ± 0.03	3589.80 ± 0.04	5282.79 ± 0.10	6044.92 ± 0.03
1970.83 ± 0.04	3680.17 ± 0.04	5319.17 ± 0.04	6299.1 ± 0.3
2043.98 ± 0.03	3965.07 ± 0.04	5465.89 ± 0.17	6601.35 ± 0.03
2194.30 ± 0.03			

Table 20.8States of ²⁰F involved in ¹⁹F(n γ)²⁰F ^a)

^a) (96RA04). For the earlier work see Tables 20.11 in (78AJ03) and 20.8 in (87AJ02).

$E_{\rm n}~({\rm keV})$	$\Gamma_{\rm lab}~({\rm keV})$	J^{π}	$^{20}F^{*}$ (MeV)
26.99	0.325 ± 0.020	2^{-}	6.6269
48.78	1.67 ± 0.10	1^{-}	6.6476
97.50	14.5 ± 0.8	1^{-}	6.6939
500	$25^{\rm b})$	(1^+)	7.076
600	15 ^b)	(2^+)	7.171
747	35 ^b)	(1)	7.311
794	20	(1)	(7.355)
852	11 ^b)	(2^+)	7.410
935	60	(2)	7.489
1100	50	(2^+)	7.65
1250	150		7.79
1620	220		8.14
2000	150		8.50
2250	≤ 30		8.74
2280	80		8.77
2520	150		8.99
3250	150		9.69
3420	130		9.85
3460 ± 10			(9.886)
3505 ± 10			(9.929)
3560 ± 10			(9.981)
3605 ± 10	200		10.024
3820 ± 10	≈ 200	$0^{-}, 1$	10.228
4085 ± 10	≈ 10		10.480
4255 ± 10	≈ 60	1, 2	10.641
4430 ± 10	≈ 330	$0^{-}, 1$	10.807
4680 ± 10	≈ 30		11.045
4770 ± 10	< 25		11.130
4890 ± 10	< 25		11.244
(4935)			(11.287)

Table 20.9 Resonances in $^{19}{\rm F(n,\ n)^{19}F^{\ a})}$

^a) For references see Table 20.12 in (78AJ03). ^b) $\Gamma_{\gamma} = 3.3 \pm 1.0, \, 6.3 \pm 1.2, \, 2.4 \pm 0.8 \text{ and } 1.5 \pm 0.5 \text{ eV} \text{ for } {}^{20}\text{F}^{*}$ (7.08, 7.17, 7.31, 7.41).

12. (a)
$${}^{19}F(n, n){}^{19}F$$

(b) ${}^{19}F(n, n'){}^{19}F^*$
(c) ${}^{19}F(n, 2n){}^{18}F$
 $Q_m = -10.431$

The scattering length (bound) $b = 5.654 \pm 0.010$ fm, $\sigma_{\text{free}} = 3.641 \pm 0.010$ b (79KO26). The difference in the spin-dependent bound scattering lengths, $b^+ - b^- = -0.19 \pm 0.02$ fm (79GL12). The total cross section has been measured for $E_n = 0.5$ to 29.1 MeV: see (78AJ03). Observed resonances are displayed in Table 20.9.

Average cross sections for the region $E_n = 0.55-5.5$ MeV were measured by (88KO18). See also the neutron cross section tables and curves of (88MCZT, 90NA1E).

Observed resonances in the excitation functions involving ${}^{19}F^*(0.11, 1.5(u))$ are displayed in Table 20.10. For reaction (c) see (83CS1A). See also (86BA1M, 86SA1F).

13. ¹⁹F(n,
$$\alpha$$
)¹⁶N $Q_{\rm m} = -1.524$ $E_{\rm b} = 6.601$

Reported resonances are shown in Table 20.11. See also the neutron cross section curves and tables of (90NA1E).

14. ¹⁹F(d, p)²⁰F
$$Q_{\rm m} = 4.377$$

States of 20 F observed in this reaction are displayed in Table 20.12. See (78AJ03) for a discussion of the earlier work. See also (83JI04, 88RO10, 92WA04, 94GO16).

15.
$${}^{20}O(\beta^{-}){}^{20}F$$
 $Q_{\rm m} = 3.814$

The decay is to ${}^{20}F^*(1.06, 3.49)$, $J^{\pi} = 1^+$: see ${}^{20}O$. For ${}^{20}F^*(1.06) E_x = 1056.848 \pm 0.004$ keV. The β branch to ${}^{20}F^*(3.17) (1^+)$ is < 0.012%, log $f_0t > 5.1$ (87AL06).

16. ²⁰Ne(
$$\pi^-, \gamma$$
)²⁰F $Q_{\rm m} = 132.543$

$E_{\rm n}$	$\Gamma_{\rm lab}$	Resona	nce in	$E_{\rm x}$ in $^{20}{\rm F}$
(keV)	(keV)	$\gamma_{0.11}$ ^a)	$\gamma_{1.5}$ ^b)	(MeV)
240		r		6.829
270		r		6.858
386		r		6.968
420		r		7.000
490		r		7.066
620		r		7.190
800		r		7.361
860		r		7.418
$1150^{\rm c})$		r		7.693
1250		r		7.788
1580		r		8.101
1645	15	r	r	8.163
1916	28		r	8.421
2240	45		r	8.728
2465	75	r	r	8.942
2700		r		9.165
3075	120		r	9.521
3215	80		r	9.654
3400	35		r	9.830
3475	≤ 30		r	9.901
3620	120	r	r	10.038
4240	90	r	r	10.627
4620	200		r	10.988
4900	≤ 50		r	11.254
7300		r		13.532

Table 20.10 States of $^{20}{\rm F}$ from resonances in $^{19}{\rm F}({\rm n,~n'}\gamma)^{19}{\rm F}$

 $\mathbf{r}=\mathrm{resonant}$

^a) Resonances in yield of 0.11 MeV γ -rays at $\theta = 92^{\circ}$: values for $E_{\rm n}$ read by reviewer from differential cross section tables. See Table 20.13 in (78AJ03) for references. ^b) Resonances in (n, n' γ) yields with $E_{\rm x}(^{19}{\rm F}) \approx 1.5$ MeV: see

(73MA14).

 \dot{c}) Appears to be unresolved.

$E_{\rm n} ({\rm MeV \pm keV})$	$E_{\rm x}~({\rm MeV})$
3.4	9.8
3.61 ± 50	10.03
3.69 ± 50	10.10
3.76 ± 40	10.17
4.09 ± 40	10.48
4.39 ± 40	10.77
4.52 ^b)	10.89
4.82 ± 40	11.18
5.15 ± 50	11.49
5.40 ^b)	11.73
5.7	12.0
5.9 ± 100 ^b)	12.2
6.10	12.39
6.55	12.82
6.9	13.2
7.44	13.66
7.8	14.0

Table 20.11 Resonances in $^{19}{\rm F}({\rm n},\,\alpha)^{16}{\rm N}$ $^{\rm a})$

^a) For references see Table 20.14 in (78AJ03). See also graph in (76GA1A).

^b) Not resolved.

The branching ratio to ${}^{20}\text{F}^*$ (1.06) $[J^{\pi} = 1^+]$ is compared to the analogous M1 decay width ${}^{20}\text{Ne}^*$ (11.24) $[J^{\pi} = 1^+] \rightarrow {}^{20}\text{Ne}_{\text{gs}}$. The M1 amplitude contains $(47 \pm 16)\%$ spin-flip, in agreement with shell-model calculations. The population of ${}^{20}\text{F}^*$ (0, 1.31, 1.84) $[J^{\pi} = 2^+, 2^-, 2^-]$ is also reported (81MA04). See also (86BA1P) and (83KN05).

$$16.2^{20} \text{Ne(n, p)}^{20} \text{F}$$
 $Q_{\rm m} = -6.243$

Differential cross sections were measured at $E_n = 198$ MeV to study Gamow-Teller strength up to $E_x \approx 10$ MeV in ²⁰F (90HE1G, 91PO14). See also the measurement of ground-state correlations described in (88MA53). Cross sections for 14 MeV neutrons are presented for use in activation analysis by (89PE04).

16.4 ²⁰Ne(d, pp)²⁰F
$$Q_{\rm m} = -8.467$$

Angular distribution measurements with polarized deuterons ($E \approx 2 \text{ GeV}$) were made in a study of spin-isospin excitations by (88HE1I).

16.6 ²⁰Ne(t, ³He)²⁰F
$$Q_{\rm m} = -7.006$$

Measurements at $E_{\rm t} = 33.4$ MeV (90CL06) reveal a strongly excited state in 20 F at $E_{\rm x} = 6.75 \pm 0.04$ MeV with an angular distribution suggesting (3 < J < 6). In more recent work by the same authors (93CL1B), the reactions 20 Ne(t, 3 He) 20 F and 20 Ne(3 He, t) were studied at $E_{\rm t} = 33.4$ MeV. Evidence was obtained that the $J^{\pi} = (3^+), E_{\rm x} = 2.966$ MeV state in 20 F should be identified as the analog of the $E_{\rm x} = 2.646$ MeV state in 20 Na.

16.8 ²⁰Ne(¹²C, ²⁰F)¹²N
$$Q_{\rm m} = -13.870$$

Measurements at 900 MeV/nucleon for studies of spin-isospin excitations were reported by (88RO1H).

17. ²¹Ne(d, ³He)²⁰F
$$Q_{\rm m} = -7.510$$

The ²⁰F states observed at $E_{\rm d} = 26$ MeV in this reaction and analog [T = 1] states observed in ²⁰Ne in the (d, t) reaction are displayed in Table 20.16 of (78AJ03). The spectroscopic factors of analog states are consistent to within 20% for states excited by a single *l*-transfer.

17.5 ²¹Ne(t,
$$\alpha$$
)²⁰F $Q_{\rm m} = 6.810$

Angular distributions were measured at $E_{\rm t} = 15.0$ MeV by (88LI10). States in ²⁰F up to $E_{\rm x} = 4.0$ MeV were observed and analyzed with DWBA calculations. Spectroscopic factors were deduced.

18. ²²Ne(p, ³He)²⁰F
$$Q_{\rm m} = -15.649$$

At $E_{\rm p} = 43.7$ to 45.0 MeV analog states have been studied in ²⁰F and ²⁰Ne [the latter via ²²Ne(p, t)²⁰Ne]. Angular distributions for the ³He ions and the tritons corresponding to the first T = 2 states $(J^{\pi} = 0^+)$ [²⁰Ne*(16.722 \pm 0.025) and

 20 F*(6.513±0.033)] have been compared. There is indication also for the excitation of the 2⁺; T = 2 states [at $E_x = 8.05$ MeV in 20 F and at 18.5 MeV in 20 Ne (estimated ± 0.1 MeV)]: see (78AJ03).

19. ²²Ne(d,
$$\alpha$$
)²⁰F $Q_{\rm m} = 2.704$

Angular distributions have been obtained at $E_{\rm d} = 10$ MeV to ²⁰F states with $E_{\rm x} < 4.4$ MeV: they are generally featureless. Observed states are displayed in Table 20.17 of (78AJ03).

An experiment which would use this reaction to investigate the weak paritynonconserving coupling in ²⁰F by observing the asymmetry in the gamma rays from the ²⁰F $E_x = 0.983$ MeV 1⁻ state has been proposed (93HO14, 93HO1N).

19.3 ²³Na(n,
$$\alpha$$
)²⁰F $Q_{\rm m} = -3.866$

Reaction-model calculations for cross sections are described in (93ST10). The use of this reaction in connection with neutron detection is discussed in (87LE1G).

19.7 ²⁴Mg(n, p
$$\alpha$$
)²⁰F $Q_{\rm m} = -15.559$

Cross sections calculated with pre-equilibrium emission, constant temperature evaporation models were reported in (93KH09).

20.
$${}^{27}\text{Al}({}^{20}\text{Ne}, {}^{27}\text{Si}){}^{20}\text{F}$$
 $Q_{\rm m} = -11.838$

The Δ resonance is very strongly excited in this reaction at $E(^{20}\text{Ne}) = 950$ MeV/A (86BA1P).

GENERAL: See table 20.12.5.

 $\begin{array}{l} Static \ quadrupole \ moment: \ Q_{1.63} = -0.27 \pm 0.03 \ e \cdot b \ (78 {\rm GR06}) \\ g_{1.63} = +0.54 \pm 0.04 \ (75 {\rm HO15}) \\ B({\rm E2}) \uparrow \ [0 \rightarrow 1.63] = 0.0330 \pm 0.0015 \ e^2 \cdot b^2 \ (78 {\rm GR06}). \ {\rm See \ also} \ (87 {\rm RA01}). \\ Intrinsic \ haexadecapole \ moment: \ Q_{4.25} = 0.022 \pm 0.003 \ e^2 \cdot b^2 \ (78 {\rm GR06}) \\ g_{4.25} = +0.13 \pm 0.15 \ (86 {\rm TR08}). \ {\rm See \ also} \ (84 {\rm BR15}). \\ Isotopic \ abundance: \ (90.51 \pm 0.09)\% \ (84 {\rm DE1A}). \end{array}$

Figure 3: Energy levels of 20 Ne. For notation see fig. 1.

Table	20.12.5
²⁰ Ne –	General

Shell Model

Review:	
87SC1J	Microscopic nuclear structure theory in large single particle basis systems
88BR1P	Status of the nuclear shell model
88RA1G	Clustering phenomena & shell effects in nuclear structure and reactions
93PI1E	Unified shell-model picture of nuclear deformation
Other artic	les:
87HA16	Test of the fermion dynamical symmetry model microscopy in the sd shell
87HA41	$SU(3) \times SU(4)$ limit of an isospin invariant fermion dynamical symmetry model
87HI08	Systematics of total strength & contribution of orbital current for M1 excitations
87KR08	Discontinuity in ground state band plot of even-even nuclei is traced to p-n interaction
87LI26	Rotational model and shell model pictures of magnetic dipole excitations
87MU16	Relativistic effects in the low-energy spectra of 1s0d-shell nuclei
87 SU13	Symplectic model for isoscalar giant resonances & its coupling with cluster basis in 20 Ne
88BR11	Semi-empirical effective interactions for the 1s-0d shell
88CA09	Rotational collectivity in shell model wave functions for $A = 20-28$ nuclei
88FI01	Effective interactions from sd-shell-model calculations
88HI05	Effect on Gamow-Teller strength of config. mixing & p-n correlation in e-e sd-shell nucl.
88MU10	The BAGEL approach in the nuclear shell model
89CA05	Contracted symplectic model with sd-shell applications
89ET01	n-p weak coupling: reducing shell-model dimensions by truncations in n & p subspaces
89OR02	Empirical isospin-nonconserving Hamiltonians for shell-model calculations
89PO04	Shell-model realization of scissors mode; collective features described in Elliott's SU(3) limit
89SA26	Gamow-Teller & M1 strength sums for sd shell nuclei by spectral distribution methods
89SC14	Variational proced. for struct. calcs., beyond symmetry-projected quasi-particle mean fields
89 Z H 05	Evidence for unnatural parity-pairing correlations in some light nuclei
90BR26	Isospin-forbidden β -delayed proton emission
90DI12	Hybrid treatment of rotational symmetry; calc. low-lying states of ²⁰ Ne, ²¹ Ne, ²⁸ Si
90 GU35	Calc. charge density distrib. using Hartree-Fock method & harmonic oscillator model
90HA07	Neutrino nucleosynthesis in supernovae: shell model predictions
90HA38	Resonating group model study of the ${}^{16}O$ + nucleon problem
90RE06	1^+ excitations in light nuclei: SU(3) versus realistic shell model results
90SK04	A = 18 nuclei, effective interaction in the sd shell (also calc. $A = 20$ energy spectra)
90ZH01	Nuclear structure studies of double Gamow-Teller and double beta decay strength
91BO45	Democratic mapping used to calc. low-lying states of sd- and fp-shell nuclei
91 DU05	SU(3) Elliott model used to study the thermal description of ²⁰ Ne; e.g. phase transitions
91MA41	Calculations of sd-shell nuclei with realistic potential models (Bonn, Paris, Argonne)
92 GU02	Effective sd-shell interaction from nuclear multishell configurations
92HA1N	Cluster-orbital shell model applied to α -cluster formation in ²⁰ Ne
92JI04	Bonn potential used to evaluate energy spectra of some light sd-shell nuclei using G-matrix
92JO07	Monte Carlo methods used to calc. the shell model Hamiltonian
92 QU02	Effect of model space size on finite-temperature Hartree-Fock calculations
92RO08	Electron scattering multipoles for symplectic shell model applications
92WA22	Effective interactions for the 0p1s0d nuclear shell-model space
93AU01	Correlation between the quenching of total GT_+ strength and the increase of E2 strength

Table 20.12.5 (continued) 20 Ne – General

Reference Description

Shell Model (continued)

93KU1F	Criteria for distinguishing spherical nuclei; advantages of deformed-shell model
93LA24	Monte Carlo evaluation of path integrals for the nuclear shell model
93VO01	Spin-isospin $SU(4)$ symmetry in sd- and fp-shell nuclei
94CI02	Specific heat and shape transitions in light sd nuclei: finite size vs. phase transition
94OR02	Application of auxilliary-field Monte Carlo techniques to GDR in hot nuclei
94VE04	Spectroscopic factors from one-proton stripping reactions on sd-shell nuclei
94ZH03	Systematic relativistic Hartree-Fock calculation of deformed nuclei in s-d shell

Collective, Deformed & Rotational Models

Review:

87TA1C	Microscopic cluster theory review from conf. on few-body syst. & multiparticle dynamics		
Other articles:			
87HA41	$SU(3) \times SU(4)$ limit of an isospin invariant fermion dynamical symmetry model		
87KR08	Discontinuity in ground state band plot of even-even nuclei is traced to p-n interaction		
87LI26	Rotational model and shell model pictures of magnetic dipole excitations		
87PA29	Relativistic mean-field theory used to describe ground-state deformation of nuclei		
87PR03	Self-consistent Hartree description of deformed nuclei in a relativistic quantum field theory		
87RE04	The generator coordinate method and quantised collective motion in nuclear systems		
87SU13	Symplectic model for isoscalar giant resonances & its coupling with cluster basis in 20 Ne		
88CA09	Rotational collectivity in shell model wave functions for $A = 20-28$ nuclei		
88JO02	Relativistic DWBA calculations for proton inelastic scattering		
89CA05	Contracted symplectic model with sd-shell applications		
89KO13	A relativistic description of rotating nuclei: the yrast line of ²⁰ Ne		
89MI18	Evidence for phase transitions in finite systems		
89MI1M	The phase structure of nuclei at low temperatures		
89PO04	Shell-model realization of scissors mode; collective features described in Elliott's $SU(3)$ limit		
89RI1D	Relativistic mean field theory of nuclear structure		
89RO1G	Broken symplectic dynamical symmetry in the microscopic collective model (A)		
89TO05	α -decay widths of ground band of ²⁰ Ne studied with cluster & deformed models		
90CA07	Momentum distributions in axially symmetric deformed nuclei: the Nilsson model		
90CO04	Effect of the continuum on thermally induced phase transitions in nuclei		
90DI12	Hybrid treatment of rotational symmetry; calc. low-lying states of ²⁰ Ne, ²¹ Ne, ²⁸ Si		
90GA09	Studies of (e, $e'\gamma$) reactions and electromagnetic currents in rotational nuclei		
90PH01	Inelastic ²⁰ Ne- \vec{p} scattering data analyzed for evidence of a real tensor potential		
90YA08	Competition between α clustering and the spin-orbit force in the ground bands of ²⁰ Ne		
91AM1A	Analysis of inelastic ²⁰ Ne-p scattering (exciting gs rot. band) using several models		
92HJ01	Folded-diagram effective interactions with the Bonn meson-exchange potential model		
92RO16	Self-consistent anisotropic oscillator with cranked angular and vortex velocities		
93BY03	Study of the quadrupole resonances in α - ¹⁶ O scattering		
93SA31	Dynamic microscopic basis for IBM-2; compared with shell model calcs. & exp. data		
94CI02	Specific heat and shape transitions in light sd nuclei: finite size vs. phase transition		
94 MI05	Correlated finite temperature mean field approximations		

Cluster Models

Reviews:

87TA1C	Microscopic cluster theory review from conf. on few-body syst. & multiparticle dynamics
88RA1G	Clustering phenomena & shell effects in nuclear structure and reactions
Other artic	les:
87DE40	The $\alpha + {}^{20}$ Ne cluster structure of 24 Mg in a microscopic three-cluster model
87KA24	Structure of yrast states in 20 Ne investigated in the framework of a cluster model
87SA55	The orthogonality condition model applied to (α, α) scattering on ¹² C and ¹⁶ O
87SU13	Symplectic model for isoscalar giant resonances & its coupling with cluster basis in 20 Ne
88CS01	Core-plus-alpha-particle states of ²⁰ Ne and ¹⁶ O in terms of vibron models
88KA1Z	Systematic construction method of multi-cluster Pauli-allowed states
88LE05	Distribution of alpha-particle strength in light nuclei
88LE06	Influence of target clustering on exchange effects in internuclear interaction
89DE32	Distortion effects in a microscopic ${}^{16}\text{O} + 2\alpha$ and ${}^{20}\text{Ne} + \alpha$ description of ${}^{24}\text{Mg}$
89 GA05	Parity-dependent potential for ${}^{16}O + {}^{20}Ne$ (linear combination of nuclear orbitals model)
89RU08	Binding energies & gs band levels of light nuclei in the strictly restricted dynamics model
89TO05	α -decay widths of ground band of ²⁰ Ne studied with cluster & deformed models
90BA01	α -like part of four-nucleons moving in a single-particle potential of arbitrary shape
90VA14	Features of α -cluster type nuclei in the framework of the restricted dynamics model
90YA08	Competition between α clustering and the spin-orbit force in the ground bands of ²⁰ Ne
91CS01	Cluster spectroscopic factor in the vibron model
91OM03	The role of the Pauli principle in the elastic scattering of $\alpha + {}^{16}O$ clusters
91SZ02	Alpha particles from the reaction ${}^{12}C + {}^{12}C$ at 28.7 MeV/nucleon
91WA11	Composite Particle Representation Theory calcs. for $A = 20$ nuclei compared to shell model
92AN1F	α -particle momentum distributions in nuclei in the coherent density fluctuations model
92AR11	α -cluster structure of excited states in light nuclei
92 CS 03	The relation between cluster and superdeformed states of light nuclei
92HA1N	Cluster-orbital shell model applied to α -cluster formation in ²⁰ Ne
92KR12	Elimination of Pauli resonances in the generator-coordinate description of scattering
92ME09	Alpha-chain states in 4N-nuclei from 20 Ne to 32 S
92ME11	Systematics of alpha-chain states in 4N-nuclei
93AB02	α - ¹⁶ O & α - ¹⁵ N optical potentials in the range between 0 and 150 MeV
93BY03	Study of the quadrupole resonances in α - ¹⁶ O scattering
93 CS03	¹⁶ O+ α cluster states in terms of a U _q (3) anharmonic oscillator model
93LI25	Alpha-particle elastic scattering on ¹⁶ O in the four α -particle model
93RA1G	Shape eigenstates & other one- and two-dimensional α -cluster structures in light nuclei
93SZ02	Treatment of hot composite systems ($^{19}F \& ^{20}Ne$) as liquid droplets
93VA07	Relation between phenomenological algebraic cluster model & effective nn forces
93YA08	Description of $\alpha + {}^{16}O$ elastic scattering by a single-folding potential
93ZH22	Systematics of 2-dimensional α -cluster configurations in 4N nuclei from ¹² C to ⁴⁴ Ti
94ME18	Alpha chain states in 4N-nuclei
94RA03	Geometry and collectivity in the Bloch-Brink α -cluster model
94TO04	New effective internucleon forces in microscopic α -cluster model
Table 20.12.5 (continued) 20 Ne – General

Reference Description

Special states

Reviews:	
87SC1J	Large-scale nuclear structure studies
88RA1G	Clustering phenomena & shell effects in nuclear structure and reactions
92MA29	High spin spectra in light nuclei in terms of the rotating harmonic oscillator
93EN03	Strengths of γ -ray transitions in $A = 5-44$ nuclei
Other articl	les:
87BL18	Gogny's effective inter. used to calc. ground & excited states of specific spin-isospin order
87CO31	Simple parametrization for low energy octupole modes of sd-shell nuclei
87DE40	The $\alpha + {}^{20}$ Ne cluster structure of 24 Mg in a microscopic three-cluster model
87KA24	Structure of yrast states in 20 Ne investigated in the framework of a cluster model
87MU16	Relativistic effects in the low-energy spectra of 1s0d-shell nuclei
87PR03	Self-consistent Hartree description of deformed nuclei in a relativistic quantum field theory
87SU13	Symplectic model for isoscalar giant resonances & its coupling with cluster basis in 20 Ne
88BA16	Dynamics of nuclear integral characteristics
88CA09	Rotational collectivity in shell model wave functions for $A = 20-28$ nuclei
88GU12	Electron scattering from 20 Ne (and other light nuclei) and transition charge densities
88KU07	Electron scattering from ²⁰ Ne and ²⁴ Mg in a microscopic boson model
88KU17	Microscopic boson descrip. of p-n systems applied to electron scatt. from ¹⁸ O and ²⁰ Ne
88KU22	Microscopic foundation of the interacting boson model in sd-shell nuclei
88MU10	The BAGEL approach in the nuclear shell model
88ST04	Spectral distribution calculations of the level density of 20 Ne
89DE12	Spectroscopy of ²⁰ Ne & ²⁴ Mg nuclei in the interacting boson model including g bosons
89ET01	n-p weak coupling: reducing shell-model dimensions by truncations in the n & p subspaces
89KO13	A relativistic description of rotating nuclei: the yrast line of 20 Ne
89PO04	Shell-model realization of scissors mode; collective features described in Elliott's $SU(3)$ limit
89PO05	Isobaric multiplets reconstructed from the equidistance rule for separation & decay energies
89RO1G	Broken symplectic dynamical symmetry in the microscopic collective model (A)
89SC14	Extension of the variational mean field procedure for structure calcs.
89TO05	α -decay widths of ground state band of ²⁰ Ne studied with cluster & deformed models
89ZH05	Evidence for unnatural parity-pairing correlations in some light nuclei
90AM01	Large basis space effects in electron scattering form factors of ¹² C, ²⁰ Ne, ²⁴ Mg
90RE06	1^+ excitations in light nuclei: SU(3) versus realistic two-rotor and shell model results
90SK04	A = 18 nuclei, effective interaction in the sd shell (also calc. $A = 20$ energy spectra)
90YA08	Competition between α clustering and the spin-orbit force in the ground bands of ²⁰ Ne
91BA25	Collective 3^- and 2^- excitations with Skyrme forces
92CA05	Fragmentation of stretched spin strength in $N=Z$ sd-shell nuclei
92DE31	Higher order deformations in sd-shell nucl. from CC analysis of inelastic \vec{p} scattering
92HA18	Coupled-channel description of rotational and vibrational states in ²⁰ Ne and ²² Ne
93PA25	Shapes of $N=Z$ nucl. studied with axially symmetric deformed relativistic mean-field theory
93PE18	Nucleon pair structure of realistic many body wave functions
94HE1A	Systematics of rotational isomers & band terminations in the $A = 20-26$ region

Electromagnetic

Reviews:

89RA16	Predictions of B(E2; $0^+_1 \rightarrow 2^+_1$) values for even-even nuclei
89SP01	Reduced electric-octupole transition probabilities, $B(E3; 0_1^+ - 3_1^-)$, for even-even nucl.
93EN03	Strengths of γ -ray transitions in $A = 5-44$ nuclei
Other articl	es:
86SC1E	Large scale calculations of the nuclear spectrum (calc. isoscalar E2 resonance in 20 Ne)
87HI08	Systematics of total strength & contribution of orbital vs. spin current for M1 excitations
87 SU13	Symplectic model for isoscalar giant resonances & its coupling with cluster basis in 20 Ne
88BA80	Dynamics of integral characteristics of atomic nuclei (M2 resonance calc. for ²⁰ Ne)
89CA05	Contracted symplectic model with ds-shell applications (calc. excit. spectra & E2 strengths)
89DE12	Spectroscopy of 20 Ne & 24 Mg nuclei in the interacting boson model including g bosons
89ET01	n-p weak coupling: reducing shell-model dimensions by truncations in n & p subspaces
89PO04	Shell-model realization of scissors mode; collective features described in Elliott's SU(3) limit
89RO1G	Broken symplectic dynamical symmetry in the microscopic collective model (A)
89SA26	Gamow-Teller and M1 strength sums for sd-shell nuclei by spectral distribution methods
89VAZN	E2 transition probabilities in strongly restricted dynamics model
90GUZV	Calc. charge density distrib., rms radii, moments by Hartree-Fock meth& harm. osc. model
90RE06	1^+ excitations in light nuclei: SU(3) versus realistic two-rotor and shell model results
92 HE 17	Manifestation of quadrupole collectivity in the magnetic dipole strength
92ZA10	Relation between E2 and orbital M1 transition strengths using a $Q \cdot Q$ interaction
93AU01	Correlation between the quenching of total GT_+ strength and the increase of E2 strength
93RUZX	Electromagnetic properties of light nuclei in the strictly restricted dynamics model

Astrophysics

Reviews:

O OTTIO 1 A	D1 ·	c		1 .
8611/() Δ	Physics	ot.	Supernova	ovnlogiong
		OI.	supernova	CADIOBIOIDS
	•/			

- 87RA1D Nuclear processes and accelerated particles in solar flares
- 88BA1H Solar models, neutrino experiments, and helioseismology
- 89AR1R Supernova 1987A: observations, analysis, implications
- 90AR10 Nuclear reactions in astrophysics
- 90SC1N New physics from supernova 1987A
- 90SI1D Spallation processes and nuclear interaction products of cosmic rays

93HA1D Core-collapse supernovae & other topics that combine nuclear, particle, and astrophysics

93LE1J Solar-neutrino problem (A)

Other articles:

- 87DW1A Cosmic-ray elemental abundances from 1 to 10 GeV per amu for boron through nickel
- 88AP1B Primordial nucleosynthesis as a probe of cosmological QCD
- 88BU01 Stellar reaction rates of α capture on light $(N \neq Z)$ nuclei; astrophysical implications
- 88CA1N Reaction rates of astrophysically important thermonuclear reactions involving light nucl.
- 88CU1A Compos. of anomalous cosmic-ray component; implications for local interstellar medium (A)
- 88FO1E Observ. & analysis of 27 April 1981 flare yield info on solar atmosphere elem. abundances
- 88MA1U Late-time neutron diffus. & nucleosynthesis in a post-QCD inhomogeneous $\Omega_{\rm b} = 1$ universe

Reference Description

Astrophysics (continued)

88 RE1 F	Solar neon abundances from gamma-ray spectroscopy and ³ He-rich particle events
88WO1C	Supernova neutrinos, neutral currents and the origin of fluorine
89BE2H	The effect of enhanced α -elements in helium-burning population II stars
89GO1N	Hydrogen burning in the NeNa cycle: 23 Na(p, α) 20 Ne and 23 Na(p, γ) 24 Mg
89 GU1I	Thermonuclear breakup reactions of light nuclei, part 1: Processes and effects
89 GU1 J	Thermonuclear " , part 2: Gamma-ray line production and other applications
89 GU1Q	Abundance of ¹⁴ N at the cosmic-ray source obtained using new fragmentation cross sections
89HE1N	O & Ne abundance in planetary nebulae: implications for stellar nucleosynthesis
89JI1A	Nucleosynthesis inside thick accretion disks around massive black holes
89ME1C	Isotope abundances of solar coronal material derived from solar energetic particle meas.
89SA26	Gamow-Teller & M1 strength sums for sd-shell nuclei by spectral distribution methods
89TA26	Microscopic calc. of rates of electron captures which induce $O + Ne + Mg$ core collapse
90BL1K	Slowly accreting neutron stars and the origin of gamma-ray bursts
90CO1N	Space-based meas. of elemental abundances and their relation to solar abundances
90HA07	Neutrino nucleosynthesis in supernovae: shell model predictions
90 MU1 H	Nuclear line spectroscopy of the 27 April 1981 solar flare
90SI1A	An explanation for cosmic-ray source abundances including nitrogen
90TH1C	Explosive nucleosynthesis in SN 1978A: composition, radioactivities & neutron star mass
90WE1A	Total charge and mass changing cross sections of relativistic nuclei in H, He, C targets
90 WE1I	Cosmic-ray source charge & isotopic abund. obtained using new fragmentation X-sects.
91RA1C	Carbon burning and galactic enrichment in massive stars
92CA1J	Quasi-static evolution of ONeMg cores, explosive ignition densities & the collapse explosion
93DE32	Microscopic three-cluster study of 21-nucleon systems
94PA42	Exp. limit on ¹⁹ Ne(p, γ) ²⁰ Na resonance strength; implications for stellar H burning

Complex reactions

86MA13	Experimental search for nonfusion yield in the heavy residues emitted in ${}^{11}B + {}^{12}C$
87BA1T	Spin-isospin excitations in nuclei with relativistic heavy ions
87BE1F	Target fragmentation at ultrarelativistic energies
87BO23	Intermediate-mass fragments from nonbinary processes in $^{14}N + ^{nat}Ag$ at $E/A = 35$ MeV
87BU07	Projectile-like fragments from 20 Ne + 197 Au – counting simultaneously emitted neutrons
87KA2B	Measurement of the decay time of excited products of inelastic Ne + Ge interactions
87LY04	Fragmentation and the emission of particle stable and unstable complex nuclei
87MU03	Study of the emission of clusters by excited compound nuclei
87SH23	Dissipative phenomena and α -particle emission in ${}^{16}\text{O} + {}^{27}\text{Al}$ between 46 and 85 MeV
87SO1D	Angular momentum dependence of complex fragment emission
87SU07	Correlated fluctuations in the ${}^{89}Y({}^{19}F, x)y$ excitation functions
87VI1B	Mechanisms of momentum and energy transfer in intermediate-energy collisions
87WA1P	Radioactive decay of ²³⁴ U via Ne and Mg emission
87YI1A	Research for the deep inelastic collision induced by 93 MeV 14 N on nat Ca (A)
88AI1A	Quantum molecular dynamics approach to HI collisions compared to fragmentation data
88CA1G	Experimental indications of selective excitations in disspative heavy ion collisions

Table 20.12.5 (continued)
20 Ne – General

Complex Reactions (continued)

88CE01	Multifragmentation & incomplete fusion in heavy ion collisions; schematic model
88CH28	Nucleon transfer contribution to absorptive heavy ion potential by Monte Carlo simulation
88GA1K	Formation and decay of hot nuclei
88MI1I	Multifragmentation as a possible signature of liquid-gas phase transitions
88 SM1B	Cross section for the ${}^{12}C({}^{139}La, X){}^{11}C$ reaction at relativistic energies
88UT02	Quasi-free stripping reactions studied using extended Serber model
89BA2N	Strangeness production by heavy ions
89BE17	Fusion of ¹⁶ O + ⁴⁰ Ca at $E_{\text{lab}}(^{16}\text{O}) = 13.4 \text{ MeV/nucleon}$
89BR1G	Fragmentation cross sections of 28 Si at 14.5 GeV/nucleon
89CA15	Fusion and binary reactions in the collision of $32S$ on $26Mg$ at Elab=163.5 MeV
89FI05	Non-eq. vs. equilibrium emission of complex frag. emiss; $^{14}N + AgAu$ at $E/A = 20-50 \text{ MeV}$
89GH01	Subthreshold π^0 production in heavy-ion collisions induced by nuclear cooperation
89HO16	Radioactivities by light fragment (C, Ne, Mg) emission
89KI13	Fragment production in $^{14}N + C$, Ni, Ho reactions at 35 MeV/nucleon
89MA45	Target excitation & ang. mom. transfer in ${}^{28}\text{Si} + {}^{181}\text{Ta}$ from multiplicity meas.
89PA06	Complete & incomplete fusion of 6 MeV/nucleon light heavy ions on 51 V
89SA10	Total cross sections of reactions induced by neutron-rich light nuclei
89YO09	Energy damping feature in light heavy-ion reactions
89ZHZV	Mass measurement of $Z = 7-19$ neutron-rich nuclei using the TOFI spectrometer (A)
90BEYY	Production of neutron-rich He isotopes in the ${}^{9}\text{Be} + {}^{18}\text{O}$ reaction
90BL09	Elastic magnetic electron scattering and vacuum polarization
90BO01	Critical excitation energy in fusion-evaporation reactions
90BO04	Three paths for intermediate-mass fragment formation from $640 \text{ MeV} {}^{86}\text{Kr} + {}^{63}\text{Cu}$
90BO16	Revising the chart of the nuclides by exotic decay
90CH09	Coulomb-modified Glauber model description of heavy-ion reaction cross sections
90FO04	One-nucleon-transfer reactions induced by ²⁰ Ne at 500 and 600 MeV
90 GU08	Deviations from pure target fragmentation in ¹⁶ O induced heavy ion reactions
90WE1A	Total charge & mass changing cross sections of relativistic nuclei in H, He & C targets
90YE02	Intermediate mass fragment emission in the 161-MeV $p + Ag$ reaction
91LI33	Subthreshold pion production in nucleus-nucleus collisions; quantum molecular dynamics

Muons & Neutrinos

- 87HE1D Nuclear charge radii of stable neon isotopes from muonic atoms
- 89AD1C Coherent pion prod. by charged-current interactions of neutrinos & antineutrinos on Ne
- 89MA1U Coherent production of π^+ mesons in ν -neon interactions
- 89SO1C Radiative muon capture in light atoms
- 90CH13 Muon capture rates in nuclei calculated & compared to experimental values
- 90DE1I Neutral strange particle production in ν_{μ} -Ne interactions (A)
- 90HA07 Neutrino nucleosynthesis in supernovae: shell model predictions
- 90LA1M Proton production in charged-current ν_{μ} Ne interactions (A)
- 92FR01 Nuclear charge radii systematics in the sd shell from muonic atom measurements
- 92RO09 Hyperfine interaction of μ^- & an e⁻ shell in forming P-odd correlations in μ^{20} Ne

Pions & Kaons

Reviews:

88BA82 Production and decay of hypernuclei

88HA12 Charge exchange reactions and the study of giant resonances

Other articles:

- 87SU11 Neutral pion production cross sections in Ne + NaF collisions from 80 to 219 MeV/nucleon
- 88EL06 On the s-wave repulsion of the pion-nuclear interaction
- 88FR02 Strong-interaction finite-range effects in light pionic atoms
- 88RO19 Photoproduction of ${}^{20}F(\Lambda)$; analogy to ${}^{20}Ne(\Lambda)$ also discussed
- 89AD1C Coherent pion prod. by charged-current interactions of neutrinos & antineutrinos on Ne
- 89GA09 Pionic distortion factors for radiative pion capture studies
- 89GE10 Threshold pion-nucleus amplitudes as predicted by current algebra
- 89GH01 Subthreshold π^0 prod. via ¹⁶O and ²⁷Al beams at E = 38-200 MeV/A by nucl. cooperation
- 89KA37 Finite-range effects in pionic atoms
- 89MA1U Coherent production of π^+ mesons in ν -neon interactions
- 89SH1N Subthreshold \bar{p} , K⁻, K⁺, and energetic-pion production in relativistic nuclear collisions
- 89WA14 Mesonic atom production in high-energy nuclear collisions
- 89ZU02 Statistical description of multiple production of π -mesons in nuclear collisions
- 91AM1B Scaling properties of π^- spectra in π^- Ne interactions at initial momentum 6.2 GeV/c
- 91CI08 Momentum-space method for pionic atoms
- 91CI11 Nuclear structure effects in light π -mesoatoms
- 91GO21 Pionic atoms, the relativistic mean-field theory and the pion-nucleon scattering lengths
- 91LI33 Subthreshold pion production in nuclear collisions; quantum molecular dynamics approach
- 92KI1C Multiplicities of secondary particles in inelastic π^- + Ne at initial momentum 6.2 GeV/c
- 93PE09 Isospin symmetry in nuclear transitions from pion scattering

Antiproton

Review:

89CU06	Summary of experimental work on antiproton-nucleus interactions
Other artic	les:
87BA2G	Neutral strange-particle production in \bar{p} ²⁰ Ne reactions at 607 MeV/c
87DA12	\bar{p} -nucleus scattering at $E = 20-200$ MeV; Glauber approx. compared to data
87DA1D	Interaction of low-energy antiprotons with nuclei
88CU03	Charge distribution and charge correlation in the annihilation of antiprotons on nuclei
88CU1D	Dynamical model of antiproton annihilation on nuclei
88SI1E	Recent results on antiprotonic atoms using a cyclotron trap at LEAR
89BA10	Antiproton-neon annihilation at rest and at 607 MeV/c
89BA1S	An observation of a leading meson in \bar{p} + Ne reaction at 607 MeV/c incident momentum

- 89TO1D Strangeness production by antiprotons
- 90CU01 Strangeness production in antiproton annihilation on nuclei
- 90CU04 Antiproton annihilation at rest on light nuclei
- 91BA18 Strangeness production in antiproton annihilation at rest on ³He, ⁴He and ²⁰Ne
- 91BA49 Glueball candidates seen in the reactions \bar{p}^{-20} Ne and \bar{p}^{-4} He at 607 MeV/c

Table 20.12.5 (continued) 20 Ne – General

Reference Description

Antiproton (continued)

91KH09 Strange-particle production in ant	iproton annihilation on nuclei at low energies
---	--

- 91MA1D Coherent production of a_1^- mesons and $(\rho \pi)^-$ systems by antineutrinos on neon
- 93DA1N Observation of parton fragmentation in \bar{p}^{20} Ne reactions at 607 MeV/c
- 93ZA01 \bar{p} annihilation on nuclei at E = 50-2000 MeV as a result of one or more collisions

Hypernuclei

87SA1Q	Structure of ${}^{20}\text{Ne}(\Lambda)$ hypernucleus: prediction of the negative parity ground state
88BA82	Production and decay of hypernuclei using the (π, K^+) reaction
88IW1A	Isotropic features of Λ -particle production in central collisions of light nuclei; cascade mode
88MA1Q	Identification of one glue-like mechanism of the Λ -hyperon in hypernuclei
88RO19	Photoproduction of ${}^{20}F(\Lambda)$ via ${}^{20}Ne(\gamma, K^+){}^{20}F(\Lambda)$; analogy to ${}^{20}Ne(\Lambda)$ also discussed
88WA1H	Hypernucleus formation in high-energy nuclear collisions
89TO1D	Strangeness production by antiprotons

Other topics

87HA16 Test of the fermion dynamical symmetry model microscopy in the sd shell

87LI34 Probability of forming six-quark clusters and the increase of nucleon radius in nuclei

- 87SA1P Spectral distribution calculations using Wildenthal's universal sd interaction
- 88BO27 Quasiparticle model for nuclear dynamics studies used to calc. ground state properties

88HI05 Effect on Gamow-Teller strength of config. mixing & p-n correlation in e-e sd-shell nucl.

88ME09 Three-dimensional, spherically symmetric, saturating model of an N-boson condensate

- 88ST04 Spectral distribution calculations of the level density of ²⁰Ne; Lanczos method
- 89FI04 Systematic study of potential energy surfaces of light nuclei in relativistic Hartree calcs.
- 89MI1M The phase structure of nuclei at low temperatures studied in the canonical ensemble
- 89OR02 Empirical isospin-nonconserving Hamiltonians for shell-model calculations
- 89PO05 Isobaric multiplets reconstructed from the equidistance rule for separation & decay energies
- 89QU01 Comparison of finite temperature Hartree-Fock approximation & canonical ensemble calcs.
- 89QU1A Strategy for finding low-lying solutions of the restricted nuclear Hartree-Fock equations
- 89RO01 Fission barrier of projectiles in heavy-ion reactions
- 90CO04 Effect of the continuum on thermally induced phase transitions in nuclei
- 90PR1B Electron capture by protons from K-shell of C, N, O, Ne and Ar; binary encounter approx.
- 91RE10 Fast-neutron-induced cross sections on 20 Ne, theory vs. experiment, E = 1-30 MeV
- 92CA19 Dynamical dependence of thermal phase transformations in finite systems
- 92GR11 Parameterization of the nuclear level density at energies above 100 MeV
- 92MU01 Nuclear level densities at high excitations
- 93SZ02 Treatment of hot composite systems (19 F & 20 Ne) as liquid droplets
- 93ZH18 Effects of the Dirac sea on deformed nuclei (20 Ne & 24 Mg)

Ground state properties

Reviews:

89RA17	Compilation of exp. data on nuclear moments for ground & excited states of nuclei						
92PY1A	J2PY1A Nuclear quad. moments for $Z = 1-20$ rev., related to numerical methods in quant. chem.						
Other artic							
87BL18	Gogny's effective inter. used to calc. ground & excited states of specific spin-isospin order						
87FU12	Systematics of even-even sd-shell nuclei in relativistic mean-field models						
87HEID	Nuclear charge radii of stable neon isotopes from muonic atoms						
87PA29	Relativistic mean-field theory used to describe ground-state deformation of nuclei						
87PR03	Self-consistent Hartree description of deformed nuclei in a relativistic quantum field theory						
87SAIP	Spectral distribution calcs, using Wildenthal's universal sd interaction						
88AIIA	Quantum molecular dynamics approach to HI collisions compared to fragmentation data						
88BO27	Quasiparticle model for nuclear dynamics studies used to calc. ground state properties						
88D017	Classical simulation of nuclear systems; calc. sizes and binding energies of finite nuclei						
88ME09	Three-dimensional, spherically symmetric, saturating model of an N-boson condensate						
88RAIG	Clustering phenomena & shell effects in nuclear structure and reactions						
88ZH09	Relativistic Hartree calculation of deformed $A = 16-40$ nucl.; underpredict deformations						
89AN12	A-dependence of the difference $(r_{el} - r_{mu})$, a dispersion effect in electron scattering						
89F104	Systematic study of potential energy surfaces of light nuclei in relativistic Hartree calcs.						
89GA05	Parity-dependent potential for ${}^{10}\text{O} + {}^{20}\text{Ne}$ (linear combination of nuclear orbitals model)						
89GA16	Relativistic mean-field description of ground-state nuclear properties						
89KO13	A relativistic description of rotating nuclei: the yrast line of ²⁰ Ne						
89RU08	Binding energies & grnd. state band levels of light nucl.; strictly restricted dynamics model						
89SA10	Total cross sections of reactions induced by neutron-rich light nuclei						
89TO05	α -decay widths of ground band of ²⁰ Ne studied with cluster & deformed models						
90GA10	Relativistic mean field theory for finite nuclei						
90GU10	Charge densities of sp- and sd-shell nuclei & occupation numbers of 2s states						
$90 \mathrm{GUZV}$	Calc. charge density distrib., rms radii, moments by Hartree-Fock meth& harm. osc. model						
90LO11	Self-consistent calcs. of light nuclei using density-functional method						
90MA63	Correlated charge form factor and densities of the s-d shell nuclei						
90VA14	Features of α -cluster type nuclei in the framework of the restricted dynamics model						
91PO11	Single-nucleon transfer sum-rules in the 2s1d shell; compared to data						
91ZH02	Relativistic Hartree-Fock calcs. of deformed nuclei in rel. quantum-field-theory framework						
91ZH05	Vacuum polarization in a relativistic description of open shell nuclei						
91ZH06	Relativistic Hartree study of deformed nucl.; binding energies, moments, single part. spec.						
92FR01	Behavior of nuclear charge radii systematics in the sd shell from muonic atom meas.						
92KN06	Exchange correlation function and surface effects; uses density matrix formalism						
92RO06	Correlated finite temperature mean field approximations comp. with canonical results						
92ZA10	Relation between E2 and orbital M1 transition strengths using a $Q \cdot Q$ interaction						
93GO38	^{20,22} Ne masses determined by Fourier transform ion cyclotron resonance mass spectrometry						
93PA25	Shapes of light $N=Z$ nucl. studied using axially symmetric deformed rel. mean-field theory						

(A) denotes that only an abstract is available for this reference.

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	K^{π}	$ au$ ^b) or Γ	Decay	Reactions
0	0+; 0	01+		stable	$\begin{array}{c} 2,\ 3,\ 7,\ 8,\ 12,\ 15,\ 16,\ \overline{18},\\ 20,\ 24,\ 25,\ 29,\ 30,\ 31,\ 32,\\ 33,\ 34,\ 35,\ 36,\ 37,\ 38,\ 39,\\ 40,\ 41,\ 42,\ 43,\ 45,\ 46,\ 47,\\ 48,\ 49,\ 50,\ 51,\ 52,\ 53,\ 54,\\ 56,\ 57,\ 58,\ 59,\ 60,\ 61,\ 62,\\ 63,\ 64\end{array}$
1.633674 ± 0.015	$2^+; 0$	0_{1}^{+}	$\tau_{\rm m} = 1.05 \pm 0.06 \text{ ps}$ $g = +0.54 \pm 0.04$	γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4.2477 ± 1.1	$4^+; 0$	0_{1}^{+}	$\tau_{\rm m} = 93 \pm 9 \text{ fs}$ $g = +0.13 \pm 0.15$	γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4.96651 ± 0.20	$2^{-}; 0$	2-	$\tau_{\rm m} = 4.8 \pm 0.5 \ \rm ps$	γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5.6214 ± 1.7	$3^{-}; 0$	2^{-}	$\tau_{\rm m} = 200 \pm 50 \text{ fs}$	γ, α	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5.7877 ± 2.6	$1^{-}; 0$	0-	$\begin{split} \Gamma_{\rm cm} &= (2.8\pm0.3) \\ &\times 10^{-2} \ \rm keV \end{split}$	γ, α	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6.725 ± 5	$0^+; 0$	0_{2}^{+}	$\Gamma_{\rm cm} = 19.0 \pm 0.9 ~\rm keV$	γ, α	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7.004 ± 3.6	$4^{-}; 0$	2^{-}	$\tau_{\rm m} = 440 \pm 90 \ {\rm fs}$	γ	2, 7, 8, 15, 30, 33, 56, 60
7.1563 ± 0.5	$3^{-}; 0$	0^{-}	$\Gamma_{\rm cm} = 8.2 \pm 0.3 \ {\rm keV}$	γ, α	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7.191 ± 3	$0^+; 0$	0^{+}_{3}	$\Gamma_{\rm cm} = 3.4 \pm 0.2 \ \rm keV$	γ, α	5, 6, 7, 12, 14, 36, 60
7.4219 ± 1.2	$2^+; 0$	0_{2}^{+}	$\Gamma_{\rm cm} = 15.1 \pm 0.7 ~\rm keV$	γ, α	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7.829 ± 2.4	$2^+; 0$	0^{+}_{3}	$\Gamma_{\rm cm}=2~{\rm keV}$	γ, α	$\begin{array}{c} 2,\ 6,\ 7,\ 12,\ 14,\ 24,\ 30,\ 36,\\ 53,\ 55,\ 60\end{array}$
8.453 ± 4	$5^{-}; 0$	2^{-}	$\Gamma_{\rm cm}=0.013\pm0.004~{\rm keV}$	γ, α	2, 6, 7, 12, 14, 15, 30, 60
≈ 8.7	$0^+; 0$	0_{4}^{+}	$\Gamma_{\rm cm} > 800~{\rm keV}$	α	14
8.708 ± 7	$1^{-}; 0$		$\Gamma_{\rm cm} = 2.1 \pm 0.8 ~\rm keV$	γ, α	7, 12, 14, 30, 60
8.7776 ± 2.2	$6^+; 0$	0_{1}^{+}	$\Gamma_{\rm cm} = 0.11 \pm 0.02 ~\rm keV$	$\gamma, lpha$	$\begin{array}{c} 2,4,6,7,8.3,12,14,15,\\ 16,18,19,20,23,24,30,\\ 52,60 \end{array}$

Table 20.13 Energy Levels of 20 Ne ^a)

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	K^{π}	τ $^{\rm b})$ or Γ	Decay	Reactions
8.82	$(5^{-}); 0$		$\Gamma_{\rm cm} < 1~{\rm keV}$	α	14
8.854 ± 5	$1^{-}; 0$	1-	$\Gamma_{\rm cm} = 19 \ {\rm keV}$	α	7, 14, 55
9.00 ± 180	$2^+; 0$	0_{4}^{+}	$\Gamma_{\rm cm}\approx 800~{\rm keV}$	α	14, 30, 39.3
9.031 ± 7	$4^+; 0$	0^{+}_{3}	$\Gamma_{\rm cm} = 3 \ {\rm keV}$	γ, α	2, 6, 7, 12, 14, 24, 30, 60
9.116 ± 3	$3^{-}; 0$		$\Gamma_{\rm cm} = 3.2 \ {\rm keV}$	γ, α	2, 7, 12, 14, 29, 30, 60
9.318 ± 2	$(2^{-}); 0$			γ	7, 12, 30, 60
9.487 ± 5	$2^+; 0$		$\Gamma_{\rm cm} = 29 \pm 15 ~\rm keV$	γ, α	12, 14, 53, 60
9.873 ± 4	$3^+; 0$			γ	7, 30, 53
9.935 ± 12	$(1^+); 0$		$\tau_{\rm m} < 35 ~{\rm fs}$	γ	7, 30, 60
9.990 ± 8	$4^+; 0$	0_{2}^{+}	$\Gamma_{\rm cm} = 155 \pm 30 \ {\rm keV}$	γ, α	2, 7, 12, 14, 29, 30, 60
10.262 ± 5	$5^{-}; 0$	0-	$\Gamma_{\rm cm} = 145 \pm 40 \ {\rm keV}$	α	2, 4, 7, 14, 15, 16, 18, 20, 30, 52
10.274 ± 3	$2^+; 1$		$\Gamma_{\rm cm} \le 0.3 \ \rm keV$	γ, α	12, 14, 53, 55
10.406 ± 5	$3^{-}; 0$	1-	$\Gamma_{\rm cm} = 80 \ {\rm keV}$	α	7, 14, 30, 60
10.553 ± 5	$4^+; 0$		$\Gamma_{\rm cm} = 16~{\rm keV}$	α	7, 14, 30
10.584 ± 5	$2^+; 0$		$\Gamma_{\rm cm} = 24 \ {\rm keV}$	α	14, 30, 53, 60
10.609 ± 6	$6^{-}; 0$	2^{-}	$\tau_{\rm m} = 23 \pm 7 \text{ fs}$	γ	2, 6, 7
10.694 ± 6	$4^{-}, 3^{+}; 0$			γ	6, 7
10.80 ± 75	$4^+; 0$	0_{4}^{+}	$\Gamma_{\rm cm} = 350~{\rm keV}$	α	14, 15, 30
10.843 ± 4	$2^+; 0$		$\Gamma_{\rm cm} = 13 \ {\rm keV}$	α	14, 53, 60
10.840 ± 6	$3^{-}; 0$		$\Gamma_{\rm cm} = 45 \ {\rm keV}$	γ, α	7, 14
10.884 ± 3	$3^+; 1$		$\tau_{\rm m} < 30 ~{\rm fs}$	γ	53, 55
10.917 ± 6	$3^+; 0$			γ	7
10.97 ± 120	$0^+; 0$	0_{5}^{+}	$\Gamma_{\rm cm} = 580~{\rm keV}$	α	14
11.020 ± 8	$4^+; 0$		$\Gamma_{\rm cm} = 24 \ {\rm keV}$	α	6, 7, 14, 60
11.090 ± 3	$4^+; 1$		$\Gamma_{\rm cm} \le 0.5~{\rm keV}$	γ, α	12, 14, 30, 55
11.24 ± 23	$1^{-}; 0$		$\Gamma_{\rm cm} = 175~{\rm keV}$	α	14, 30
11.2623 ± 1.9	$1^+; 1$			γ	12, 35, 36, 38, 53
11.270 ± 5	$1^{-}; 1$		$\Gamma_{\rm cm} \leq 0.3~{\rm keV}$	γ, α	12, 14
11.320 ± 9	$2^+; 0$		$\Gamma_{\rm cm} = 40 \pm 10 \ {\rm keV}$	α	14, 53
11.528 ± 6	$3^+, 4^-; 0$		$\tau_{\rm m} \leq 30 ~{\rm fs}$	γ	7, 30
11.555 ± 6	$(3^+); 0$			γ	7, 30
11.558 ± 4	$0^+; 0$	0_{6}^{+}	$\Gamma_{\rm cm} = 1.1 \pm 0.4 \ \rm keV$	γ, α	12, 14

Table 20.13 (continued) Energy Levels of 20 Ne a)

$E_{\rm x} \ ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	K^{π}	τ $^{\rm b})$ or Γ	Decay	Reactions
11.601 ± 10	$2^{-}; 1$				55
11.653 ± 5	$(3^+); 0$			γ	6, 7, 36
11.885 ± 7	$2^+; 0$		$\Gamma_{\rm cm} = 46 \ {\rm keV}$	γ, α	7, 14, 30, 53, 60
11.928 ± 4	$4^+; 0$		$\Gamma_{\rm cm}=0.44\pm0.15~{\rm keV}$	γ, α	12, 14, 60
11.951 ± 4	$8^+; 0$	0_1^+	$\begin{split} \Gamma_{\rm cm} &= (3.5 \pm 1.0) \\ &\times 10^{-2} \ \rm keV \end{split}$	γ, α	$\begin{array}{c} 4,\ 6,\ 7,\ 8,\ 12,\ 14,\ 15,\ 16,\\ 18,\ 19,\ 23,\ 30,\ 52 \end{array}$
11.985 ± 16	$1^{-}; 0$		$\Gamma_{\rm cm}=30\pm5~{\rm keV}$	γ, α	7, 12, 14
12.098 ± 6	$2^{-}; 1$			γ	7, 30, 38, 55
12.137 ± 5	$6^+; 0$	0^{+}_{3}		α	5, 6, 7, 8, 14, 15
12.221 ± 4	$2^+; 1$		$\Gamma_{\rm cm} < 1~{\rm keV}$	$\gamma, lpha$	7, 12
12.253 ± 10	$4^+; 0$		$\Gamma_{\rm cm} = 155 \pm 15 ~\rm keV$	α	14
12.256 ± 3	$3^{-}; 1$		$\Gamma_{\rm cm} < 1~{\rm keV}$	γ, α	12, 14
12.327 ± 10	$2^+; 0$	0_{5}^{+}	$\Gamma_{\rm cm} = 390 \pm 50 ~\rm keV$	α	14
12.401 ± 5	$3^{-};(1)$	0_{7}^{+}	$\Gamma_{\rm cm}=37.3\pm0.9~{\rm keV}$	γ, α	6, 7, 12, 14, 29, 60
12.436 ± 4	$0^+; 0$		$\Gamma_{\rm cm} = 24.4 \pm 0.5 ~\rm keV$	γ, α	7, 12, 14
12.472 ± 10	$(2^+); 0$		$\Gamma_{\rm cm} = 124 \pm 6 ~\rm keV$	α	14
12.585 ± 5	$6^+; 0$	(0_2^+)	$\Gamma_{\rm cm}=72\pm9~{\rm keV}$	α	6, 7, 14, 15, 16, 18, 19
12.592 ± 15	$(2^+); 0$		$\Gamma_{\rm cm} = 145 \pm 25 ~\rm keV$	α	14
12.713 ± 5	$5^{-}; 0$	1^{-}	$\Gamma_{\rm cm}=84\pm8~{\rm keV}$	α	6, 7, 14
12.743 ± 10	$(2^+); 0$		$\Gamma_{\rm cm} = 61 \pm 12 ~\rm keV$	α	6, 7, 14
12.836 ± 5	$1^{-}; 0$		$\Gamma_{\rm cm}=30\pm5~{\rm keV}$	α	7, 14
12.957 ± 5	$2^+; 0$	(0^+_7)	$\Gamma_{\rm cm} = 38 \pm 4 \ {\rm keV}$	α	7, 14, 60
13.048 ± 5	$4^+; 0$		$\Gamma_{\rm cm} = 18 \pm 3 \ {\rm keV}$	α	6, 7, 14
13.0607 ± 2.1	2^{-}		$\Gamma_{\rm cm} = 1.0 \ {\rm keV}$	p, α	28
13.095 ± 6	$2^+; 0$		$\Gamma_{\rm cm} = 162 \pm 13 ~\rm keV$	α	3.5, 14
13.105 ± 5	$6^+; 0$	(0^+_2)	$\Gamma_{\rm cm} = 102 \pm 5 ~\rm keV$	α	14
13.137 ± 5	$3^{-}; 0$		$\Gamma_{\rm cm} = 48 \pm 4 \ {\rm keV}$	α	14
13.1713 ± 2.1	$1^+; (1)$		$\Gamma_{\rm cm} = 2.3 \pm 0.2 ~\rm keV$	$\gamma,{\rm p},\alpha$	25, 26, 28, 29
13.222 ± 10	$0^+; 0$		$\Gamma_{\rm cm} = 40 \pm 13 ~\rm keV$	α	7, 14, 28
13.224 ± 15	$1^{-}; 0$		$\Gamma_{\rm cm}=80~{\rm keV}$	p, α	14, 28
13.226 ± 5	$3^{-}; 0$		$\Gamma_{\rm cm} = 53 \pm 4 \ {\rm keV}$	α	14
13.3075 ± 2.1	1^{+}		$\Gamma_{\rm cm}=0.9\pm0.1~{\rm keV}$	γ,p,α	25, 26, 28
13.338 ± 5	$7^{-}; 0$	2^{-}	$\Gamma_{\rm cm} = (8 \pm 3) \\ \times 10^{-2} \ \rm keV$	α	6, 7, 8, 14

Table 20.13 (continued) Energy Levels of 20 Ne ^a)

Table 20.13 (continued) Energy Levels of 20 Ne a)

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	K^{π}	$ au$ ^b) or Γ	Decay	Reactions
13.341 ± 5	$4^+; 0$		$\Gamma_{\rm cm} = 26 \pm 3 \ {\rm keV}$	α	14
13.414 ± 2	$3^{-}; 0$		$\Gamma_{\rm cm} = 24 \pm 3 \ {\rm keV}$	α	14, 25, 26, 28
13.426 ± 5	$(5^{-}); 0$		$\Gamma_{\rm cm} = 49 \pm 7 \ {\rm keV}$	α	14
13.461 ± 10	1-		$\Gamma_{\rm cm} = 195 \pm 25 ~\rm keV$	p, α	14, 28
13.484 ± 2	$1^+; 1$		$\Gamma_{\rm cm} = 6.4 \pm 0.3 ~\rm keV$	γ , p, α	25, 26, 28, 38
13.507 ± 5	$1^{-}; 0$		$\Gamma_{\rm cm} = 24 \pm 8 \ {\rm keV}$	p, α	14, 26, 28
13.529 ± 5	$2^+; 0$		$\Gamma_{\rm cm} = 61 \pm 8 \ {\rm keV}$	α	14
13.530 ± 15	$(0^+); 0$		$\Gamma_{\rm cm} = 76 \pm 32 ~\rm keV$	α	14
13.573 ± 5	$2^+; 0$		$\Gamma_{\rm cm} = 12 \pm 5 \ {\rm keV}$	α	7, 14, 28
13.586 ± 3	2^{+}		$\Gamma_{\rm cm} = 9 \pm 1 ~\rm keV$	p, α	26, 28
13.642 ± 3	$0^+; 1$		$\Gamma_{\rm cm} = 17 \pm 1 \ {\rm keV}$	p, α	7, 26, 28, 29
13.676 ± 2.3	(2^{-})		$\Gamma_{\rm cm} = 4.5 \pm 0.2 ~\rm keV$	$\gamma,{\rm p},\alpha$	25, 26, 28
13.677 ± 5	$5^{-}; 0$		$\Gamma_{\rm cm} = 11 \pm 2 \ {\rm keV}$	α	6, 14
13.692 ± 10	$7^{-}; 0$	0^{-}	$\Gamma_{\rm cm} = 310 \pm 30 ~\rm keV$	α	14
13.736 ± 2.5	$7^{-}; 0$	0^{-}	$\Gamma_{\rm cm} = 7.7 \pm 0.5~{\rm keV}$	$\gamma,{\rm p},\alpha$	25, 26, 28
13.744 ± 20	$0^+; 0$		$\Gamma_{\rm cm} \approx 80 \ {\rm keV}$	α	14
13.827 ± 10	$3^{-}; 0$		$\Gamma_{\rm cm} = 136 \pm 15~{\rm keV}$	α	7, 14
13.866 ± 30	$1^{-}; 0$		$\Gamma_{\rm cm} \approx 175 \ {\rm keV}$	p, α	7, 14, 28
13.881 ± 2.3	$2^+; 1$		$\Gamma_{\rm cm} = 0.14 \pm 0.05 ~\rm keV$	$\gamma,{\rm p},\alpha$	7, 8, 25, 26, 28, 29
13.908 ± 5	$2^+; 0$		$\Gamma_{\rm cm} = 74 \pm 10 \ \rm keV$	α	14, 28
13.926 ± 2.3	(0^+)		$\Gamma_{\rm cm} = 3.5 \pm 0.4 ~\rm keV$	p, α	28
13.928 ± 5	$6^+; 0$		$\Gamma_{\rm cm} = 65 \pm 3 \ {\rm keV}$	α	14, 15, 16
13.948 ± 10	$0^+; 0$		$\Gamma_{\rm cm} = 79 \pm 15~{\rm keV}$	α	14
13.965 ± 5	$4^+; 0$	(0_6^+)	$\Gamma_{\rm cm} = 8.1 \pm 1 ~\rm keV$	α	14
14.02	1-		$\Gamma_{\rm cm} \approx 70 \ {\rm keV}$	p, α	28
14.063 ± 2.3	2^{+}		$\Gamma_{\rm cm} \approx 140 \ {\rm keV}$	p, α	26, 28
14.115 ± 5	$2^+; 0$		$\Gamma_{\rm cm} = 42 \pm 6 \ \rm keV$	α	14
14.128 ± 2	2^{-}		$\Gamma_{\rm cm} = 4.7 \pm 0.7 \ \rm keV$	$\gamma,{\rm p},\alpha$	25, 26, 28
14.150 ± 2.3	2^{-}		$\Gamma_{\rm cm} = 11.8 \pm 1.0 ~\rm keV$	$\gamma,{\rm p},\alpha$	25, 26, 28
14.20	1+		$\Gamma_{\rm cm} = 14 \pm 1 \ {\rm keV}$	γ, p	25, 26
14.270 ± 10	$4^+; 0$		$\Gamma_{\rm cm} = 92 \pm 9 ~\rm keV$	α	14
14.304 ± 10	$(6^+); 0$		$\Gamma_{\rm cm} = 60 \pm 13 ~\rm keV$	α	6, 7, 14
14.311 ± 5	$6^+; 0$		$\Gamma_{\rm cm} = 117 \pm 8 ~\rm keV$	α	6, 7, 14, 15, 16, 18
14.313 ± 15	$(3^{-}); 0$		$\Gamma_{\rm cm} \approx 45 \ {\rm keV}$	α	14

$E_{\rm x} \ ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	K^{π}	τ $^{\rm b})$ or Γ	Decay	Reactions
14.370 ± 3			$\Gamma_{\rm cm} \approx 5 \ {\rm keV}$	p, α	26, 28
14.454 ± 5	$5^{-}; 0$		$\Gamma_{\rm cm} \approx 15 \ {\rm keV}$	α	14
14.455 ± 3	$(0^+, 2^+); 0$		$\Gamma_{\rm cm}=33\pm3~{\rm keV}$	p, α	14, 26, 28
14.475 ± 6	0^{+}		$\Gamma_{\rm cm} = 68 \pm 2 ~\rm keV$	p, α	26, 28
14.597 ± 7	$1^{-}; 0$		$\Gamma_{\rm cm} = 116 \pm 5~{\rm keV}$	p, α	14, 28
14.593 ± 10	$4^+; 0$		$\Gamma_{\rm cm} = 260 \pm 25~{\rm keV}$	α	14
14.653 ± 10	(0^+)		$\Gamma_{\rm cm} = 25 \ {\rm keV}$	p, α	26, 28
14.699 ± 3.3	(1^{+})		$\Gamma_{\rm cm} = 36 \pm 10 ~\rm keV$	p, α	14, 26, 28
14.731 ± 10	$(4^+); 0$		$\Gamma_{\rm cm} = 60 \pm 25 ~\rm keV$	α	14
14.761 ± 5	$6^+; 0$		$\Gamma_{\rm cm} = 7.3 \pm 4.8 ~\rm keV$	α	14
14.776 ± 4	(1^{-})		$\Gamma_{\rm cm} = 110 \pm 20 ~\rm keV$	p, α	26, 28
14.807 ± 5	$6^+; 0$		$\Gamma_{\rm cm} = 86 \pm 7 ~\rm keV$	α	6, 14, 28
14.816 ± 5	$5^{-}; 0$		$\Gamma_{\rm cm} = 117 \pm 13~{\rm keV}$	α	6, 14
14.839 ± 10	$(4^+); 0$		$\Gamma_{\rm cm} = 79 \pm 15 \ {\rm keV}$	α	14
14.888 ± 10	$2^+; 0$		$\Gamma_{\rm cm} = 100 \pm 30 ~\rm keV$	p, α	14, 28
15.047 ± 10	$2^+; 0$		$\Gamma_{\rm cm} = 66 \pm 20 ~\rm keV$	p, α	7, 14, 28
15.073 ± 10	$5^{-}; 0$		$\Gamma_{\rm cm} = 160 \pm 25 ~\rm keV$	α	14
15.142 ± 15	$(2^+); 0$		$\Gamma_{\rm cm}\approx 60~{\rm keV}$	α	14
15.159 ± 5	$6^+; 0$		$\Gamma_{\rm cm} = 60 \pm 15 ~\rm keV$	α	7
15.174 ± 10	$5^{-}; 0$		$\Gamma_{\rm cm} = 230 \pm 25~{\rm keV}$	α	6, 14
15.23			$\Gamma_{\rm cm} = 28~{\rm keV}$	p, α	28
15.27	(1^{-})		$\Gamma_{\rm cm}=285~{\rm keV}$	α	4, 6, 7, 14, 15, 16, 18
15.330 ± 5	$4^+; 0$		$\Gamma_{\rm cm} = 34 \pm 10 ~\rm keV$	α	4,6,7,14
15.346 ± 2	$6^+; 0$			α	14
15.366 ± 5	$7^{-}; 0$		$\Gamma_{\rm cm} = 110 \pm 10 ~\rm keV$	α	14, 15, 16, 18, 19
15.436 ± 15	$(3^{-}); 0$		$\Gamma_{\rm cm} = 90 \pm 20 ~\rm keV$	p, α	7, 14, 28
15.5			$\Gamma_{\rm cm} = 55 \ {\rm keV}$	p, α	14, 28
15.70 ± 15	$(8^{-}); 0$	(2^{-})		α	6, 7, 14
15.874 ± 9	8+		$\Gamma_{\rm cm} = 100 \pm 15~{\rm keV}$	α	5,6,7,15,18,19
15.97	$(6^+); 0$			α	14
16.01 ± 25	$(2^+; 1)$		$\Gamma_{\rm cm} = 100 \ {\rm keV}$	p, α	28
16.139 ± 15			$\Gamma_{\rm cm}=38~{\rm keV}$	α	6, 7, 14, 28
16.25				α	6, 14
16.329 ± 11	$4^+; 0$		$\Gamma_{\rm cm} = 45~{\rm keV}$	$^{\mathrm{p},lpha}$	14, 28

Table 20.13 (continued) Energy Levels of 20 Ne ^a)

Table 20.13 (continued) Energy Levels of 20 Ne a)

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	K^{π}	$ au$ ^b) or Γ	Decay	Reactions
16.437 ± 11	$(0,2,4)^+; 0$		$\Gamma_{\rm cm} = 35 \ {\rm keV}$	α	14
16.505 ± 15	$6^+; 0$	(0_6^+)	$\Gamma_{\rm cm} = 24 \pm 4 \ {\rm keV}$	α	6, 14
16.559 ± 15	$5^{-}; 0$		$\Gamma_{\rm cm} = 90 \pm 30 ~\rm keV$	α	14
16.581 ± 15	$7^{-}; 0$	1^{-}	$\Gamma_{\rm cm} = 92 \pm 8 ~\rm keV$	α	7, 14
16.628 ± 20	$3^{-}; 0$		$\Gamma_{\rm cm} = 80 \pm 25 ~\rm keV$	α	14
16.63 ± 20	(7^{-})			α	15, 16, 18
16.667 ± 15	$4^+; 0$		$\Gamma_{\rm cm} = 100 \pm 25 ~\rm keV$	α	14
16.717 ± 15	$5^{-}; 0$		$\Gamma_{\rm cm} \approx 25 \ {\rm keV}$	α	6, 7, 14
16.732 ± 5	$0^+; 2$		$\Gamma_{\rm cm} = 2.0 \pm 0.5 ~\rm keV$	$\gamma,\mathrm{p},lpha$	24, 25, 26, 28, 56
16.746 ± 25	$8^+; 0$		$\Gamma_{\rm cm} = 160 \pm 50 \ {\rm keV}$	α	14
16.847 ± 15	$5^{-}; 0$		$\Gamma_{\rm cm} = 16 \pm 8 ~\rm keV$	α	14
16.871 ± 200	$6^+; 0$		$\Gamma_{\rm cm} = 350 \pm 50 \ {\rm keV}$	α	14
17.072 ± 20	$4^+; 0$		$\Gamma_{\rm cm} = 180 \pm 30 \ {\rm keV}$	α	14
17.155 ± 15	$5^{-}; 0$		$\Gamma_{\rm cm} = 26 \pm 5 \ {\rm keV}$	α	14
17.213 ± 15	$4^+; 0$		$\Gamma_{\rm cm} = 225 \pm 30 \ {\rm keV}$	α	14
17.284 ± 15	$3^{-}; 0$		$\Gamma_{\rm cm} = 86 \pm 25 ~\rm keV$	α	14
17.295 ± 15	$8^+; 0$		$\Gamma_{\rm cm} = 200 \pm 25 \ {\rm keV}$	α	4, 14, 15, 16, 18, 19
17.390 ± 15			$\Gamma_{\rm cm} < 10~{\rm keV}$	α	14
17.430 ± 15	$9^{-}; 0$	(0^{-})	$\Gamma_{\rm cm} = 220 \pm 25 \ \rm keV$	α	6, 7, 8, 14
17.541 ± 15	$6^+; 0$		$\Gamma_{\rm cm} = 86 \pm 9 ~\rm keV$	α	14
17.55 ± 10	$(2^+; 1)$		$\Gamma_{\rm cm} = 19 \ {\rm keV}$	n, p, α	27, 28
17.606 ± 15	$5^{-}; 0$		$\Gamma_{\rm cm} = 140 \pm 20 \ \rm keV$	α	14
17.769 ± 20	$4^+; 0$		$\Gamma_{\rm cm} \approx 125 \ {\rm keV}$	p, α	14, 28
17.851 ± 15	$5^{-}; 0$		$\Gamma_{\rm cm} = 200 \pm 30 \ {\rm keV}$	α	14
17.91 ± 20	(0^+)			n, p	27
18.005 ± 15	$7^{-}; 0$		$\Gamma_{\rm cm} < 10 \ {\rm keV}$	α	14
18.024 ± 5	$5^{-}; 0$		$\Gamma_{\rm cm} = 34 \pm 7 \ {\rm keV}$	α	14
18.083 ± 25	$4^+; 0$		$\Gamma_{\rm cm} = 140 \pm 60 \ \rm keV$	α	14
18.125 ± 5	$7^{-}; 0$		$\Gamma_{\rm cm} = 29 \pm 6 \ {\rm keV}$	α	6, 7, 8, 14
18.286 ± 10	$6^+; 0$		$\Gamma_{\rm cm} = 190 \pm 300 \ {\rm keV}$	α	6, 14
18.430 ± 7	$2^+; 2$		$\Gamma_{\rm cm} = 9.5 \pm 3 ~\rm keV$	γ, n, p, α	25, 26, 27, 28, 56
18.430 ± 20	$7^{-}; 0$		$\Gamma_{\rm cm} = 185 \pm 40 \ {\rm keV}$	α	14
18.494 ± 20	$5^{-}; 0$		$\Gamma_{\rm cm} = 130 \pm 30 \ {\rm keV}$	α	14
18.538 ± 7	8+		$\Gamma_{\rm cm} = 138 \pm 33 ~\rm keV$	α	7
18.621 ± 20	$8^+; 0$	(0_6^+)	$\Gamma_{\rm cm} = 185 \pm 30 \ {\rm keV}$	α	14

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	K^{π}	τ $^{\rm b})$ or Γ	Decay	Reactions
18.745 ± 25	$6^+; 0$		$\Gamma_{\rm cm} = 140 \pm 50 \ {\rm keV}$	α	14
18.768 ± 20	$7^{-}; 0$		$\Gamma_{\rm cm} = 140 \pm 35~{\rm keV}$	α	14, 15
18.960 ± 25	$8^+; 0$		$\Gamma_{\rm cm} = 200 \pm 60 ~\rm keV$	α	14
19.051 ± 15	$5^{-}; 0$		$\Gamma_{\rm cm} \approx 90 \ {\rm keV}$	α	14
19.15 ± 20	$6^+; 0$		$\Gamma_{\rm cm} = 200 \pm 50 ~\rm keV$	α	8, 14
19.284 ± 15	$6^+; 0$		$\Gamma_{\rm cm} = 140 \pm 25 ~\rm keV$	α	14
19.298 ± 25	$7^{-}; 0$		$\Gamma_{\rm cm} = 430 \pm 60 ~\rm keV$	α	14, 15
19.443 ± 10	$6^+; 0$	(0^+_7)	$\Gamma_{\rm cm} = 130 \pm 15~{\rm keV}$	α	14
19.536 ± 25	$6^+; 0$		$\Gamma_{\rm cm} = 250 \pm 60 ~\rm keV$	α	14
19.655 ± 20	$6^+; 0$		$\Gamma_{\rm cm} = 140 \pm 35~{\rm keV}$	α	14
19.731 ± 20	$8^+; 0$		$\Gamma_{\rm cm} = 330 \pm 60 ~\rm keV$	α	14
19.845 ± 40	$6^+; 0$		$\Gamma_{\rm cm} = 360 \pm 120 ~\rm keV$	α	14
19.859 ± 10	$5^{-}; 0$		$\Gamma_{\rm cm} = 170 \pm 25 ~\rm keV$	α	14
19.884 ± 40	$7^{-}; 0$		$\Gamma_{\rm cm}\approx 120~{\rm keV}$	α	14, 15
19.991 ± 30	$4^+; 0$		$\Gamma_{\rm cm} = 130 \pm 100 ~\rm keV$	α	14
20.027 ± 15	$6^+; 0$		$\Gamma_{\rm cm} = 80 \pm 35~{\rm keV}$	α	14
20.106 ± 25	$7^{-}; 0$		$\Gamma_{\rm cm} = 190 \pm 35~{\rm keV}$	α	14
20.15 ± 150			broad	γ , n	34
20.168 ± 35	$6^+; 0$		$\Gamma_{\rm cm} = 285 \pm 100 ~\rm keV$	α	14
20.296 ± 15	$7^{-}; 0$		$\Gamma_{\rm cm} = 255 \pm 40 ~\rm keV$	α	14
20.341 ± 20	$5^{-}; 0$		$\Gamma_{\rm cm} = 190 \pm 40 ~\rm keV$	α	14
20.344 ± 15	$7^{-}; 0$		$\Gamma_{\rm cm} = 135 \pm 35 ~\rm keV$	α	14
20.419 ± 30	$6^+; 0$		$\Gamma_{\rm cm} = 215 \pm 90 ~\rm keV$	α	14
20.445 ± 25	$6^+; 0$		$\Gamma_{\rm cm} = 370 \pm 55 ~\rm keV$	α	14
20.468 ± 30	$5^{-}; 0$		$\Gamma_{\rm cm} = 280 \pm 70 ~\rm keV$	α	14
20.686 ± 6	$9^{-}; 0$	(1^{-})	$\Gamma_{\rm cm} = 78 \pm 11 \ {\rm keV}$	α	7, 14, 16
20.76 ± 30	$7^{-}; 0$		$\Gamma_{\rm cm} = 240 \pm 50 ~\rm keV$	α	14, 15
20.800 ± 25	$5^{-}; 0$		$\Gamma_{\rm cm} = 170 \pm 60 ~\rm keV$	α	14
20.95 ± 40	$7^{-}; 0$		$\Gamma_{\rm cm} = 300 \pm 50 ~\rm keV$	α	7, 14
21.062 ± 6	$9^{-}; 0$	(1^{-})	$\Gamma_{\rm cm}=60\pm 6~{\rm keV}$	α	4, 7, 14, 16, 18, 19
21.3 ± 100	$7^{-}; 0$		$\Gamma_{\rm cm}=300~{\rm keV}$	α	8.3, 14, 15
21.8 ± 100	$7^{-}; 0$		$\Gamma_{\rm cm}=300~{\rm keV}$	α	7, 8.3, 14, 15
22.3 ± 100	$7^{-}; 0$		$\Gamma_{\rm cm} = 500~{\rm keV}$	α	7, 8.3, 14, 15
22.6 ± 300			broad	α	34
22.8 ± 60	$9^{-}; 0$		$\Gamma_{\rm cm} = 500~{\rm keV}$	α	7, 14

Table 20.13 (continued) Energy Levels of 20 Ne ^a)

 $E_{\rm x} \, ({\rm MeV} \pm {\rm keV})$ $J^{\pi}; T$ K^{π} τ ^b) or Γ Decay Reactions 22.87 ± 40 $\Gamma_{\rm cm} = 225 \pm 40 \ {\rm keV}$ $9^{-}; 0$ 4, 7, 14, 16, 18 α $8^+; 0$ $\Gamma_{\rm cm}=500~{\rm keV}$ 23.4 ± 200 14 α 23.70 ± 30 (9^{-}) $\Gamma_{\rm cm} \leq 200~{\rm keV}$ 15, 16 α $8^+; 0$ $\Gamma_{\rm cm}=350~{\rm keV}$ 14, 16 24.21 ± 25 α 24.9 ± 500 broad 34 γ , n $8^+; 0$ 25.10 ± 50 $\Gamma_{\rm cm}\approx 200~{\rm keV}$ 14, 16 α 25.67 ± 50 $\Gamma_{\rm cm} = \approx 400 \ {\rm keV}$ 14,16 α $\Gamma_{\rm cm}=700~{\rm keV}$ 27.1 ± 100 (9^{-}) 14, 15, 18 α 10^{+} broad 27.58.3, 34 γ , n $8^+; 0$ $\Gamma_{\rm cm} = 1600~{\rm keV}$ 2814 α $\Gamma_{\rm cm}=700~{\rm keV}$ 28.2 ± 300 14 α

Table 20.13 (continued) Energy Levels of ²⁰Ne ^a)

^a) See also Tables 20.14 and 20.15. For other states with $E_x > 15.5$ MeV see Tables 20.30 in (78AJ03) and 20.23–25 here and reactions 1, 34, and 36. It is clear that there are many states with low angular momentum and with unnatural parity which have not been located at high E_x . ^b) See Table 20.20 in (78AJ03).

$E_{\rm i}~({\rm MeV})$	$J_{\mathrm{i}}^{\pi}; T$	$E_{\rm f}~({\rm MeV})$	Branch $(\%)$	$\Gamma_{\gamma} \ (meV)$
1.63	$2^+; 0$	0	100	0.63 ± 0.04 ^b)
4.25	$4^+; 0$	1.63	≈ 100	7.1 ± 0.7 $^{\rm b})$
4.97	$2^{-}; 0$	0	0.6 ± 0.2	$(8 \pm 3) \times 10^{-4}$ b)
		1.63	99	0.14 ± 0.02 ^b)
				$\delta({\rm M2/E1}) = 0.076 \pm 0.011$
				$\delta({\rm E3/E1}) = 0.043 \pm 0.016$
5.62	$3^{-}; 0$	0	7.6 ± 1.0	0.018 ± 0.006
		1.63	87.6 ± 1.0	0.21 ± 0.06
		4.97	4.8 ± 1.6	0.012 ± 0.005
5.79	$1^{-}; 0$	0	18 ± 5	0.8 ± 0.3
		1.63	82 ± 5	3.8 ± 0.8
6.73	$0^+; 0$	0		$ M ^2 = 7.4 \pm 2.0 \text{ fm}^{2 \text{ d}})$
		1.63	100	33
7.00	$4^{-}; 0$	1.63	0.5 ± 0.2	$(7 \pm 3) \times 10^{-3}$ b)
		4.25	13	$0.19^{\rm \ b})$
		4.97	64.5	$0.96^{\rm \ b})$
		5.62	22	$0.32^{\rm \ b})$
7.16	$3^{-}; 0$	4.25	60 ± 5	0.97 ± 0.11
		5.79	40 ± 5	0.64 ± 0.10
7.20	$0^+; 0$	0		$\Gamma_{\pi}=3.9\times 10^{-2}$
				$6.9 \pm 1.4 \ {\rm fm^{2~d}})$
		1.63	100	4.35 ± 0.75
7.42	2+; 0	0	$\leq 9.4 \pm 1.4$	$\leq 3.0\pm 0.6$
		1.63	$\geq 90.6 \pm 1.4$ $^{\rm f})$	29 ± 4
		4.25	≤ 7.6	
7.83	$2^+; 0$	0	83 ± 1	57 ± 7
		1.63	17 ± 1	11.7 ± 1.6
		4.25	< 2	< 2
8.46	$5^{-}; 0$	5.62	100	13 ± 3
8.71	$1^{-}; 0$	0	87 ± 8	61 ± 16
		1.63	13 ± 8	9 ± 6
8.78	$6^+; 0$	4.25	100	100 ± 15
9.03	$4^+; 0$	1.63	100	340 ± 42
		4.25	< 2	< 6.8
9.12	$3^{-}; 0$	1.63	50 ± 5	13 ± 2
		4.97	33 ± 5	8.6 ± 1.7
		5.62	17 ± 4	4.4 ± 1.1

Table 20.14 Radiative decays in $^{20}\mathrm{Ne}$ $^{\mathrm{a}})$

$E_{\rm i}~({\rm MeV})$	$J_{\mathrm{i}}^{\pi}; T$	$E_{\rm f}~({\rm MeV})$	Branch (%)	$\Gamma_{\gamma} \ ({\rm meV})$
$9.32^{-1})$	$(2^{-}; 0)$	1.63		
9.49	$2^+; 0$	0		≤ 60
		1.63	(100)	260 ± 100
9.87	$3^+; 0$	0	< 0.5	
		1.63	78	g)
		4.25	12 ± 3	
		4.97	≤ 5	
		5.62	≈ 7	
		7.43	≈ 3	
9.94	$(1^+); 0$	1.63	78 ± 5	
		4.97	22 ± 5	
9.99	$4^+; 0$	0		≤ 70
		1.63	(100)	900 ± 400
10.27	$2^+; 1$	0	0.65 ± 0.14	29 ± 8
		1.63	88.9 ± 0.5	4080 ± 440
		4.97	1.3 ± 0.1	60 ± 8
		5.62	2.1 ± 0.2	97 ± 14
		7.43	6.9 ± 0.4	310 ± 40
		7.83	0.22 ± 0.06	8 ± 2
10.61	$6^{-}; 0$	7.00	95.5 ± 1.2	29 ± 9 ^b)
		8.46	4.5 ± 1.2	1.3 ± 0.4
10.69	$4^{-}, 3^{+}; 0$	4.25	25 ± 4	
		4.97	75 ± 4	
10.88	$3^+; 1$	1.63	77 ± 5	h)
		4.25	23 ± 5	
$11.09^{\rm c})$	$4^+; 1$	1.63	0.5 ± 0.25	2 ± 1
		4.25^{i})	99.5 ± 0.25	338 ± 40
$11.26 \ ^{j})$	$1^+; 1$	0	84 ± 5	$(11.2 \pm 2.0) \times 10^3$
		1.63	16 ± 5	$(2.1 \pm 0.7) \times 10^3$
$11.27 \ ^{\rm c})$	$1^{-}; 1$	0	55 ± 2	390 ± 47
		1.63	2.5 ± 1	18 ± 7
		4.97	6.5 ± 1	46 ± 9
		8.85	27 ± 1.5	189 ± 24
		9.32	9 ± 1	63 ± 10
11.53	$3^+, 4^-; 0$	4.25	30 ± 3	
		4.97	70 ± 3	
		7.00	f)	

Table 20.14 (continued) Radiative decays in 20 Ne ^a)

$E_{\rm i}~({\rm MeV})$	$J_{\mathrm{i}}^{\pi}; T$	$E_{\rm f}~({\rm MeV})$	Branch $(\%)$	$\Gamma_{\gamma} \; ({ m meV})$
11.555	$(3^+; 0)$	1.63		
		7.00		
11.558	$0^+; 0$	1.63	100	
		4.25	< 8	
11.65	$(3^+); 0$	1.63	14 ± 3	
		4.25	86 ± 3	
11.93	$4^+; 0$	1.63	21 ± 11	5.5 ± 3.0
		4.25	79 ± 11	20.5 ± 5.5
11.95	$8^+; 0$	8.78	100	7.7 ± 1.1
12.22 ^k)	$2^+; 1$	1.63	(100)	
12.26	$3^{-}; 1$	1.63	63 ± 1.5	
		5.62	37 ± 1.5	
12.40	$3^{-};(1)$	0	≈ 1	
		1.63	≈ 29	80
		4.25	≈ 70	200
12.43	$0^+; 0$	1.63	100	170 ± 50
13.48	$1^+; 1$	1.63	95	
		4.97	5	
13.88	$2^+; 1$	1.63	20	
		4.97	80	
16.73	$0^+; 2$	1.63		
		5.79		
		11.23	(100)	≈ 5000
18.43	$2^+; 2$	12.22	(100)	≈ 300

Table 20.14 (continued) Radiative decays in ²⁰Ne^a)

^a) For earlier references see Tables 20.19 in (78AJ03) and 20.18 in (83AJ01). See also Tables 20.17 and 20.20 here.

^b) From τ_m : see Table 20.20 in (78AJ03) and branching ratios. ^c) See also Table 20.19 in (78AJ03).

^d) Monopole matrix element.

- ^{e)} See footnote ^{a)} in Table 2 of (76MA01). ^{f)} $\delta(\text{E2/M1}) = -8.36^{+1.0}_{-1.5}.$ ^{g)} $\Gamma_{\gamma}(\text{total})/\Gamma = 0.82 \pm 0.27.$

^h) $\Gamma_{\gamma}(\text{total})/\Gamma < 0.3$ (77MA07). See also (87FI01). ⁱ) $\delta = +0.01 \pm 0.06$.

 \dot{j} (83BE1J): see reaction 35.

^k) (84CA08).

 $^{1})$ (87FI01).

K^{π}	J^{π}	$E_{\rm x}~({\rm MeV})$	K^{π}	J^{π}	$E_{\rm x}~({\rm MeV})$
0_{1}^{+}	0^{+}	0		6^{+}	(16.51)
	2^{+}	1.63		8+	(18.62)
	4^{+}	4.25	$0^{+ b}_{7}$	0^{+}	12.43
	6^{+}	8.78		2^{+}	(12.96)
	8+	11.95		6^{+}	(19.44)
0^{+}_{2}	0^{+}	6.73	$0^{-f})$	1-	5.79
	2^{+}	7.42		3^{-}	7.16
	4^{+}	9.99		5^{-}	10.26
	6^{+}	(12.59, 13.11)		7^{-}	13.69
0^{+}_{3}	0^{+}	7.20		9^{-}	(17.43)
	2^{+}	7.83	1-	1^{-}	8.85
	4^{+}	9.03		3^{-}	10.41
	6^{+}	12.14		5^{-}	12.71
0_{4}^{+}	0^{+}	8.7		7^{-}	16.58
	2^{+}	8.8		9^{-}	(20.69, 21.06)
	4^{+}	10.80	2^{-f})	2^{-}	4.97
	$6^{+ c})$	(12.59)		3^{-}	5.62
	8 ^{+ c})	(17.30)		4^{-}	7.00
0_{5}^{+}	0^{+}	10.97		5^{-}	8.46
	$2^{+ d})$	12.33		6^{-}	10.61
$0_{6}^{+ b}$)	0^{+}	11.55		7^{-}	13.34
	4^{+}	(13.97)		8-	$(15.70)^{\text{e}})$
				9^{-}	17.43

Table 20.15 K^{π} assignments to states of $^{20}\mathrm{Ne}^{\ \mathrm{a}})$

^a) See Tables 20.19, 20.20, 20.21, 20.22, and 20.23 in (83AJ01) and (84RI01, 84RI07, 85MU14, 86MA48). See also Table 20.15 in (87AJ02).

^b) See also (92LA01).

^{c)} However (87MI07) predict the $J^{\pi} = 6^+$, 8^+ and 10^+ members of the 0^+_4 band to be at $E_{\rm x} \approx 14\text{-}15$ MeV [$\Gamma \approx 1\text{-}2$ MeV], ≈ 21 MeV [$\Gamma \approx 2$ MeV] and ≈ 29 MeV [$\Gamma \approx 29$ MeV], suggesting that the 0^+_4 band has a moment of inertia which is very similar to that of the 0^- band.

^d) For the location of higher J^{π} members of this band see (84RI01).

 $^{\rm e}$) See (70PA1A) and (84RI01).

^f) See (92HA18).

$$0.5 \ {}^{9}\text{Be}({}^{18}\text{O}, \ {}^{20}\text{Ne}){}^{7}\text{He}$$
 $Q_{\rm m} = -8.502$

Observation of 20 Ne in this reaction and measurement of the cross section was reported by (90BEYY).

1. (a)
$${}^{10}B({}^{10}B, {}^{10}B){}^{10}B$$

(b) ${}^{10}B({}^{10}B, \alpha){}^{16}O$
 $Q_{\rm m} = 26.414$
 $E_{\rm b} = 31.144$

Excitation functions have been measured for $E({}^{10}\text{B}) = 6$ to 30 MeV (reaction (a)) and 6 to 20 MeV (reaction (b)). Large resonant structures are observed in reaction (b), particularly at $E_x \approx 38$ MeV (α_0) and 38.6 MeV (α to ${}^{16}\text{O}^*$ (7.0, 10.3, 16.2 (u)), $\Gamma \approx 0.6$ MeV. See also (83KA1E) and (78AJ03). More recently, cross sections for fusion of ${}^{10}\text{B} + {}^{10}\text{B}$ were measured for $E({}^{10}\text{B}) = 1.5\text{--}5$ MeV/nucleon, and evidence for fissionlike decay of ${}^{20}\text{Ne}$ was observed (89SZ01). Mass distributions from the sequential decay of the compound nucleus measured at $E({}^{10}\text{B}) \approx 110$ MeV show no evidence for nuclear structure effects (93SZ02).

2.
$${}^{10}B({}^{14}N, \alpha){}^{20}Ne$$
 $Q_m = 19.531$

Angular distributions of α -particles to many states of ²⁰Ne below $E_x = 10.7$ MeV have been measured at $E(^{14}N) = 23.5$ to 35 MeV. See also (78AJ03, 83AJ01). Numerical calculations of differential cross sections using CWBA and DWBA are reported by (90OS1B).

3. ¹⁰B(¹⁶O, ⁶Li)²⁰Ne
$$Q_{\rm m} = 0.270$$

At $E(^{16}\text{O}) = 19.5$ to 42 MeV angular distributions for the ⁶Li ions corresponding to transitions to ²⁰Ne* (0, 1.63, 4.25, 4.97, 5.62+5.79, 6.7-7.2) are in good agreement with Hauser-Feshbach calculations. See also (78AJ03, 85ST1B).

4. ¹¹B(¹⁶O, ⁷Li)²⁰Ne
$$Q_{\rm m} = -3.935$$

At $E(^{11}\text{B}) = 115$ MeV, angular distributions are reported to $^{20}\text{Ne}^*$ (7.16, 8.78, 10.26, 11.95, 15.4). $^{20}\text{Ne}^*$ (8.78, 15.4, 17.3, 21.0 ± 0.07 , 22.78 ± 0.06) are particularly strongly populated. It is suggested that these five states have $J^{\pi} = 6^+$, 7^- , (8^+) , 9^- , and 9^- : see (83AJ01).

5. ${}^{12}C({}^{9}Be, n){}^{20}Ne$ $Q_{\rm m} = 10.319$

At $E({}^{9}\text{Be}) = 16$ and 24 MeV, angular distributions have been measured for ${}^{20}\text{Ne}^{*}$ (7.3 ± 0.4, 9.2 ± 0.4, 10.9 ± 0.3, 12.2 ± 0.3, 15.7 ± 0.3): see (83AJ01).

6. (a) ${}^{12}C({}^{10}B, d){}^{20}Ne$	$Q_{\rm m} = 5.957$
(b) ${}^{12}C({}^{11}B, t){}^{20}Ne$	$Q_{\rm m} = 0.760$

At $E(^{12}\text{C}) = 45$ MeV the population of states of ²⁰Ne with $E_x = 8.46, \underline{8.78}, 9.03, 10.61, 10.67, 10.99, 11.01, 11.66, \underline{11.94}, \underline{12.14}, \underline{12.39}, \underline{12.58}, 12.73, 13.05, 13.17, \underline{13.34}$ [7⁻], <u>13.69</u>, 13.91, 14.29, 14.36, 14.81, <u>15.17</u> [6⁺], <u>15.38</u> [7⁻], 15.71 [(7,8)], <u>15.89</u> [(7)], 16.16, 16.22, <u>16.51</u> [(8)], 16.73, <u>17.39</u> [9⁻], 18.18 and <u>18.32</u> MeV is reported (76K-L03). [Values in brackets are J^{π} suggested on basis of Hauser-Feshbach calculations. The underlined states are well resolved: the authors indicate ± 20 keV for such states.] The relative intensities of the groups to ²⁰Ne* (17.39, 15.38) [$J^{\pi} = 9^{-}, 7^{-}$] argue against the existence of a superband: see (78AJ03). See also (83AJ01).

7.
$${}^{12}C({}^{12}C, \alpha){}^{20}Ne$$
 $Q_m = 4.617$

Double and triple (α, α, γ) correlations and γ -ray branching measurements [see Table 20.14] lead to the J^{π} assignments shown in Table 20.16. See Table 20.15 for assignments to rotational bands. Angular distributions for many states have been reported at $E(^{12}C) = 4.9$ to 51 MeV [see (78AJ03, 83AJ01, 87AJ02)], at 5.2 to 5.8 MeV (88BA12; α_0), and at 69.5 MeV (85XI1B). At $E(^{12}C) = 38$ to 64 MeV, $^{20}Ne^*$ (7.17, 7.83, 8.54, 8.78, 9.03, 11.95, 12.13, 12.59, 13.90) are strongly populated and subsequently decay to $^{16}O_{g.s.}$ (87RA02). Alpha decay of the $J^{\pi} = 6^+$ level at $E_x = 15.6$ MeV and the $J^{\pi} = 8^+$ level at $E_x = 18.54$ MeV to the first excited state of ^{16}O was studied by (92LA01). See Table 20.16. For γ -decay measurements see (87FI01), Table 20.16 and (78AJ03). Resonant characteristics of statistical fluctuations in $^{12}C(^{12}C, \alpha)^{20}Ne$ leading to the 12 lowest ^{20}Ne states were studied by (93GA02).

The yields of various groups of α -particles and their relevance to states of ²⁴Mg, and fusion cross sections, have been studied by many groups: see (78AJ03, 83AJ01, 87AJ02).

Sub-Coulomb cross sections calculated in a statistical framework are discussed in (90KH05). A review of the state of theory and experiments on ${}^{12}C + {}^{12}C$ reactions with formation of molecular states is presented in (87DA1L).

See also (87ER1B, 88GO1G, 88DE18, 91SZ02).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E_{\rm x} \ ({\rm MeV} \pm {\rm keV})^{\rm b})$	$J^{\pi c})$	$\Gamma_{\gamma}/\Gamma^{\rm d})$	$\Gamma_{\rm c.m.}~(\rm keV)$	$ heta_{lpha}^{2~{ m e}})$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.6329 ± 1.0	2^{+}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.2456 ± 2.5	4^{+}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.9663 ± 2.5	2^{-}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.618 ± 4	3^{-}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.774 ± 6	1-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6.725 ± 6	0^{+}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.004 ± 4	4-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.169 ± 6	3^{-}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.196 ± 6	0^{+}			$0.026^{-{ m q}})$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.435 ± 6	2^{+}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.835 ± 6	2^{+}			$0.015^{- m q})$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.449 ± 6	5^{-}			$(1.6 \pm 0.5) \times 10^{-3}$ r)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.694 ± 6	1-			0.0027 ^q)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.779 ± 6	6^{+}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.85	1-			0.0179 ^q)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.033 ± 6	4^{+}			0.033 ^q), 0.022 ^r)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.110 ± 6				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.318 ± 6	2^{-}	> 0.90		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.533 ± 6				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.872 ± 6	$1^+, 2^-, 3^+$	> 0.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$9.948 \pm 5^{\rm d}$)	$1^+, 2^-, 3^+$	> 0.7		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.024 ± 6				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.264 ± 6	5^{-}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.407 ± 6	(3^{-})			$0.078^{-q})$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.545 ± 6				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.609 ± 5	6^{-}	$\equiv 1$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.693 ± 5	$4^{-}; 3^{+}$	> 0.95		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.840 ± 6	(3^{-})			$0.0099 {}^{ m q})$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.917 ± 6	$3^+; T = 0$	> 0.7		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.013 ± 6				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.528 ± 5 ^d)	$(3^+; 4^-)$	> 0.90		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$11.568 \pm 10^{\text{ d}})$	$(3^+; T = 0)$	0.75 ± 0.10		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.653 ± 5 ^d)	(3^+)	> 0.90		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$11.892 \pm 8^{\rm d})$		0.16 ± 0.02		
$\begin{array}{c c} 12.014 \pm 10 \ ^{\rm d}) \\ 12.097 \pm 8 \ ^{\rm d}) \end{array} > 0.20$	11.949 ± 6	8+			$(7.6 \pm 2.2) \times 10^{-3} \text{ r})$
$12.097 \pm 8^{\rm d}$) > 0.20	$12.014 \pm 10^{\rm d})$		> 0.10		
	$12.097 \pm 8^{\text{d}})$		> 0.20		

Table 20.16 Excited states of $^{20}\rm Ne$ from $^{12}\rm C(^{12}C,\,\alpha)^{20}\rm Ne$ $^{a})$

57

$E_{\rm x} \ ({\rm MeV} \pm {\rm keV})^{-{\rm b}})$	$J^{\pi c})$	$\Gamma_{\gamma}/\Gamma^{\rm d})$	$\Gamma_{\rm c.m.} \ (\rm keV)$	$ heta_{lpha}^{2}$ e)
12.135 ± 5 f)	6^{+}			$(4.9 \pm 2.6) \times 10^{-4}$ r,t)
12.172 ± 8 ^d)		> 0.45		
$12.219 \pm 10^{\rm d}$)	$2^+; T = 1$	> 0.45		
$12.379 \pm 8^{\rm d}$)		0.005 ± 0.001		
12.436 ± 5 ^{bb})	$0^{+ s})$		24 ± 1	r,s)
12.596 ± 5	6^{+}		50 ± 10	$0.09 \pm 0.002 \ ^{\rm r})$
12.730 ± 6	(5^{-})			$0.129^{-q})$
12.919 ± 6				
13.010 ± 6				
13.049 ± 6				
13.190 ± 6				
13.277 ± 6				
13.335 ± 6	7^{-}			$(2.4 \pm 1.0) \times 10^{-4}$ r,u)
13.441 ± 6	(5^{-})			≤ 0.023 $^{\rm q})$
13.569 ± 15				
13.631 ± 15				
13.679 ± 15				
13.845 ± 15				
13.886 ± 15				
13.927 ± 5	6^{+}		113 ± 7	0.10 ± 0.01 ^r)
14.144 ± 15				
14.308 ± 10	6^{+}		$< 50^{\rm r}$)	< 0.45 ^r)
14.60				
14.812 ± 15				
15.034 ± 15	a)			
15.159 ± 5 ^g)	6^{+}		60 ± 15	$< 8 \times 10 - 4$ ^{r,v})
15.364 ± 14 ^h)	7^{-}		410 ± 130	
15.438 ± 10^{-1})			100 ± 20	
15.691 ± 15				
15.874 ± 8^{-j})	8+		100 ± 15	0.047 ± 0.013 ^{r,w})
16.139 ± 15				
16.600 ± 15 ^k)	7-		160 ± 30	0.10 ± 0.02 ^{r,x})
16.717 ± 10			37 ± 10	
17.259 ± 11 ¹)	$7^{-}(9^{-})$		162 ± 20	0.019 ± 0.004 ^{r,y})
$18.153 \pm 10^{\text{m}})$	7-			<u>^</u>
18.538 ± 7 ⁿ)	8+		138 ± 33	$(3.2 \pm 1.5) \times 10^{-3 \text{ r,z}})$
20.478 ± 11 °)	(8^+)		250 ± 30	0.11 ± 0.04 ^{r,aa})

Table 20.16 (continued) Excited states of $^{20}\rm Ne$ from $^{12}\rm C(^{12}C,\,\alpha)^{20}\rm Ne$ $^{a})$

Table 20.16 (continued) Excited states of 20 Ne from $^{12}C(^{12}C, \alpha)^{20}$ Ne ^a)

$E_{\rm x} \ ({\rm MeV} \pm {\rm keV})^{\rm b})$	$J^{\pi c})$	$\Gamma_{\gamma}/\Gamma^{\mathrm{d}})$	$\Gamma_{\rm c.m.}~(\rm keV)$	$ heta_{lpha}^{2}$ e)
20.704 ± 11 ^p)	(9^{-})		≈ 120	r)
20.89 ± 30				
21.05 ± 20			140 ± 50	
21.65 ± 100	$(7^-, 9^-)$		240 ± 50	
22.03 ± 70	(8^+)		630 ± 80	
22.7 ± 70			490 ± 110	
23.2 ± 100			300 ± 100	
23.74 ± 100			230 ± 100	
24.374 ± 30	$7^{-}(5^{-})$		210 ± 50	

^a) For complete references see Table 20.21 in (78AJ03). Table 20.19 in (83AJ01) has a number of errors.

^b) Uncertainties shown for $E_x > 5.7$ MeV are approximate, except for states flagged (d): see footnote (c) in Table 20.21 (78AJ03).

^c) See discussions in (75ME04), (83HI06), (84LE19) and (87FI01). See also Table 20.14 here.

^d) (87FI01). ²⁰Ne* (11.89, 12.38) also decay via α_2 .

^e) See also (84LE1B).

^f) Alpha decay is by α_2 to ¹⁶O^{*} (6.13): $\Gamma'_{\alpha}/\Gamma = (6.0 \pm 0.15)\%$: assuming $\Gamma_{\alpha}\Gamma'_{\alpha}/\Gamma = 7.7 \pm 3.8$ eV this leads to $\Gamma_{\alpha} = 0.128 \pm 0.072$ keV for this 6⁺ state: see (78AJ03). (83HI06) report an α_0 branching ratio of $(90 \pm 6)\%$.

^g) Alpha decay is $(2 \pm 2)\%$ by α_0 , $(46 \pm 2)\%$ via α_{1+2} (mainly α_2) and $(52 \pm 2)\%$ via α_{3+4} (mainly α_3) (79YO04). See also (92LA01).

^h) Alpha decay is $(32 \pm 2)\%$ by α_0 , $(58 \pm 2)\%$ via α_{1+2} (mainly α_2) and $(10 \pm 2)\%$ via α_{3+4} (mainly α_3); $\Gamma_{\alpha_0}/\Gamma = 0.3 \pm 0.02$, assuming a single state. The state may correspond to a doublet (79YO04). See also (83HI06).

ⁱ) Alpha decay is $(20 \pm 5)\%$ by α_0 , $(57 \pm 7)\%$ by α_{1+2} and $(23 \pm 4)\%$ by α_{3+4} (83HI06).

^j) Alpha decay is $(9 \pm 2)\%$ by α_0 , $(79 \pm 2)\%$ via α_{1+2} (mainly α_2) and $(12 \pm 4)\%$ via α_{3+4} (mainly α_3) (79YO04); $(24 \pm 5)\%$ via α_0 , $(51 \pm 7)\%$ via α_{1+2} , $(25 \pm 5)\%$ via α_{3+4} (83HI06).

^k) Alpha decay is $(72 \pm 3)\%$ via α_0 , $(20 \pm 3)\%$ via α_{1+2} (mainly α_2) and $(8 \pm 3)\%$ via α_{3+4} (mainly α_3) (79YO04); $(60 \pm 5)\%$ via α_0 , $(20 \pm 5)\%$ via α_{1+2} and (20 ± 5) via α_{3+4} (83HI06).

¹) Alpha decay is $(15 \pm 2)\%$ via α_0 , $(50 \pm 6)\%$ via α_{1+2} and $(35 \pm 7)\%$ via α_{3+4} (83HI06). See also (79YO1A).

^m) Alpha decay is $(71 \pm 6)\%$ via α_0 and $(29 \pm 6)\%$ via α_{1+2} (mainly α_2) (79YO1A).

ⁿ) Alpha decay is $(1.8 \pm 0.9)\%$ via α_0 , $(60 \pm 8)\%$ via α_{1+2} and $(26 \pm 4)\%$ via α_{3+4} . Decay to ${}^{12}C_{g.s.} + {}^{8}Be_{g.s.}$ is also observed: the branching ratio is $(12 \pm 1.2)\%$. This may be a member of an excited 8p-4h ($K^{\pi} = 0_6^+$) band of which ${}^{20}Ne^*$ (12.44) is the 0⁺ band head (83HI06). The results of (92LA01), however, argue against this identification.

°) Decay is $(66 \pm 26)\%$ via α_0 , $(14 \pm 7)\%$ via α_{1+2} and $(13.2 \pm 2.5)\%$ via ${}^{12}C + {}^{8}Be$ (83HI06).

^p) Decay is $\leq 14\%$ via α_0 , $(25 \pm 15)\%$ via α_{1+2} , $(46 \pm 22)\%$ via α_{3+4} and $(4.5 \pm 0.9)\%$ via $^{12}C + ^8Be$ (83HI06). See also (79YO1A).

^q) (79YO04).

r) θ_{α}^2 shown are $\theta_{\alpha_0}^2$ (83HI06). See also (87FI01).

^s) See footnote (f) in Table 20.21 of (83AJ01).

^t) $\theta_{\alpha_2}^2 = 0.66 \pm 0.36 \ (83\text{HI06}).$ ^u) $\theta_{\alpha_2}^2 = 0.025 \pm 0.010 \ (83\text{HI06}).$ ^v) $\theta_{\alpha_2}^2 = 0.05 \pm 0.013, \ \theta_{\alpha_3}^2 = 0.91 \pm 0.23 \ (83\text{HI06}).$ ^w) $\theta_{\alpha_2}^2 = 0.94 \pm 0.14, \ \theta_{\alpha_3}^2 = 4.2 \pm 0.9 \ (83\text{HI06}).$ ^x) $\theta_{\alpha_2}^2 = 0.048 \pm 0.013, \ \theta_{\alpha_3}^2 = 0.44 \pm 0.12 \ (83\text{HI06}).$ ^y) $\theta_{\alpha_2}^2 = 0.071 \pm 0.013, \ \theta_{\alpha_3}^2 = 0.32 \pm 0.08 \ [\text{all } \theta_{\alpha}^2 \ \text{assume } J^{\pi} = 7^{-}] \ (83\text{HI06}).$ ^z) $\theta_{\alpha_2}^2 = 0.085 \pm 0.014, \ \theta_{\alpha_3}^2 = 0.24 \pm 0.04, \ \theta^2(^{12}\text{C}) = 1.50 \pm 0.21 \ (83\text{HI06}).$ ^{aa}) $\theta_{\alpha_2}^2 = 0.016 \pm 0.008, \ \theta^2(^{12}\text{C}) = 0.24 \pm 0.05 \ (83\text{HI06}).$ ^{bb}) (92LA01) determined $E_x = 12.436 \pm 0.004 \ \text{MeV}, \ \theta_{\alpha_1}^2 \approx 1.15.$

8. (a)
$${}^{12}C({}^{14}N, {}^{6}Li){}^{20}Ne$$
 $Q_m = -4.181$
(b) ${}^{12}C({}^{14}N, d){}^{24}Mg \rightarrow \alpha + {}^{20}Ne$
 $Q_m = 7.480$

Angular distributions of the ⁶Li ions to many states of ²⁰Ne below 17.5 MeV have been reported for $E(^{14}N) = 30$ to 78 MeV and $E(^{12}C) = 67.2$ MeV. At the latter energy ²⁰Ne* (16.67, 17.38, 18.11, 19.16, 19.6) are particularly strongly populated: see (78AJ03). For reaction (b) to ²⁰Ne_{g.s.} see the angular correlation measurements at $E(^{14}N) = 30-42$ MeV reported by (88AR24, 94ZU1B), and see the review of (87G012). Earlier work is cited in (87AJ02). See also (88BE1J, 89BE1T, 92ARZX).

8.3 (a) ${}^{12}C({}^{16}O, {}^{8}Be){}^{20}Ne$	$Q_{\rm m} = -2.636$	3
(b) ${}^{12}C({}^{16}O, \alpha\alpha){}^{20}Ne$	$Q_{\rm m} = -2.545$	5

Reaction (a) was studied at 150 MeV in a search for high-spin α -cluster resonances in ²⁰Ne. A broad 10⁺ resonance was located at 27.5 MeV (88AL07). See also (88CAZV, 94RA04).

Excitation functions in the range $E_{\rm cm} = 25.7-38.6$ MeV were measured by (93ES01). See also the comment (93ZH21) and reply (93ES03) on the work. Excitation functions for reaction (a) leading to members of the ²⁰Ne ground state rotational band were measured for $E_{\rm cm} = 22-29$ MeV by (95SU06).

A triple coincidence measurement of reaction (b) through the ²⁰Ne 6⁺ level at $E_{\rm x} = 8.78$ MeV was reported by (89WUZZ). α - α coincidence measurements by (94KU18) at $E_{\rm cm} = 26.9$ MeV studied the connection of highly deformed isomeric states in ²⁸Si, ²⁴Mg and ²⁰Ne.

8.5 ¹²C(¹⁹F, ²⁰Ne)¹¹B
$$Q_{\rm m} = -3.113$$

This reaction was studied with the use of molecular orbital theory (88DI08).

9.
$${}^{13}C({}^{9}Be, 2n){}^{20}Ne$$
 $Q_m = 5.373$

For cross sections see (86CU02).

10. ¹⁴N(¹²C, ⁶Li)²⁰Ne
$$Q_{\rm m} = -4.181$$

See reaction 8.

11. ¹⁴N(¹⁴N, 2
$$\alpha$$
)²⁰Ne $Q_{\rm m} = 7.918$

For yields of 1.63 MeV γ -rays see (82DE39).

 $11.5 {}^{14}N({}^{20}Ne, {}^{14}N){}^{20}Ne$

Spectra were measured for $E(^{20}\text{Ne}) = 150 \text{ MeV/nucleon (92EGZZ)}$.

12. ${}^{16}O(\alpha, \gamma){}^{20}Ne$ $Q_m = 4.730$

Observed resonances in the yield of capture γ -rays over the range $E_{\alpha} = 0.8$ to 10 MeV are displayed in Table 20.17. For a discussion of ²⁰Ne* (11.28) $[J^{\pi} = 1^+; T = 1]$, to which excitation by this reaction is parity forbidden, see (83FI02). See also (84BU01). Total cross sections have been measured in the range $E_{\text{c.m.}} =$ 1.7 to 2.35 MeV. Assuming that S does not vary with energy over that interval, the astrophysical factor for non-resonant capture to ²⁰Ne_{g.s.} is 0.26 ± 0.07 MeV · b. An estimate of $0.7 \pm 0.3 \text{ MeV} \cdot \text{b}$ for S at 300 keV is deduced (87HA24). A comment (88BA66) on this work summarizes the status of theoretical descriptions of ¹⁶O(α , γ)²⁰Ne and discusses the (87HA24) result in the light of a microscopic calculation. See also Table 20.17. For other papers on astrophysical considerations see (85CA41, 88CA1N, 90BL1K, 91RA1C). For earlier work, see (87AJ02).

A microscopic description of the $\alpha + {}^{16}\text{O}$ system in a multicluster model is discussed in (94DU09). An anharmonic oscillating model description is presented in (93CSZU).

$E_{\alpha} (\text{MeV} \pm \text{keV})$	$\Gamma_{\rm c.m.}~(\rm keV)$	$\omega \gamma^{\rm b}$) (eV)	$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$
1.116 ± 4	2.6×10^{-6} d)	$(1.7 \pm 0.3) \times 10^{-3}$	5.627 ± 4	$3^{-}; 0$
1.3174 ± 2.2 °)	$(2.8 \pm 0.3) \times 10^{-2} \text{ d})$	$(1.7 \pm 0.3) \times 10^{-2}$ ¹)	5.7877 ± 3.0	$1^{-}; 0$
2.490 ± 8	20 ± 3 ^{d,m})	$(7.1 \pm 1.2) \times 10^{-2} \text{ m})$	6.726 ± 6	$0^+; 0$
3.0359 ± 2.3 °)	$8.2\pm0.3^{-1})$		7.1563 ± 0.5	$3^{-}; 0$
3.069	4	$(4.4 \pm 0.8) \times 10^{-3}$	7.189 ± 3	$0^+; 0$
3.359	8	0.146 ± 0.019	7.421 ± 1	$2^+; 0$
3.868	2.4	0.343 ± 0.035	7.828 ± 3	$2^+; 0$
(4.647 ± 3)			(8.451 ± 3)	$(5^-; 0)$
4.969 ± 9	2.1 ± 0.8	0.21 ± 0.05	8.708 ± 7	$1^{-}; 0$
5.05	< 3	1.35 ± 0.15	8.776 ± 3.2	$6^+; 0$
5.364	3.2	3.05 ± 0.38	9.024 ± 3	$4^+; 0$
5.477 ± 4	< 4	0.18 ± 0.02	9.114 ± 3	$3^{-}; 0$
5.94 ± 30	29 ± 15	1.3 ± 0.5	9.48 ± 24	$2^+; 0$
6.61 ± 30	155 ± 30	8 ± 3	10.02 ± 24	$(4^+); 0$
6.924 ± 7 $^{\rm k})$	≤ 1	19.5 ± 1.5 $^{\rm e})$	10.271 ± 7 f)	$2^+; 1$
7.948 ± 4	< 1	30.2 ± 3.5	11.090 ± 3	$4^+; 1$
8.180 ± 5 g)	< 1	$2.06 \pm 0.25 \ ^{\rm h})$	11.276 ± 4	$1^{-}; 1$
8.535 ± 6	1.3 ± 0.8	0.41 ± 0.05	11.559 ± 6	$0^+; 0^j)$
8.994 ± 8	< 1	0.23 ± 0.05 ⁱ)	11.926 ± 6	$4^+; 0$
9.02		0.131 ± 0.0018	11.950 ± 4	$8^+; 0$
(9.05 ± 50)	< 40		(11.97)	
(9.15 ± 50)	< 40		(12.05)	
9.362 ± 5	< 1	1.41 ± 0.23	12.221 ± 4	$2^+; 1$
9.406 ± 4	< 1	$6.6\pm0.8~{\rm g})$	12.256 ± 3	$3^{-}; 1$
9.57 ± 10	33 ± 4	1.94 ± 0.15	12.39	$3^{-};(1)$
9.70 ± 30	≤ 10	0.17 ± 0.05	12.49	

Table 20.17 Resonances in ${\rm ^{16}O}(\alpha,\,\gamma)^{20}{\rm Ne}^{\rm a})$

^a) For complete references see Tables 20.22 in (78AJ03) and 20.20 in (83AJ01). See also Table 20.18 here. b) $\omega \gamma = (2J+1)\Gamma_{\alpha}\Gamma_{\gamma}/\Gamma.$

c) The strength of the γ -decay of ²⁰Ne* (7.16) to ²⁰Ne* (5.79) (see Table 20.14) is strong evidence that these two states are members of the $K^{\pi} = 0^{-}$ band.

^d) This is also Γ_{α} .

e) Other values are $\omega \gamma = 19.2 \pm 1.9 \text{ eV}$; $\Gamma_{\alpha} = 116 \pm 20 \text{ eV}$; $\Gamma_{\gamma} = 4.26 \pm 0.23 \text{ eV}$: see (83AJ01). f) The measurements of the decay of this state lead to $E_{\rm x} = 4247.9 \pm 1.3$, 4966.0 ± 1.9 , 5621.0 ± 3.5 , 7423.1 ± 3.0 , 7828.1 ± 3.8 and 8776.7 ± 2.3 keV.

 g) See also Table 20.20 in (83AJ01).

h) The γ -decay is partly (see Table 20.14) to a state at $E_x = 9318 \pm 2$ keV. The strength of this transition and the subsequent decay to ${}^{20}\text{Ne}^*$ (1.63) (and not to the ground state) favor 2⁻ for ${}^{20}\text{Ne}^*$ (9.32). The other M1 transition $[11.27 \rightarrow 8.85]$ is also strong suggesting similar structures for ²⁰Ne^{*} (8.85, 9.32) (80FI01).

Table 20.17 (continued) Resonances in ${}^{16}O(\alpha, \gamma)^{20}Ne^{a}$)

ⁱ) Also observed as a resonance in the yield of 6.13 MeV γ -rays with $(2J+1)\Gamma_{\alpha_0}\Gamma_{\alpha_2}/\Gamma = 5.2\pm0.9$ eV (80FI01).

^j) From (α, α_0) : see (84RI07).

^k) See also (84RO04).

¹) Best value including the recent work by (87HA24).

 m) (87HA24).

13. (a) ${}^{16}O(\alpha, p){}^{19}F$	$Q_{\rm m} = -8.114$	
(b) ${}^{16}O(\alpha, d){}^{18}F$	$Q_{\rm m} = -16.321$	$E_{\rm b} = 4.730$

For reaction (a) see (90KOZG).

For reaction (b) see (86KA36). A theoretical study of clustering in Yrast states is described in (95KA1F).

14. (a) ${}^{16}O(\alpha, \alpha){}^{16}O$ (b) ${}^{16}O(\alpha, \alpha\alpha){}^{12}C$ $Q_{\rm m} = -7.162$ $E_{\rm b} = 4.730$

Excitation functions have been measured over a wide range of energies for elastically and inelastically scattered α -particles and γ -rays from the decay of ¹⁶O* (6.13, 6.92, 7.13) [see (78AJ03, 83AJ01)] and (86LE1H; 1.8 to 4.8 MeV; α_0), (85JA17; 2.0 to 3.6 MeV; α_0), (83CA1F, 85CA09; 9.2 to 13.5 MeV; α_0), (92LA01; 10.2 to 18 MeV; α_1) and (79BI10, 84RI06; 14.6 to 20.4 MeV; $\alpha_0 \rightarrow \alpha_5$). See also (83FR14, 85IS1A) and ¹⁶O in (93TI07).

A number of anomalies are observed: see Table 20.18. K^{π} parameter assignments derived from this and other work are displayed in Table 20.15 (84RI07). See also (83MI22, 90WE1A, 92AR18). Backscattering cross section measurements and other application-related studies are reported in (90LE06, 91LE33, 92DE10, 93CH2C, 93SO19). For reaction (b) see ¹²C in (85AJ01).

In recent theoretical work related to ${}^{16}O(\alpha, \alpha){}^{16}O$, studies have been reported for: optical potentials in the range $E_{\alpha} = 0-150$ MeV (93AB02, 95MI1B), quadrupole resonances (93BY03), a single-folding potential model (93LI25, 93YA08), an R-matrix analysis of elastic cross sections in the range $E_{\alpha} = 2-9$ MeV (94SH35), the orthogonality condition model (87SA55), Yrast structure change of 20 Ne (87KA24), microscopic cluster theory (87TA1C), core-plus-alpha states in terms of vibron models (88CS01), distribution of α -particle strength (88LE05), α cluster formation in the cluster-orbital shell model (90HA38), the microscopic complex effective interaction for α - ${}^{16}O$ (91YA08), and the generator-coordinate description (87RE04, 92KR12). Table 20.18 Resonances in ¹⁶Ο(α, α) *)

×٢		Ļ	5	 ၅	5	t,	t,	Ŷ	5	÷	も	な	(e-)	÷	#	 ၅	ţ,	4	Ŷ	(2 +)	၊ ဂ	4	ţ,	ŧ	ţ,	با ۱	
ធ័	(MeV ± heV)	5.7877 ± 2.6	6.751 ± 3	7.164	7.199 ± 3	7.431 ± 3	7.841 ± 8	8.455 土 5	≈8.7	8.734	8.779±3	8.8%	8.82	8.854 ± 5	9049±5	9.121 ± 5	9.496±8	9987±8	10.262 ± 5	10.27 ± 10	10.406 ± 5	10.553 ± 5	10.583 ± 8	10.80 ± 75	10.840 ± 5	10.841	(10.93)
3	(%)		23	я	1.1	4.7	0.6	0.07	х Х Х	0.23	8.5±1.5	% 95		1.1	6°6	0 1 60	1.4	17	8	$\leq 1.3 \times 10^{-3}$	4.8	1.8	0.85	3	0.42	2.1	
Γ_{∞}/Γ																											
Outgoing	particles	8	00	00	80	00	00	00	80	80	80	80	80	о 0	90 0	о 0	о о	00	80	80	80	80	80	80	80	80	80
Г _{с.m.}	(he V)	$(2.8\pm0.3)\times10^{-2}$ ^b)	19.0 ± 0.9	8.1±0.3 b)	3.4±0.2 ℃)	15.1 ± 0.7 °)	2	0.013 ± 0.004	~ 80	2.5	0.11 ± 0.02	008 <	4	19	ന	3.2	24	97	141	≤ 0.3	81	16	54	en e	13	45	8
័ន	eV±heV)	3174 ± 2.2	2.52±2.5 ℃)	.0382± 2.0 **)	3.082±3.1 ℃)	3.372±3.4°)	3.885±10	4.653±5	849	5.002	5.058±3	≈ 51	112	5.152±5	5.395± 5	5.486±5	5.955±10	6.569±10	6.912±5	6.92±10	7.092±5	7.276±5	7.314±10	7.580±100	7.635±5	7,636	(7.75)

Table 20.18 (continued) Resonances in ¹⁶Ο(α, α) *)

л,		\$	4+	(++)	뉴	(-I)	5	(; t o	(₃ +)	5+	+ 1	₩	Ļ	1 9	4 +	3^{-1}	2+	 റ	5	(2+)	6 4	(2+)	Ŷ	(2+)	1-	(4+)	2+
ឆ្នំ	(MeV ± heV)	10.97±113	11.020 ± 8	11.08 ± 10	11.24 ± 23	11.26 ± 10	11.32 ± 10	11.551 ± 8	(≈ 11.6)	11.875土 15	11.929±5	11.952±5	11.966±8	12137±5	12253 ± 10	12266 ± 4	12327 ± 10	12401 ± 5	12433±5 K)	12472 ± 10	12585±5	12592 ± 15	12713±5	12743 ± 10	12836±5	(12.95)	12957±5
88	(%)	14	20	≤ 0.05	4.2	00000 ≥	1.4	0.03		1.1	0.04±0.01	1.0 ± 0.3	0.72	Ŷ	68	ç	ø	1.2	6.0	2.4	14	2.5	7.3	60	0.45	(21)	08
Г/Г															0.89±0.05		0.92±0.04	1.00 ± 0.04	0.62 ± 0.15	0.88±0.05	0.68±0.05	0.78±0.09	1.00 ± 0.05	0.72 ± 0.09	0.83 ± 0.09	(0.92)	1.00 ± 0.08
Outgoing	particles	о 8	80	80	80	80	8 08	80	00 0	8	00, 76.13	8	80	G(3€,00	8	92°32	80	00, 76.13	το 00	80	80	8	80	8 08	00, 3¢, 10	(ao)	0°, 76.13
Lem. Outgoing	(heV) particles	576 00	24 20	≤ 0.5 ∞	172 00	≤ 0.3 ∞0	40±10 ∞ ₀	1.0±0.5 ∞o	% 200 %	46 84	0.44±0.15 ∞0,76.13	$(35 \pm 10) \times 10^{-3}$ \sim_{0}	30±5 ~~~	00 76.13 00	155±15 ~ ~	<1 76.13	390±50 ~~	37.3±0.9 ≪0.76.13	24.4±0.5 ∞o, α ₁	124±6 ~ ~	72±9 ~ 0	145±25 ∞ ₀	84±8 ~ ~	61±12 ∞ ₀	30±5 ≪o.76.13	(580) (co)	38±4 00.76.13

Table 20.18 (continued) Resonances in ¹⁶Ο(α, α) *)

QRAV±heV) QeV) particles (0°) $($	ស្ន័	Γ	Outgoing	Γ∞/Γ	સ્ત	ый Кай	Л×
10.397 ± 1 18 ± 3 $\alpha_{\alpha}\gamma_{\alpha,\beta}$ 0.55 ± 0.05 0.4 13.048 ± 5	$(MeV \pm heV)$	(hee Vr)	particles		(%)	(MeV ± heV)	
	10.397±1	18±3	90, 76.13 13	0.55±0.05	0.4	13.048±5	4+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(10.419±15)	(305±55)	(ao)	(0.42±0.03)	(3.2)	(13.066±15)	(3-, 5-)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.456±51)	162±13	80			13.095±6	24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.468 ± 5	102±5	о 0	0.52±0.04	11	13.105±5	6 +
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.508 ± 2	48 土 4	о 0	1.00 ± 0.05	1.2	13.137±5	- ೧
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.614±7	40±13	о 0	0.55±0.13	0.4	13.222 ± 10	+0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.617±19	8%	о 0	0.22 ± 0.07	6.0	13.224 ± 15	1-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.620 ± 2	53 ± 4	о 0	1.00 ± 0.04	1.3	13.226±5	 ຄ
$10,763\pm1$ 28 ± 3 $\infty_{3},\gamma_{5,13}$ $0,00\pm0.05$ 0.6 13.441 ± 5 10.854 ± 3 34 ± 5 $\infty_{3},\gamma_{5,13}$ $0,0\pm0.05$ 0.6 13.441 ± 5 10.857 ± 4 ≈ 16 ∞_{2} ∞_{2} 0.6 ± 0.05 0.6 13.441 ± 5 10.875 ± 4 ≈ 16 ∞_{2} ∞_{2} 0.6 ± 0.06 0.4 13.416 ± 5 10.870 ± 4 49 ± 7 ∞_{2} ∞_{2} 0.28 ± 0.06 0.4 13.416 ± 5 10.971 ± 4 24 ± 8 ∞_{2} ∞_{2} 0.28 ± 0.07 0.26 ± 1.05 13.461 ± 5 10.971 ± 4 24 ± 8 ∞_{2} 0.28 ± 0.05 0.26 ± 1.05 0.26 ± 1.05 13.461 ± 5 11.000 ± 15 76 ± 32 ∞_{2} 0.22 ± 0.05 0.2 13.67 ± 5 13.67 ± 5 11.000 ± 12 11.183 ± 1 11 ± 2 ∞_{2} 0.22 ± 0.05 0.2 13.67 ± 1.5 11.000 ± 11 11.183 ± 1 11.183 ± 1 11.185 ± 1.5 11.185 ± 1.5 11.185 ± 1.5 11.185 ± 1.5 11.185 ± 1.5	10.759±6°)	(8±3)×10 ⁻²	80		0.08±0.03	13.338±5	7-
10.854±3 34 ± 5 ∞_0, φ_{12} 0.46 ± 0.05 0.4 13444 ± 5 10.857±4 ≈ 16 ∞ 0.16 ± 0.06 0.4 1344 ± 5 10.857±4 ≈ 16 ∞ 0.16 ± 0.06 0.34 ± 1.0 13446 ± 5 10.870±4 49 ± 7 ∞ 0.38 ± 0.04 0.35 ± 0.04 13446 ± 5 10.971±4 24 ± 8 ∞ 0.38 ± 0.04 0.35 ± 0.04 1346 ± 5 10.971±4 24 ± 8 ∞ 0.05 ± 0.05 0.2 13461 ± 5 10.971±4 24 ± 8 ∞ 0.25 ± 0.05 0.2 13461 ± 5 10.971±6 0.25 ± 0.05 0.2 0.25 ± 0.05 0.2 13461 ± 5 11.0564±3 112 ± 5 ∞ 0.72 ± 0.05 0.2 13559 ± 5 11.0564±3 112 ± 5 ∞ 0.55 ± 0.04 13559 ± 5 13559 ± 5 11.0564±3 112 ± 5 ∞ 0.51 ± 0.06 0.2 13559 ± 5 11.0564±3 112 ± 5 ∞ 0.51 ± 0.06 0.2	10.763±1	26±3	00, 76.13	0.70±0.05	0.6	13.341 ± 5	4+
10.857 ± 4 ≈ 16 ∞ 0.16 ± 0.06 0.3416 ± 5 13.416 ± 5 10.870 ± 4 49 ± 7 ∞ 0.38 ± 0.04 0.38 ± 0.04 13.416 ± 5 10.913 ± 8 195 ± 25 ∞ 0.38 ± 0.04 3.2 13.461 ± 10 10.971 ± 4 24 ± 8 ∞ 0.38 ± 0.05 3.2 13.461 ± 10 10.971 ± 4 24 ± 8 ∞ 0.22 ± 0.05 0.2 13.461 ± 10 10.992 ± 4 61 ± 8 ∞ 0.72 ± 0.05 0.26 13.461 ± 10 11.000 ± 15 76 ± 32 ∞ 0.72 ± 0.05 0.8 13.559 ± 5 11.057 ± 3 112 ± 5 ∞ 0.72 ± 0.05 0.8 13.579 ± 5 11.057 ± 26 76 ± 32 ∞ 0.72 ± 0.05 0.8 13.579 ± 5 11.085 ± 1 $11.285\pm$ 0.06 13.579 ± 5 13.579 ± 5 11.025 ± 26 0.0 0.33 ± 0.06 0.2 13.579 ± 5 11.025 ± 26 0.0 0.33 ± 0.06 0.2 13.74 ± 10	10.854 ± 3	34±5	00, 76.13	0.46±0.05	0.4	13.414土 5	 ຄ)
10870 ± 4 40 ± 7 ∞ 0.38 ± 0.04 13482 ± 5 13481 ± 10 10.971 ± 4 24 ± 8 ∞ 0.38 ± 0.04 3.2 13461 ± 10 10.971 ± 4 24 ± 8 ∞ 0.38 ± 0.07 0.15 13507 ± 5 10.971 ± 4 24 ± 8 ∞ 0.72 ± 0.05 3.2 13461 ± 10 11.0992 ± 4 61 ± 8 ∞ 0.72 ± 0.05 0.15 13507 ± 5 11.000 ± 15 76 ± 32 ∞ 0.72 ± 0.05 0.2 1350 ± 15 11.000 ± 15 76 ± 32 ∞ 0.72 ± 0.05 0.2 1350 ± 15 11.000 ± 15 112 ± 5 ∞ 0.19 ± 0.06 0.2 1350 ± 15 11.100 ± 12 310 ± 30 0.51 ± 0.02 0.2 1350 ± 16 11.1257 ± 26 80 1350 ± 16 0.2 1350 ± 16 11.271 ± 9 136 ± 16 0.2 13692 ± 10 13.74 ± 2 11.271 ± 9 1357 ± 16 0.2 13.692 ± 10 13.74 ± 2 11.420 ± 34 211	10.857 ± 4	≈ 16	80	0.16±0.06	900	13.416±5	(3-)
10913 ± 8 195 ± 25 ∞ 0.99 ± 0.05 3.2 13451 ± 10 10.971 ± 4 24 ± 8 ∞ 0.99 ± 0.05 3.2 13451 ± 5 10.971 ± 4 24 ± 8 ∞ 0.36 ± 0.07 0.15 13507 ± 5 10.971 ± 4 51 ± 8 ∞ 0.72 ± 0.05 0.26 13502 ± 5 11.000 ± 15 76 ± 32 ∞ 0.72 ± 0.05 0.8 13502 ± 5 11.000 ± 15 76 ± 32 ∞ 0.52 ± 0.13 0.6 13502 ± 15 11.000 ± 15 11 ± 2 ∞ 0.72 ± 0.06 0.04 13573 ± 5 11.055 ± 26 310 ± 30 ∞ 0.33 ± 0.05 0.2 13502 ± 15 11.1257 ± 26 310 ± 30 ∞ 0.51 ± 0.03 84 13562 ± 10 11.257 ± 26 310 ± 30 ∞ 0.51 ± 0.03 84 13573 ± 5 11.257 ± 26 310 ± 30 0.51 ± 0.03 84 13579 ± 5 11.257 ± 26 280 0.51 ± 0.06 0.4 1357 ± 10	10.870 ± 4	49+7	80	0.38±0.04		13.426 ± 5	(2-)
10971 ± 4 24 ± 8 ∞ 0.36 ± 0.07 0.15 13607 ± 5 13607 ± 5 10.999 ± 4 61 ± 8 ∞ 0.72 ± 0.05 0.8 1359 ± 5 11.000 ± 15 76 ± 32 ∞ 0.72 ± 0.05 0.8 1359 ± 5 11.000 ± 15 76 ± 32 ∞ 0.72 ± 0.05 0.6 1359 ± 5 11.054 ± 3 12 ± 5 ∞ 0.72 ± 0.05 0.6 13573 ± 5 11.054 ± 3 112 ± 5 ∞ 0.03 ± 0.06 0.6 13573 ± 5 11.1202 ± 112 310 ± 30 ∞ 0.33 ± 0.05 0.2 13573 ± 5 11.371 ± 9 1127 ± 3 0.51 ± 0.03 84 1357 ± 5 11.371 ± 9 135 ± 5 0.51 ± 0.03 84 13744 ± 20 11.371 ± 9 1357 ± 0.04 2.1 1374 ± 20 11474 ± 20 11.371 ± 9 1357 ± 0.04 2.1 1374 ± 20 11474 ± 20 11.470 ± 5 0.6 0.3 ± 0.04 2.1 13744 ± 20 11.470 ± 5 65 <	10.913±8	195±25	80	0.99±0.05	3.2	13.461 ± 10	1- 1-
10.999±4 61±8 ∞ 0.72±0.05 0.8 13.52±5 11.000±15 76 ± 32 ∞ 0.52±0.13 0.6 13.550±15 11.054±3 12±5 ∞ 0.52±0.13 0.6 13.550±15 11.054±3 11±2 ∞ 0.52±0.13 0.6 13.550±15 11.183±1 11±2 ∞ 0.51±0.06 0.04 13.57±5 11.183±1 11±2 ∞ ∞ 0.51±0.03 84 13.677±5 11.371±9 13.6±15 ∞ 0.33 ± 0.06 0.21 13.677±5 11.371±9 13.5±15 ∞ 0.33 ± 0.12 0.4 13.744±20 11.371±9 13.5±15 ∞ 0.75 ± 0.06 0.1 13.827±10 11.473±5 74 ± 10 ∞ 0.75 ± 0.06 0.6 13.86±55 11.473±5 74 ± 10 0.75 ± 0.06 0.6 13.74 ± 2.00 11.488±5 65 ± 1.3 0.75 ± 0.06 0.6 13.74 ± 5.00 11.488±5 65 ± 1.3	10.971 ± 4	24±8	80	0.36±0.07	0.15	13.507±5	1-
11.000±15 76 ± 32 ∞ 0.52 ± 0.13 0.6 13.50 ± 15 11.054±3 12 ± 5 ∞ 0.19 ± 0.06 0.64 13.573 ± 5 11.054±3 11 ± 2 ∞ 0.19 ± 0.06 0.04 13.573 ± 5 11.183±1 11 ± 2 ∞ 0.23 ± 0.05 0.22 13.677 ± 5 11.202±12 310 ± 30 ∞ ∞ 0.33 ± 0.05 0.2 13.677 ± 5 11.202±12 310 ± 30 ∞ ∞ 0.33 ± 0.02 0.2 13.677 ± 5 11.371±9 13.6 ± 15 ∞ 0.33 ± 0.12 0.4 13.677 ± 10 11.371±9 13.6 ± 15 ∞ 0.75 ± 0.04 0.1 13.827 ± 10 11.470±3\pm5 74 ± 10 ∞ 0.75 ± 0.06 10.4 13.827 ± 10 11.473\pm5 74 ± 10 ∞ 0.75 ± 0.06 10.6 13.806 ± 5 11.473\pm5 74 ± 10 ∞ 0.75 ± 0.06 10.6 13.908 ± 5 11.488\pm5 65 ± 3 ∞ 0.25 ± 0.06	10.999 土 4	61±8	80	0.72±0.05	0.8	13.529±5	2+
11.054 ± 3 12 ± 5 ∞_0 0.19 ± 0.06 0.04 13573 ± 5 11.183 ± 1 11 ± 2 ∞_0 0.33 ± 0.05 0.2 13.677 ± 5 11.183 ± 1 11 ± 2 ∞_0 0.33 ± 0.05 0.2 13.677 ± 5 11.202 ± 12 310 ± 30 ∞_0 ∞_0 0.51 ± 0.03 84 13.677 ± 5 11.257 ± 26 ≈ 80 ∞_0 0.51 ± 0.03 84 13.627 ± 10 11.371 ± 9 136 ± 15 ∞_0 0.73 ± 0.04 2.1 13.744 ± 20 11.475 ± 26 $\pi 175$ ∞_0 0.73 ± 0.04 2.1 13.827 ± 10 11.473 ± 5 74 ± 10 ∞_0 0.75 ± 0.06 10 13.826 ± 30 11.473 ± 5 74 ± 10 ∞_0 0.75 ± 0.06 10 13.826 ± 5 11.473 ± 5 74 ± 10 ∞_0 0.75 ± 0.06 10 13.928 ± 5 11.428 ± 5 721 0.8 ± 0.04 69 13.928 ± 5 11.428 ± 5 70 ± 10 10 ± 0.1 1.0 13.948 ± 10	11.000±15	76±32	80	0.52 ± 0.13	9.0	13,530±15	(+0)
11.183±1 11 ± 2 ∞_0 0.33 ± 0.05 0.2 13677 ± 5 11.202±12 310 ± 30 $\infty_0 \gamma_{6.15}$ 0.51 ± 0.03 84 13.677 ± 5 11.202±12 310 ± 30 $\infty_0 \gamma_{6.15}$ 0.51 ± 0.03 84 13.672 ± 10 11.271\pm9 11.371 ± 9 136 ± 15 ∞_0 0.33 ± 0.12 0.4 13.744 ± 20 11.371\pm 9 136 ± 15 ∞_0 0.73 ± 0.04 2.1 13.827 ± 10 11.470\pm 34 ≈ 175 ∞_0 0.73 ± 0.04 2.1 13.827 ± 10 11.473\pm 5 74 ± 10 ∞_0 0.75 ± 0.06 10 13.827 ± 10 11.478\pm 5 74 ± 10 ∞_0 0.75 ± 0.06 10 13.827 ± 10 11.478\pm 5 74 ± 10 ∞_0 0.75 ± 0.06 10 13.928 ± 5 11.428\pm 5 0.75 ± 0.06 10 0.75 ± 0.06 10 13.928 ± 5 11.428 ± 5 0.75 ± 0.06 0.6 1.0 1.0 1.0 1.0 11.428 ± 5 0.6 0.75 ± 0.06 0.6 1.0 1.0	11.054 ± 3	12±5	90 00	0.19±0.06	0.0 4	13.573±5	2+
11.202±12 310 ± 30 $\alpha_0 \gamma_{6,15}$ 0.51 ± 0.03 84 13.692 ± 10 11.267±26 ≈ 80 $\alpha_0 \gamma_{6,15}$ 0.33 ± 0.12 0.4 13.744 ± 20 11.371±9 136 ± 15 α_0 0.33 ± 0.12 0.4 13.744 ± 20 11.371±9 136 ± 15 α_0 0.73 ± 0.04 21 13.827 ± 10 11.470±34 ≈ 175 α_0 0.73 ± 0.06 0.6 13.826 ± 30 11.473±5 74 ± 10 α_0 0.75 ± 0.06 10 13.908 ± 5 11.428±5 65 ± 3 α_0 0.75 ± 0.06 10 13.908 ± 5 11.428±5 65 ± 3 α_0 0.75 ± 0.06 10 13.908 ± 5 11.428±5 65 ± 3 α_0 0.75 ± 0.06 10 13.908 ± 5 11.428±5 α_0 0.75 ± 0.06 10 13.908 ± 5 11.522 ± 7	11.183 ± 1	11 ± 2	90 00	0.33±0.05	0.2	13.677±5	5-
11.267 ± 26 ≈ 80 \sim_0 0.33 ± 0.12 0.4 13.744 ± 20 11.371 ± 9 136 ± 15 \sim_0 0.73 ± 0.04 2.1 13.827 ± 10 11.470 ± 34 ≈ 175 \sim_0 0.73 ± 0.04 2.1 13.827 ± 10 11.473 ± 5 74 ± 10 \sim_0 0.21 ± 0.06 0.6 13.826 ± 30 11.473 ± 5 74 ± 10 \sim_0 0.75 ± 0.06 1.0 13.908 ± 5 11.428 ± 5 65 ± 3 \sim_0 0.75 ± 0.06 1.0 13.908 ± 5 11.428 ± 5 79 ± 15 \sim_0 0.75 ± 0.06 1.0 13.928 ± 5 11.428 ± 5 79 ± 15 \sim_0 0.86 ± 0.04 6.9 13.928 ± 5 11.522 ± 7 79 ± 15 \sim_0 1.0 ± 0.1 1.3 13.948 ± 10	11.202 ± 12	310±30	90, 76.13 13	0.51 ± 0.03	25	13.692 ± 10	-4
11.371 ± 9 136 ± 15 ∞_0 0.73 ± 0.04 2.1 13827 ± 10 11.420 ± 34 ≈ 175 ∞_0 0.21 ± 0.06 0.6 13866 ± 30 11.473 ± 5 74 ± 10 ∞_0 0.21 ± 0.06 10 13866 ± 30 11.473 ± 5 74 ± 10 ∞_0 0.75 ± 0.06 10 13866 ± 50 11.428 ± 5 65 ± 3 ∞_0 0.75 ± 0.06 10 13928 ± 5 11.428 ± 5 65 ± 3 ∞_0 1.0 ± 0.1 1.3 13928 ± 5 11.522 ± 7 79 ± 15 ∞_0 1.0 ± 0.1 1.3 13948 ± 10	11.267 ± 26	88	90 00	0.33 ± 0.12	0.4	13.744 ± 20	+0
11.420 \pm 34 \approx 175 \sim_0 0.21\pm0.06 0.6 13886\pm30 11.473\pm5 74\pm10 \sim_0 0.75\pm0.06 1.0 13908\pm5 11.428\pm5 65\pm3 \sim_0 0.75\pm0.06 1.0 13908\pm5 11.428\pm5 65±13 \sim_0 0.86\pm0.04 6.9 13928\pm5 11.522\pm7 79±15 \sim_0 1.0\pm0.1 1.3 13948\pm10	11.371±9	136±15	90 00	0.73±0.04	21	13.827 ± 10	- n
11.473±5 74±10 α_0 0.75±0.06 1.0 13.908±5 11.498±5 65±3 α_0 0.86±0.04 69 13.928±5 11.522±7 79±15 α_0 1.0±0.1 1.3 13.948±10	11.420 ± 34	≈ 175	90 00	0.21 ± 0.06	90	13.866 ± 30	1-
11.428±5 65±3 α_0 0.86±0.04 69 13.928±5 11.522±7 79±15 α_0 1.0±0.1 1.3 13.948±10	11.473 土 5	74±10	90 00	0.75±0.06	10	13.908±5	2+
11.522±7 79±15 ∞0 1.0±0.1 1.3 13.948±10	11.498±5	65±3	90 00	0.86±0.04	69	13.928±5	6 +
-	11.522±7	79±15	00 00	1.0±0.1	1.3	13.948 ± 10	t 0

Table 20.18 (continued) Resonances in ¹⁶Ο(α, α) *)

лж Г		4+	(-F)	(2+)	2+	4+	(+9)	6	(9-)	(0+, 2+)	Ŷ	Ļ	+ 1	(3-)	(4+)	1 9	7 9	5	(4+)	2+	5	ر ۲	(3+)	5-	-	(- 1 -	4+
м, М	$(MeV \pm heV)$	13.965±5	(14.015±15)	(14.060±15)	14115±5	14.270 ± 10	14.304土 10	14311±5	14313±15	14 448 ± 25	14454土 5	14.587 ± 20	14 593 土 10	14.687 ± 10	14731 ± 10	14761 ± 5	14807土 5	14816土 5	14839 ± 10	14.888 ± 10	15047±10	15073±10	15142±15	15174 ± 10	15319土 25	(15.319±10)	15330±5
8	(%)	0.11	(0.25)	(00)	0.5	16	19	96	1:0	6.0	0.05	60	5.3	9.6	0.4	1.0	6.5	3.1	60	0.7	6.0	2.3	0.11	5.5	8		0.2
Γ _∞ /Γ		0.46±0.05	(0.19±0.05)	(0.24±0.05)	0.71±0.06	0.64±0.04	0.31 ± 0.05	0.82 ± 0.04	0.13±0.06	0.18±0.06*)	0.09±0.04	0.45 ± 0.08	0.79±0.04	0.35±0.06	0.25±0.06	0.18±0.05	0.95±0.04	0.69±0.04	0.45 ± 0.05	0.44 ± 0.06	0.31 ± 0.06	0.40±0.04	≈ 0.12	0.70±0.04	0.39±0.04	(30:0∓66:0)	0.29±0.05
Outgoing	particles	ő	(00) (00)	(ao)	00, 763+17.1	8	1.74e37 (51.37 (00	8	8	8	8	8	00, 76947.1	8	8	80	80	80	80	80	80	8	8	8	80	(ao)	8
L.m. Outgoing	(he V) particles	8.1±1 ~ ~	(∞ a) (∞)	(150 ± 50) (a ₀)	42±6 00,763+7.1	92±9 ∞0	60±13 00, %13, %2+7.1	117±8 ~ ~	× 45 ~ ~	× 95 ~	≈ 15 ∞	140±50 ~ ~	260±25 ∞, 763+7.1	90±30 ∞	60±25 ≪0	7.3±4.8 ~ ~	86±7 ∞0	117±13 ~ ~ ~	79±15 00	100±30 ∝ ₀	66±20 ∝	160±25 ∞ ₀	% % %	230±25 ∝ ₀	280±40 ∝ ₀	(130 ± 20) (α_0)	34±10 ∞0

(continued)	¹⁶ 0(م م) ^م)
Table 20.18	Resonances in

Outgoing Γ_{∞}/Γ θ^{β} particles (%)
(∞ ₀) (0.69±0.17)
91 8
い 76.13、76.94.1.1 0.71 ± 0.04
∞0 0.26±0.0
0, 76.13, 76.9+7.1
1,74237 vE1.37 vC
1.74237 (51.37 (0
76.13×76.97 ×1.37
76.13
80, A142
QQ, Q142, Q3
0, a1+2, a3, a+ 0.36±
∞0 0.16∃
∞, ∞ 0.45∃
∞0 0.18:
ao, (ac) 0.23:
0, 01+2, 03, 04 0.08:
o₀ 0.10∃
ი, თ. +2, თვ, თა [0.11 ქ
o0 0.28∃
a0 0.324
ი, თ. + 2, თვ, თა 0.22 ±
o, ∝1+2, ∞, ∞, 0.16±
^Q 0.26± 0.26±
a142

Table 20.18 (continued) Resonances in ¹⁶Ο(α, α) *)

(continued)	¹⁶ 0 (م م) ۴)
Table 20.18	Resonances in

л×		Υ.	٢	4+	6+	٢	6+	٢	5	٢	6 +	6	5	е Г	٢	5-	٢	0 I	٢	٢	٢	-0-	- 6	+8	+8	+∞	
*a	$(MeV \pm heV)$	19.859±10	19.884 ± 40	19.991 ± 30	20.027 ± 15	20.106± 25	20.168 ± 35	20.236±15	20.341 ± 20	20.344 ± 15	20.419 ± 30	20.445± 25	20.468 ± 30	20.686±6	20.76±30	20.800±25	20.95±40	21.062±6	21.3	21.8 ± 150	22.3 ± 150	22.7 ± 200	2284 ± 100	23.4 ± 200	24.11 ± 100	25.0±250	25.7±150
8	(%)		≈ 0.35	0.19±0.04			1.1 ± 0.4			1.1 ± 0.3	0.6±0.3		0.86 ± 0.25	4.5±0.8	1.8 ± 0.5		2.1 ± 0.6	4.1 ± 0.5									_
Γ/Γ		0.26±0.02 ^h)	0.08±0.03	0.11 ± 0.04	0.10±0.04 h)	0.29±0.03 h)	0.18 ± 0.04	0.28±0.03 h)	0.26±0.03 ^h)	0.25±0.04	0.14 ± 0.03	0.32±0.03 h)	0.20±0.03	0.33±0.03 ∱	0.2 Ĵ)	0.11 ± 0.02	0.23±0.03 Ĵ)	0.46 ± 0.03									
Outgoing	particles	а 1	8	ඉං ඉං (ලෙ)	8 8	91 0	8 8	8. 8	۵ <u>1</u>	8	8	8 1	8	, 2 8 8	×0,01,02	81 8	8,81	8	00	00	8	00	00	80	8	80	ő
				-										8	Č												
Л. 	(hee V)	170±25	× 120	130±100	80±35	190 ± 35	285±100	255 ± 40	190 ± 40	135±35	215±90	370±55	280±70	78±11 0	240±50 °	170±60	300±50	60±6	006	006	800	800	260	200	350	80	400

Table 20.18 (continued) Resonances in ¹⁶Ο(α, α) *)

Jя	+8	
$E_{ m x}$ (MeV \pm heV)	27.2±300 28	26.2 ± 300
99 (%)		
Γ_{∞}/Γ		
Outgoing particles	00 00	00
Γ _{e.m.} (hee V)	700 1600	200
E_{α} (MeV \pm heV)	28.1±350 29	29.4 ± 350

*) For earlier references see Tables 20.23 in (784/03) and 20.21 in (834/04). For K^{T} assignments see Table 20.15 here. The uncertainties in the excitation energies are calculated by taking the uncertainty in E_{n} in the cm. [$\frac{1}{2}$ × uncertainty in the lab] and adding the uncertainty in E. [2 heV], in quadrature, rounding upwards. See (\$7AJ02).

^b) r.... = r...

8 ທ $\overset{\circ}{\circ}$ (851A1Y). ⁽⁵⁾ Resonances with 9.25 $\leq E_{\circ} \leq 13.39$ MeV are from (85CA09), except for the states labelled ⁽⁵⁾. Certain values are rounded upwards. ⁽⁵⁾ Besonances with 9.25 $\leq E_{\circ} \leq 13.39$ MeV are from (85CA09), except for the states labelled ⁽⁵⁾. Certain values are rounded upwards. ⁽⁵⁾ Besonances with 9.25 $\leq E_{\circ} \leq 13.39$ MeV are from (85CA09), except for the states labelled ⁽⁵⁾. Certain values are rounded upwards.

•) $(2\dot{J} + 1)\Gamma_{a}\Gamma_{a}/\Gamma_{B} = 81 \pm 12 \text{ eV}$ and $14 \pm 2 \text{ eV}$, respectively, for ²⁰Ne⁶ (12.14, 12.25) [for the latter see Table 20.17] (80F101). •) See Table 20.21 in (83AJ01).

5 Resentances with $14.6 < E_{
m o} < 20.4$ MeV are from the re-analysis of the data of (79B110) by (84P106). Certain values are rounded upwards.) (r___)^{1/2}/r. (s4R.107).

For information on the α_1 strength see (84PI06)

(92LA01) determine $E_{\rm x} = 12.436 \pm 0.004$ MeV.

(P2LAOI)
15. ¹⁶O(⁶Li, d)²⁰Ne $Q_{\rm m} = 3.255$

Deuteron groups have been observed to many states of ²⁰Ne: see Table 20.19. Angular distributions have been measured for $E(^{6}\text{Li}) = 5.5$ to 75.4 MeV: see (78AJ03, 83AJ01). See also (84MO08). A recent measurement at $E(^{6}\text{Li}) = 22$ MeV by (95MA1A) provided data that were used in a determination of α -particle widths in ¹⁹Ne relative to widths in ²⁰Ne. Angular correlations [(d, α_0) to ¹⁶O_{g.s.}] have been measured at $E(^{6}\text{Li}) = 60$, 75, and 95 MeV (82AR20, 88ARZU). See also references cited in (87AJ02).

In theoretical work published since the previous review, Hauser-Feshbach theory was applied to this reaction by (87AR13), and angular distributions were analyzed with DWBA formalism by (92RA22). See also (94OS05).

16. ¹⁶O(⁷Li, t)²⁰Ne
$$Q_{\rm m} = 2.263$$

States observed in this reaction are displayed in Table 20.19. Angular distributions have been measured at $E(^{7}\text{Li}) = 15$ to 68 MeV: see (78AJ03, 83AJ01). See also (86CO15).

Angular correlation (τ, α_0) to ¹⁶O were measured by (88ARZU). See also references cited in (78AJ03, 83AJ01, 87AJ02).

Theoretical work related to this reaction includes studies on: the form of the α particle potential in direct α -transfer reactions (86GR1C, 88GR1I), a Hauser Feshbach theory application (87AR13), the optical potential (89BE51), clustering phenomena and shell effects (88RA1G), DWBA analysis (92RA22).

17. ${}^{16}O({}^{9}Be, {}^{5}He){}^{20}Ne$ $Q_{\rm m} = 2.263$

See (85CU1A).

18. (a) ${}^{16}O({}^{12}C, {}^{8}Be){}^{20}Ne$	$Q_{\rm m} = -2.636$
(b) ${}^{16}O({}^{12}C, 2\alpha){}^{20}Ne$	$Q_{\rm m} = -2.545$
(c) ${}^{16}O({}^{12}C, \alpha {}^{12}C){}^{12}C$	$Q_{\rm m} = -7.162$

Angular distributions in reaction (a) have been measured for $E({}^{16}\text{O}) = 27.1$ to 53.0 MeV and for $E({}^{12}\text{C}) = 22.7$ to 78 MeV [see (78AJ03, 83AJ01)] as well as at $E({}^{12}\text{C}) = 109$ MeV (84MU04, 85MU14; ${}^{20}\text{Ne}^*$ (1.63, 4.25, 5.79, 7.16, 8.78, 10.26, 11.95, 12.59, 15.34, 15.87, 17.30, 21.08, 22.87); $\sigma(\theta)$ at several angles; EFR-DWBA

			-	-		
i	$E_{\rm x} ({\rm MeV} \pm {\rm keV})$		$\Gamma_{\rm c.m.}~(\rm keV)$	Γ_{α_0}/Γ	S^{b})	J^{π}
$(^{6}Li, d)$	$(^{7}Li, t)$	$(^{12}C, ^{8}Be)$				
0	0	0			1.00	0^{+}
1.63	1.63	1.63			0.41	2^{+}
4.25	4.25	4.25			0.22	4^{+}
4.97						2^{-}
5.62					0.06	3-
5.79	5.79	5.79			0.54	1-
6.73					0.56	0^{+}
7.00						4-
7.16	7.16	7.16			0.26	3^{-}
7.43					0.13	2^{+}
8.46					0.04	5^{-}
8.78	8.78	8.78			0.20	6^{+}
10.3 ± 100	10.26	10.26	145 ± 40	1	0.15	5^{-}
10.7 ± 100						4^{+}
11.95	11.95	11.95		0.85 ± 0.15	0.51	8+
12.14					0.05	6^{+}
12.6 ± 100	12.591 ± 10	12.59	110 ± 40	0.80 ± 0.10		6^{+}
13.9	13.904 ± 20		≈ 100			6^{+}
14.3	14.310 ± 20	$14.3 \ ^{\rm d})$	< 100			6^{+}
15.35 ± 100	15.336 ± 15	15.34	380 ± 60	0.90 ± 0.10		7^{-}
15.9 ± 100		15.87	< 250			7^{-}
16.7 ± 100	16.63 ± 20	16.63	190 ± 40	0.90 ± 0.10		$7^{-e})$
17.35 ± 100	17.30 ± 20	17.30	220 ± 40	$\geq 0.40 \pm 0.10$		$8^{+ e})$
18.7 ± 100						7^{-}
19.4 ± 100			400			7^{-}
19.9 ± 100			400			7^{-}
	20.67 ± 40	$20.5 {\rm ~d})$				
20.8 ± 100						$7^{-}(6^{+})$
	21.08 ± 30	21.08	100 ± 50	0.65 ± 0.15		9^{-}
21.3 ± 100			300			8+
21.8 ± 100			300			8+
22.3 ± 100			300			8+
	22.87 ± 40	22.87	225 ± 40	0.90 ± 0.10		9-
23.5 ± 100	23.70 ± 30		≤ 200			$9^{-}(8^{+})$
	24.21 ± 25		≈ 500			

Table 20.19 States of $^{20}\rm Ne$ from $^{16}\rm O(^6\rm Li,\,d),\,^{16}\rm O(^7\rm Li,\,t)$ and $^{16}\rm O(^{12}C,\,^8\rm Be)$ $^{\rm a})$

Table 20.19 (continued) States of 20 Ne from ${}^{16}O({}^{6}Li, d)$, ${}^{16}O({}^{7}Li, t)$ and ${}^{16}O({}^{12}C, {}^{8}Be)$ ^a)

E	$E_{\rm x}~({\rm MeV}\pm{\rm keV})$		$\Gamma_{\rm c.m.}~(\rm keV)$	Γ_{lpha_0}/Γ	S ^b)	J^{π}
$(^{6}Li, d)$	$(^{7}Li, t)$	$(^{12}C, ^{8}Be)$				
	25.10 ± 50		≤ 200			
	25.67 ± 50		≈ 500			
$27.1 \pm 100^{\text{c}})$		$27.0^{\rm d})$				9^{-}
28.1 ± 100 ^c)						10^{+}
$(29.4)^{\rm c})$						(10^{+})
((33.4))						$((10^+))$

^a) For complete references see Tables 20.24 in (78AJ03) and 20.22 in (83AJ01).

^b) Relative α -particle spectroscopic factors (DWBA). Other S_{α} values have also been reported.

^c) (82AR20, 88AL07).

^d) (83SH26).

^{e)} An admixture of 6⁺ or 8⁺ in the d- α angular correlation involving ²⁰Ne^{*} (16.6) and a doublet (8⁺ + 7⁻) at $E_{\rm x} = 17.4$ MeV have been suggested. See also Table 20.18.

analysis). See also (88CAZY). Γ_{α_0}/Γ are displayed in Table 20.19: see (83AJ01, 87AJ02) and (83SH26). Spectroscopic factors were extracted in a direct reaction study reported by (89OS02). Evidence for 10⁺ strength at $E_x = 27.5$ MeV is reported by (88AL07). See also (83DEZW). For discussion of ²⁸Si states reached in this reaction see (93ES01, 93ES03, 93ZH21). See also the discussion of instrumentation development for ⁸Be detection reported in (91SU15). For reaction (b) see (78AJ03) and (86CA19). For reaction (c) and for a discussion of ²⁴Mg states reached in this reaction see (83SH26, 84MU04). See also (85BE37, 86BE19, 87SU03).

19. ¹⁶O(¹³C, ⁹Be)²⁰Ne
$$Q_{\rm m} = -5.918$$

At $E(^{13}\text{C}) = 105$ MeV angular distributions to $^{20}\text{Ne}^*$ (1.63, 4.25, 8.78, 11.95, 15.34, 21.0) have been studied by (79BR1B): the first four states are the 2^+ , 4^+ , 6^+ , and 8^+ members of the 0^+_1 band; the two higher states $[J^{\pi} = 7^-, 9^-]$ belong to the 0^- band for which the band head is $^{20}\text{Ne}^*$ (5.79). In addition, distributions are reported to $^{20}\text{Ne}^*$ (12.59, 15.9, 17.3) $[J^{\pi} = 6^+, 8^+, 8^+]$ (79BR03). See also (85MU14). Spectroscopic factors were extracted in a direct reaction study reported by (89OS02). For fusion cross sections see (86PA10).

20. ${}^{16}O({}^{16}O, {}^{12}C){}^{20}Ne$ $Q_m = -2.432$

Angular distributions have been reported to a number of states of ²⁰Ne at $E(^{16}\text{O}) = 23.9$ to 95.2 MeV [see (78AJ03, 83AJ01)] and recently at $E(^{16}\text{O}) = 26$, 28, and 30 MeV (86CA24). (83ME13) have studied the quasi-elastic spectrum at $E(^{16}\text{O}) = 50$, 60, 68, and 72 MeV. For excitation functions see (86CA24; ²⁰Ne* (0, 1.63)). See also (82KO1C, 84ME10, 85ST1B, 82KO1D, 84AP03, 84KO13).

Studies of the direct-reaction mechanism for this reaction have been carried out by (88GA1L, 88GA19, 89OS02, 90OS03). See also (88AU03) and references cited in (87AJ02).

21. (a) ¹⁷O(³He, ³He)¹⁷O (b) ¹⁷O(³He, α)¹⁶O $Q_{\rm m} = 16.434$ $E_{\rm b} = 21.164$

The excitation function for α_0 shows a resonance corresponding to ²⁰Ne* (28.): see (78AJ03). Measurements of A_y at $E(^{3}\text{He}) = 33$ MeV, have been reported for the elastic scattering [reaction (a)] (83LE03) and for many α -groups [see ¹⁶O in (93TI07)] (82KA12). For the earlier work and for other channels see (83AJ01, 87AJ02).

22.
$${}^{17}O(\alpha, n){}^{20}Ne$$
 $Q_m = 0.587$

Neutron emission from this reaction was measured for $E_{\alpha} = 5.15$ and 5.49 MeV by (87SM1B). Excitation functions were measured at astrophysical energies and *S*factor curves were determined by (95KU1H). See also work cited in (78AJ03). In a recent theoretical study, the three-cluster generator coordinate method was applied to low energy cross section by (93DE32).

23. (a)
$${}^{17}O({}^{11}B, {}^{8}Li){}^{20}Ne$$
 $Q_m = -6.045$
(b) ${}^{17}O({}^{12}C, {}^{9}Be){}^{20}Ne$ $Q_m = -5.115$

At E = 115 MeV the 8⁺ state at $E_x = 11.95$ MeV is strongly populated in both reactions: see (83AJ01).

24. ¹⁸O(³He, n)²⁰Ne
$$Q_{\rm m} = 13.120$$

Angular distributions have been measured for $E({}^{3}\text{He}) = 2.8$ to 18.3 MeV. States of ${}^{20}\text{Ne}$ observed in this reaction are displayed in Table 20.23 of (83AJ01). These include a state at $E_x = 16.730 \pm 0.006$ MeV, $\Gamma < 20$ keV: $J^{\pi} = 0^{+}$, T = 2.

$E_{\rm p}$	$\Gamma_{\rm lab}$	Γ_{γ_0}	Γ_{γ_1}	20 Ne*	$J^{\pi}; T$
(keV)	(keV)	(eV)	(eV)	(MeV)	
340		< 0.07	0.28 ± 0.06	13.171	
484		≈ 0.05	0.42	13.308	
597 ± 1	30 ± 3	< 0.6	12	13.415	
671 ± 1	6.0 ± 0.7	$1.0 imes 10^{-2}$	2.2	13.485	1^{+}
874				13.678	
935				13.736	
980				13.779	
1091	0.8		1.1	13.884	$2^+; 1$
1280				14.063	
1320	4.0			14.101	
1350				14.130	
1370				14.149	
1420	15.7			14.196	
4090 ± 5				16.732 ^b)	$0^+; 2$
5879 ± 7	10 ± 3	$\Gamma_{\gamma} \approx 0.3 \text{ eV}$		18.430	$2^+; 2$

Table 20.20 Resonances in $^{19}{\rm F}({\rm p},\,\gamma)^{20}{\rm Ne}$ a)

^a) For earlier references see Tables 20.26 in (78AJ03) and 20.24 in (83AJ01). See also Table 20.14 here.

^b) Decays $\approx 100\%$ to the $E_x = 11.23$ MeV J^{π} ; $T = 1^+$; 1 state with $\Gamma_{\gamma} \approx 5$ eV. See discussion under reaction 25.

25. ¹⁹F(p,
$$\gamma$$
)²⁰Ne $Q_{\rm m} = 12.844$

The previous review (87AJ02), observed that over the range $E_{\rm p} = 2.9$ to 12.8 MeV, the γ_0 and γ_1 yields are dominated by the E1 giant resonance ($\Gamma \approx 6$ MeV) with the γ_1 giant resonance displaced upward in energy. Strong well-correlated structures are observed with characteristic widths $\Gamma \approx 175$ keV. Angular distributions taken over the energy range do not vary greatly with energy. They are incompatible with γ_0 and γ_1 coming from the same levels in ²⁰Ne. The 90° γ_0 yield for $E_{\rm p} = 3.5$ to 10 MeV has been measured: the results are interpreted in terms of four primary doorway states at $E_{\rm x} = 16.7$, 17.8, 19.1 and 20.2 MeV. See also (85WA1L; $E_{\rm p} = 5.9$ to 10.3 MeV; E2 strength; prelim.). See also (86OUZZ).

More recently, polarized and unpolarized angular distributions were measured for $E_{\rm p} = 16.1-23.0$ MeV (88KU08). Data for (p, γ_1) were also presented and a doorway state calculation was discussed. Cross section and analyzing powers for (p, $\gamma_0\gamma_1$) were measured in the range $E_{\rm p} = 3.5-13.3$ MeV by (88WA13) in a study of the E2 strength in ²⁰Ne. See also the review of giant resonance work in (88HA12). The yield curve for 11.2 MeV γ -rays [from the decay of ²⁰Ne* (11.23), $J^{\pi} = 1^+$, T = 1, to the ground state] displays a resonance at $E_p = 4.090 \pm 0.005$ MeV [²⁰Ne* (16.73)]. The 11.2 MeV γ -rays are isotropic which is consistent with the presumed 0⁺ character of this lowest T = 2 state in ²⁰Ne: $\Gamma_p\Gamma_\gamma/\Gamma \approx 0.5$ eV. Since Γ_p/Γ (from the elastic scattering) is ≈ 0.1 , $\Gamma_{\gamma} \approx 5$ eV. For $E_p = 5.65$ to 6.21 MeV, the γ_0 and γ_1 yields are not resonant but the yield of 10.6-MeV γ -rays is resonant at 5.879 ± 0.007 MeV [$\Gamma_{c.m.} = 9.5 \pm 3$ keV, $\Gamma_{p_0}\Gamma_\gamma/\Gamma \approx 0.05$ eV; $\Gamma_{\gamma} \approx 0.3$ eV]. The 10.6 MeV γ -ray is due to the cascade decay of ²⁰Ne* (18.43), $J^{\pi} = 2^+$, T = 2 via ²⁰Ne* (12.22) to the 2⁺ state at 1.63 MeV. For the upper limits to the strengths of the transitions to various states of ²⁰Ne from the 0⁺ and 2⁺ T = 2 states, see (83AJ01). Internal pair conversion of the GDR at $E_x \approx 18$ MeV was observed by (89MOZY). Resonances observed in the capture reaction are displayed in Table 20.20. For references see (78AJ03, 83AJ01). See also the astrophysics-related work in (87RO1D, 88CA1N). A study of absolute thick-target yields for elemental analysis at $E_p = 7$, 9 MeV is reported in (87RA23).

26. (a)
$${}^{19}F(p, p){}^{19}F$$

(b) ${}^{19}F(p, p'){}^{19}F^*$
(c) ${}^{19}F(p, d){}^{18}F$
 $Q_m = -8.207$

The elastic scattering has been studied in the range $E_{\rm p} = 0.5$ to 7.5 MeV and 24.9 to 46.3 MeV [see (78AJ03)] and at $E_{\rm p} = 1.5$ to 3.5 MeV (85OU01, 86OUZZ, 86OU01). See also the measurements for $E_{\rm p} = 0.85$ –1.01 MeV at $\theta_{\rm lab} = 165^{\circ}$ by (89KN01), and the work reported in (94CO12) in which a ¹⁹F radioactive beam was used in scattering off polyethelyne targets. The observed anomalies are displayed in Table 20.21.

Resonances for inelastic scattering $[p_1 \text{ and } p_2]$ are listed in Table 20.22. In general the resonances observed are identical with those reported from other ¹⁹F + p reactions, although the relative intensities differ greatly. Cross sections for production of 110 and 197 keV γ -rays are reported for $E_p = 0.5$ to 4.3 MeV by (86CH1T). See also (83LE28; astrophysics) and (86BA1N). For reaction (c) see (86KA1U; applied) and ¹⁸F.

27. ¹⁹F(p, n)¹⁹Ne
$$Q_{\rm m} = -4.020$$
 $E_{\rm b} = 12.844$

Observed resonances are displayed in Table 20.30 of (78AJ03). See also (84BA1R, 85CA41). Polarization transfer coefficient for $E_{\rm p} = 120$, 160 MeV at $\theta = 0^{\circ}$ were measured by (90HUZY). Total cross sections for production of ¹⁹Ne measured by the activation method are reported by (90WA10).

$E_{\rm p}~({\rm keV})$	$\Gamma_{\rm lab}~({\rm keV})$	l	$J^{\pi}; T$	$\Gamma_{\rm p}/\Gamma$	$ heta_{ m p}^2~(\%)$	20 Ne* (MeV)
340	2.9	0	1^{+}	0.016	3.8	13.171
483			1^{+}			13.307
598	37	1	2^{-}	0.0012	0.38	13.416
669	7.5	0	1^{+}	0.98	9.6	13.483
843	23	0	0^{+}	0.996	10.8	13.649
873	5.2	1	2^{-b})	0.21	1.5	13.677
935	8.0	0	1^{+}	0.17	0.44	13.736
1346	4.5	1	2^{-b})	0.067	0.07	14.126
1372	15	1	2^{-b})	0.17	0.52	14.151
1422	14.6	0	1^{+}	0.85	0.92	14.198
1710 ^c)	90	0	0^{+}	0.8		14.472
$1896^{\rm c})$	25	0	0^{+}	0.3		14.648
$1943 {}^{\rm c})$	40	0	(1^+)	0.5		14.693
2030 °)	70	1	(1^{-})	0.75		14.776
2763 ^c)		2				15.472
$2970^{\circ})$		2				15.668
4094 ± 3	2.1 ± 0.5	0	$0^+; 2$	0.062 ± 0.004		16.735
5879 ± 7 $^{\rm d})$	10 ± 3	2	$2^+; 2$	≈ 0.2		18.430

Table 20.21 Levels of $^{20}\mathrm{Ne}$ from $^{19}\mathrm{F}(\mathrm{p,\ p_{0}})$ $^{\mathrm{a}})$

^a) For references see Table 20.27 in (78AJ03). For θ^2 see Table 20.28 in (78AJ03). ^b) 1⁻ not excluded by elastic scattering alone.

c) (85 OU01, 86 OU01; R-matrix analysis). Weak resonances at $E_{\rm p}=1.75$ and 1.78 MeV are also suggested.

^d) Resonance also observed in p_1 , p_3 , p_4 and p_5 yields.

$E_{\mathbf{p}}$	$J^{\pi}; T$	$\Gamma_{ m lab}$	Γ_{p_1}	Γ_{p_2}	$\theta_{\mathrm{p}_1}^2$	$\theta_{\mathrm{p}_2}^2$	$E_{\rm x}$ in ²⁰ Ne
(keV)		(keV)	(eV)	(eV)	(%)	(%)	(MeV)
340	1+	2.9	< 0.5	< 0.1	< 15		13.171
483	1+	2.2	< 1.3	< 1.2			13.307
598	2^{-}	37	< 100	< 60	< 28	< 145	13.416
669	1^{+}	7.5	46	< 0.5	0.6	< 0.4	13.483
720		≈ 30	< 10000	< 10000			13.532
780		≈ 10	< 400	≈ 9000			13.589
831		8.3	< 6	≈ 2300			13.637
845	0^{+}	23	≈ 50	< 10	pprox 0.14	< 0.92	13.650
873	2^{-}	5.2	< 2	570	< 0.07	2.7	13.677
900		4.8	< 30	≈ 2200			13.703
935	1^{+}	8.0	3000	< 20	5.0	< 0.8	13.736
$1092 {\rm \ b})$	2^{+}	0.8	173	592			13.885
1137		3.7	< 40	≈ 2100			13.928
≈ 1250		≈ 80	≈ 70000	< 4000			14.03
1290		19	< 600	≈ 900			14.073
1346	2^{-}	4.5	300	600	0.92	0.24	14.126
1372	2^{-}	15	700	1400	1.93	0.56	14.151
1422	1^{+}	14.6 ± 1	2200	≤ 35	0.56	≤ 0.11	14.198
1610		≈ 5					14.377
1660							14.424
1700							14.462
$2763 ^{\rm c})$							15.472
$2970^{\rm c})$							15.668
$5879^{\rm d})$	$2^+; 2$		r				18.430

Table 20.22 Resonances in $^{19}{\rm F}({\rm p},\,{\rm p}')^{19}{\rm F}^{*}$ a)

 $\mathbf{r} = \mathrm{resonant}.$

^a) For references see Tables 20.29 in (78AJ03) and 20.26 in (83AJ01). ^b) $\Gamma_{p_0} = 29 \text{ eV}.$ ^c) Reported in $p_{1\to4}$ yield (86OU01). ^d) Resonance also observed in p_3 , p_4 , and p_5 yields.

28. ¹⁹F(p, α)¹⁶O $Q_{\rm m} = 8.114$ $E_{\rm b} = 12.844$

Many resonances occur in this reaction. They are displayed in Tables 20.23, 20.24, and 20.25 depending on whether they are observed in the α_0 yield [20.23], in the α_1 [or α_π] yield to ¹⁶O* (6.05) [20.24] or in the α_2 , α_3 , and α_4 yields [or in the yield of the γ -rays from ¹⁶O* (6.13, 6.92, 7.12) [20.25]]. See also tables 2 and 3 in (93DA23) which list a number of new resonances for $E_p = 0.3$ –3.0 MeV. Resonances for α_0 and α_1 are required to have even J, even π or odd J, odd π , while the α_2 , α_3 , and α_4 resonances are all odd-even or even-odd, with the exception of the T = 2 resonance.

Listings of the earlier yield studies are given in (72AJ02, 78AJ03, 83AJ01). A detailed discussion of the evidence leading to many of the J^{π} assignments is given in (59AJ76). For values of θ^2 see Table 20.28 in (78AJ03). Recent measurements are reported by (85OU01; 1.5 to 2.1 MeV; $\alpha_0 \rightarrow \alpha_3$) and (84IN04; 4.15 to 13 MeV; $\alpha_0 \rightarrow \alpha_5$). In the latter work there are no marked correlations between the different channels.

Longitudinally and transversely polarized protons with $E_{\rm p} \approx 0.67$ MeV have been used to study ²⁰Ne^{*} (13.48) [$J^{\pi} = 1^+$; T = 1] via a parity- (and isospin-) forbidden α -transition. The state is not excited. The upper limits for the process, and their significance in the determination of f_{π} , the weak pion-nucleon coupling constant, are discussed by (83KN01, 86KN1C, 90KN01). See also (83AJ01, 84KN1A).

Internal pair conversion for ¹⁹F(p, α_{π}) of the 18 MeV GDR in ²⁰Ne was studied by (89MOZY) at $E_{\rm p} = 5.2$ MeV.

A DWBA analysis for energies below the Coulomb barrier is used to determine the astrophysical S-factor in (91HE16). See also (93YA18).

Application-related work is reported in (87EV01, 89MC04, 89MC03, 89TA1N). See also the earlier work cited in (87AJ02).

29. ¹⁹F(d, n)²⁰Ne
$$Q_{\rm m} = 10.620$$

Levels of ²⁰Ne derived from this reaction are displayed in Tables 20.31 in (72AJ02) and 20.34 in (78AJ03). See also (83LI1D).

30. ¹⁹F(³He, d)²⁰Ne
$$Q_{\rm m} = 7.350$$

Levels of ²⁰Ne observed in this reaction are displayed in Tables 20.35 in (78AJ03) and 20.32 in (87AJ02). Deuteron angular distributions have been studied at $E(^{3}\text{He}) = 9.5$ to 21 MeV: see (78AJ03).

1000011011	ees ioi ground	state a partien	((\mathbf{P}, ω_0)
$E_{\rm p}~({\rm keV})$	$\Gamma_{\rm lab}~({\rm keV})$	$ heta_{lpha}^2~(\%)$ a)	$J^{\pi}; T$	20 Ne* (MeV)
400	100		1-	13.228
400	100		0^{+}	13.228
650 ± 20	200		1-	13.465
710	35	0.6	(1^{-})	13.522
733	66	1.0	2^{+}	13.544
777 ± 2	9 ± 1	0.02	2^{+}	13.586
842 ± 2	18 ± 1	$0.16^{\rm \ b})$	$(2^+)^{\rm c})$	13.648
≈ 860	120	2.1	1-	13.66
≈ 930	≈ 180	2.9	0^{+}	13.73
≈ 1080	≈ 200	3.4	1-	13.87
1115	50	0.55	2^{+}	13.907
1160	≈ 70	1.1	0^{+}	13.950
1235	≈ 70	1.2	1-	14.021
≈ 1250	≈ 150	2.7	2^{+}	14.03
1350 ± 3	36 ± 1		2^{+}	14.130
1652 ± 5	90 ± 5		1-	14.417
1713 ± 6	72 ± 2		0^{+}	14.475
1842 ± 7	122 ± 5		1-	14.597
1901 ± 10	$25^{\rm d})$		0^{+}	14.653
2110	75		$(2^+, 4^+)$	14.85
2310	90		(2^+)	15.04
2550	300		(1^{-})	15.27
2590	300		(0^+)	15.31
2680	80			15.39
2730	60			15.44
2820	160			15.53
2940				(15.64)
3120	170			(15.81)
3340	105			16.02
3680	(100)			16.34
3860				16.51
3980	135			16.63
4130	100			16.77
4360	100			16.99
4460	95			17.08
4690	65			17.30
4900	90			17.50
4990	40			17.59
5879 ± 7	10 ± 3	^d)	$2^+; 2$	18.430

Table 20.23 Resonances for ground-state α -particles (α_0) in ¹⁹F(p, α_0) ^a)

Table 20.23 Resonances for ground-state α -particles (α_0) in ¹⁹F(p, α_0) ^a)

^a) For earlier references and additional comments see Tables 20.31 in (78AJ03) and 20.28 in (83AJ01). See also (850U01, 860U01).

^b) $\Gamma_{\alpha_0} \approx 0.06$ keV. ^c) J = 0 from ¹⁹F(p, p); possibly T = 0.

^d) $\Gamma_{\alpha_0} \approx 0.3$ keV.

$E_{\rm p}~({\rm keV})$	$\Gamma_{\rm lab} \ ({\rm keV})$	σ (mb)	$ heta_{lpha}^2~(\%)$	J^{π}	20 Ne* (MeV)
710	35	≈ 0.2	2	1-	13.522
780	≈ 10	≈ 0.2	0.15	2^{+}	13.589
842	23	3.4	0.27	2 ^{+ c})	13.648
1115	50	1.5	3.6	2^{+}	13.907
1236	≈ 70	3	1.0	1^{-}	14.022
1367	30	6.0	0.29	2^{+}	14.146
1640	60			1^{-}	14.41
1720	95	≈ 18		0^{+}	14.48
1850	170			1-	14.60
1896	25			0^{+}	14.65
$2080^{\rm b})$	60	12.1		(2^+)	14.82
$2170^{\rm b})$	70	12.2		(0^+)	14.91
$2330^{\rm b})$	70	17.0		(2^+)	15.06
2600	100				15.32
2680	100				15.39
2820	125				15.53
3120	145				15.81
3340	100				16.02
(3500)	(80)				(16.17)
(3590)	(115)				(16.26)
3960	200				16.61
4360	95				16.99
4690	< 150				17.30
4900	115				17.50
4990	40				17.59
5170	220				17.76

Table 20.24Nuclear pair resonances (α_{π}) in ¹⁹F(p, $\alpha_{\pi})^{a}$)

^a) For references see Tables 20.32 on (78AJ03) and 20.29 in (83AJ01). See also (85OU01, 86OU01).

^b) (80CU1B): see also for partial widths.

^c) See footnote (c) in Table 20.23.

$E_{\rm p}~({\rm keV})$	$\Gamma_{\rm lab} \ (\rm keV)$	Γ_{α_2} (eV)	Γ_{α_3} (eV)	Γ_{α_4} (eV)	$J^{\pi}; T$	20 Ne* (MeV)
223.99 ± 0.07 ^b)	0.99 ± 0.02	1000	< 2.5	< 2.5	2^{-}	13.067
340.46 ± 0.04 ^{b,c})	2.34 ± 0.04	2800	16	75	1+	13.1713
$483.91 \pm 0.10 \ ^{\rm b})$	0.90 ± 0.03	700	19	190	1+	13.3075
594 ± 3	25 ± 3					13.412
667.5 ± 2	6.7 ± 0.3					13.482
832.1 ± 1						13.638
$872.11 \pm 0.20 \ ^{\rm d})$	4.53 ± 0.16	2200	620	180	2^{-}	13.6762
935.4 ± 1.3	8.1 ± 0.5	2900	110	720	1+	13.736
1087.7 ± 1	0.15 ± 0.05					13.881
1135.6 ± 1						13.926
1280 ± 1						14.063
1347.1 ± 1	4.9 ± 0.7	2250	650	1200	2^{-}	14.128
1371.0 ± 1	12.4 ± 1.0	6650	700	300	2^{-}	14.150
1603 ± 2						14.370
1692 ± 2	35 ± 3				$(1, 2)^{-}$	14.455
1949 ± 2.5	40 ± 10				$(0, 1)^+$	14.699
2030 ± 3.0	120 ± 20					14.776
2320	85					15.05
2510	30					15.23
2630	90					15.35
2800	60					15.51
3020	30					15.72
3190	80					15.88
3490	40					16.16
3920	30					16.57
4000	110					16.65
4090					$0^+; 2$	16.73
4290	50					16.92
4490	30					17.11
4570	30					17.19
4710	30					17.32
4780	35					17.39
4990	20					17.59
5070	35					17.66
5200	70					17.79

Table 20.25 Resonances for 6–7 MeV γ -rays (α_2 , α_3 , α_4) in ¹⁹F(p, α) ^a)

^a) See Tables 20.33 in (78AJ03) and 20.30 in (83AJ01) for earlier references and for additional comments. See also (85OU01, 86OU01), and see tables 2 and 3 in (93DA23).

^b) (85UH01). See also (77FR1A).

c) (82BE29): $\sigma = 88 \pm 3 \text{ mb}, \ \omega \gamma = 22.3 \pm 0.8 \text{ eV}.$ d) (82BE29): $\sigma = 440 \pm 13 \text{ mb}, \ \omega \gamma = 570 \pm 30 \text{ eV}.$ 83

The excitation energy difference $(\Delta E_{\rm x})$ between the 1⁺ and 1⁻, T = 1 states ²⁰Ne* (11.26, 11.27) is 11.1 ± 0.7 keV (83FI02). $\Gamma_{\gamma}/\Gamma_{\alpha} = 0.88 \pm 0.05$ for ²⁰Ne* (12.22) [2⁺; T = 1] (84CA08). Using (2J + 1) $\Gamma_{\alpha}\Gamma_{\gamma}/\Gamma = 1.41 \pm 0.23$ eV (80FI01), $\Gamma_{\alpha} = 0.32 \pm 0.06$ eV for ²⁰Ne* (12.22) (84CA08). The value of Γ_{γ}/Γ of ²⁰Ne* (12.22) implies B(M1) = 0.07 W.u. for the transition from ²⁰Ne* (18.43) [2⁺; T = 2]. This is much weaker than other isovector M1 transitions in ²⁰Ne and a factor of five lower than predicted by shell model calculations: see (84CA08).

In recent work at $E({}^{3}\text{He}) = 25$ MeV, differential cross sections were measured (94VE04) for ${}^{20}\text{Ne}$ levels at $E_{\rm x} = 0$, 1.634 MeV. DWBA calculations were carried out and absolute values of $C^{2}S$ were extracted and compared with shell model calculations.

31. ¹⁹F(
$$\alpha$$
, t)²⁰Ne $Q_{\rm m} = -6.970$

Angular distributions have been measured at $E_{\alpha} = 18.5$ and 28.5 MeV: see (78AJ03, 83AJ01). The double differential cross section was measured at $E_{\alpha} = 30.3$ MeV in a study of the reaction mechanism involving excitation of the 0⁺, 2⁺ and 4⁺ states at $E_{x} = 0$, 1.63, 4.25 MeV (95IG1A).

32. ¹⁹F(⁷Li, ⁶He)²⁰Ne
$$Q_{\rm m} = 2.869$$

Angular distributions have been studied at $E(^{7}\text{Li}) = 34$ MeV to a number of states of ^{20}Ne . $C^{2}S$ values are consistent with those reported in the (d, n) and (³He, d) reactions: see (78AJ03).

33.
$${}^{20}\mathrm{F}(\beta^{-}){}^{20}\mathrm{Ne}$$
 $Q_{\mathrm{m}} = 7.025$

The decay is primarily to ²⁰Ne^{*} (1.63) with a half-life of 11.163 ± 0.008 sec (92WA04): see reaction 1 in ²⁰F. Besides the principal decay to ²⁰Ne^{*} (1.63) $[\log f_0 t = 4.97]$, ²⁰F also decays to ²⁰Ne^{*} (4.97) $[J^{\pi} = 2^{-}]$ with a branching ratio of (0.0082 ± 0.0006)% (87AL06) $[\log f_0 t = 7.20 \pm 0.03;$ D.E. Alburger and E.K. Warburton, see (87AJ02)]. The upper limit for the ground-state decay is 0.001% $[\log f_0 t > 10.5]$. For other values and earlier references see Table 20.36 in (78A-J03). The energy of the γ -ray from ²⁰Ne^{*} (1.63) is 1633.602 ± 0.015 keV. E_{γ} for the 4.97 \rightarrow 1.63 transition is 3332.54 ± 0.19 keV which gives $E_x = 4966.51 \pm 0.20$ keV based on $E_x = 1633.674 \pm 0.015$ keV for the first excited state. The shape of the β -spectrum is in good agreement with the predictions of CVC (83AJ01, 87AJ02, 89HE11). $\beta - \gamma$ angular correlations reported by (88RO10) are close to the expectations based on CVC theory. For earlier work see (78AJ03, 83AJ01, 87AJ02). The ${}^{20}F(\beta^{-}){}^{20}Ne$ decay is thought to play a part in heavy element nucleosynthesis (88AP1A). See also 89MA1U, 89TA26).

34. (a) ${}^{20}\text{Ne}(\gamma, n){}^{19}\text{Ne}$	$Q_{\rm m} = -16.864$
(b) ${}^{20}\text{Ne}(\gamma, 2n){}^{18}\text{Ne}$	$Q_{\rm m} = -28.491$
(c) ${}^{20}\mathrm{Ne}(\gamma, \alpha){}^{16}\mathrm{O}$	$Q_{\rm m} = -4.730$

The photoneutron cross section (bremsstrahlung photons) shows peaks at $E_x = 17.78 \pm 0.05$, 19.00 ± 0.05 , 20.15 ± 0.15 [main peak of the GDR], 22.6 ± 0.3 , 24.9 ± 0.5 and 27.5 MeV [the latter three states are broad]: the integrated cross section to 28.5 MeV is 58 ± 6 MeV \cdot mb [exhausting $\approx 20\%$ of the dipole sum]. The cross section for (γ, Tn) using monoenergetic photons shows a structure at 18 MeV and some fluctuations atop the broad giant dipole resonance, $\sigma_{\text{max}} \approx 7$ mb. The double photoneutron cross section, $\sigma(\gamma, 2n)$, is dominated by a single peak at $E_{\gamma} \approx 20.5$ MeV, $\sigma_{\text{max}} \approx 1.1$ mb. For references see (78AJ03, 83AJ01) and see the atlas of photoneutron cross sections with monoenergetic photons (88DI02). The significance of reaction (c) to astrophysics is discussed by (82SA1A, 84FO1A).

35. ${}^{20}\text{Ne}(\gamma, \gamma){}^{20}\text{Ne}$

The first 1⁺; T = 1 state in ²⁰Ne is measured at $E_x = 11262.3 \pm 1.9$ keV. The branchings to ²⁰Ne^{*} (0, 1.63) are (84 ± 5) and (16 ± 5)%, respectively (83BE19). See also (84BE26).

36. (a) ²⁰Ne(e, e')²⁰Ne (b) ²⁰Ne(e, e'p)¹⁹F $Q_{\rm m} = -12.844$ (c) ²⁰Ne(e, e' α)¹⁶O $Q_{\rm m} = -4.730$

The ²⁰Ne charge radius, $\langle r^2 \rangle_{1/2} = 3.004 \pm 0.025$ fm. Form factors for many excited states of ²⁰Ne with $E_x < 8$ MeV have been reported: see (78AJ03).

At $E_{\rm e} = 39$ and 56 MeV, the 180° inelastic scattering is dominated by the transition to a $J^{\pi} = 1^+$, T = 1 state at $E_{\rm x} = 11.22 \pm 0.05$ MeV with $\Gamma_{\gamma_0} = 11.2^{+2.1}_{-1.8}$ eV. A subsidiary peak is observed corresponding to a state 0.35 ± 0.03 MeV higher [if $J^{\pi} = 1^+$ or 2^+ , $\Gamma_{\gamma_0} = 0.65 \pm 0.18$ or 0.40 ± 0.13 eV]. A number of small peaks are also reported corresponding to $E_{\rm x} \approx 12.0, 12.9, 13.9, 15.8, 16.9, 18.0$

and 19.0 MeV. Prominent electric dipole peaks are reported at $E_x = 17.7$, 19.1, 20.2, and 23 MeV, in addition to weaker structures between 12.5 and 15 MeV; and prominent electric quadrupole peaks are observed at $E_x = 13.0$, 13.7, 14.5, 15.0, 15.4 and 16.2 MeV and there is broad quadrupole excitation between 16 and 25 MeV. The GDR cross section integrated from 11 to 25 MeV contains about 65% of the dipole EWSR while over 90% of the isoscalar quadrupole EWSR is exhausted by the strength in the region 10–25 MeV.

For $11 < E_x < 24$ MeV only two isovector M2 transitions appear: these are to ²⁰Ne^{*} (11.62, 12.10) with $B(M2, k)\uparrow = 64 \pm 13$ and $56 \pm 13 \ \mu_N^2 \text{fm}^2$ [orbital contributions are non-negligible]. The M1 transition to ²⁰Ne^{*} (11.26) is also observed but that to ²⁰Ne^{*} (13.48) is not: it is $< 0.2 \ \mu_N^2$ (85RA08). For reaction (b) see (78AJ03).

Reaction (c) has been studied in order to obtain the (γ, α_0) cross section in the giant resonance region: the cross section at 90° for $E_{\rm x} = 15$ to 24 MeV is dominated by an E1 resonance $[1^-; T = 1]$, with an admixture of T = 0 which permits the α_0 decay] at $E_x = 20$ MeV; lesser E1 structures are reported at $E_x =$ 16.7, 17.1, 21 and 22 MeV. A relatively strong 2^+ ; T = 0 resonance appears at $E_{\rm x} = 18.5$ MeV, and evidence is reported for increasing E2 strength below 16 MeV. For references to the early work see (78AJ03, 87AJ02). For more recent work see the reviews on nuclear dipole excitations (87BE1G) and status of the shell model (88BR1P). Other more recent theoretical work includes studies of large basis space effects in electron scattering form factors (90AM01), correlated charge form factors and densities for s-d shell nuclei (90MA63), electron scattering multipoles for symplectic shell model application (92RO08), mass number dependence of the difference between electron- and muon-scattering charge radii (89AN12), electron scattering from ²⁰Ne in a microscopic boson model (88KU07, 88KU22, 88KU17), and studies of (e, $e'\gamma$) reactions and electromagnetic currents in rotational nuclei (90GA09). See also (88BR1D, 88ZH1F, 90MO1J).

36.5 (a)
$${}^{20}\text{Ne}(\pi^{\pm}, \pi^{\pm\prime}){}^{20}\text{Ne}$$

(b) ${}^{20}\text{Ne}(\pi^{\pm}, X)$

Inelastic pion scattering experiments at $T_{\pi} = 120$ MeV and 180 MeV indicate a broad 2⁺ member of the $K^{\pi} = 0^+_4$ band in ²⁰Ne (89BU14, 95BU01). They report $E_x = 9.00 \pm 0.18$ MeV, $\Gamma = 0.8$ MeV $B(E2\uparrow) = 40.9 \pm 2.0 \ e^2 \text{fm}^4$. Several other states in the first four $K^{\pi} = 0^+$ bands were studied by (95BU01). See Table 20.25.5.

For reaction (b), spectra have been measured and analyzed for initial pion momenta of 6.2 GeV/c (91AM1B, 92KI1C).

37. 20 Ne(n, n') 20 Ne

$E_{\rm x}~({\rm MeV})^{\rm b})$	$J^{\pi b}$)	$K^{\pi b}$)	$B(E\lambda)(e^2 \mathrm{fm}^{2\lambda})$ ^c)
1.63	2^{+}	0_{1}^{+}	322.9 ± 1.8
4.24	4^{+}	0_{1}^{+}	42400 ± 600
8.78	6^{+}	0_{1}^{+}	$2.2\pm0.9\times10^{6}$
7.42	2^{+}	0_{2}^{+}	2.9 ± 0.4
9.99	4^{+}	0_{2}^{+}	5000 ± 600
7.83	2^{+}	0^{+}_{3}	16.6 ± 0.5
9.03	4^{+}	0^{+}_{3}	9800 ± 900
9.00	2^{+}	0_{4}^{+}	40.9 ± 2.0
10.79	4^{+}	0_{4}^{+}	6000 ± 300

Table 20.25.5 Ground-state transition strengths in $^{20}\mathrm{Ne}\,(\pi^{\pm},\ \pi^{\pm\prime})$ ^a)

^a) See table 1 of (95BU01).

^b) See (87AJ02).

^c) (95BU01) notes that all $B(E\lambda)$'s were obtained by fitting 180 MeV π^+ and π^- data simultaneously with the constraint $M = M_n = M_p$ where $B(E\lambda) = |M_p|^2$. The errors given are statistical only.

An evaluation of neutron-induced reaction cross sections of ²⁰Ne for $E_{\rm n} = 1-30$ MeV is presented in (91RE10). See also (93DE32) and earlier work cited in (78AJ03).

38. (a)
20
Ne(p, p') 20 Ne
(b) 20 Ne(p, p' α) 16 O $Q_{\rm m} = -4.730$

Angular distributions of elastically scattered protons and of a number of inelastic groups have been measured for $E_{\rm p} = 2.15$ to 65 MeV [see (78AJ03, 83AJ01)] and at $E_{\rm p} = 0.8$ GeV (84BL14, 88BL13; to ²⁰Ne* (0, 1.63, 4.25, 8.7) (u); also $A_{\rm y}$). The latter work confirms the large hexadecapole deformation of ²⁰Ne. At $E_{\rm p} = 201$ MeV, probable 1⁺ states at $E_{\rm x} = 11.25 \pm 0.01$, 13.51 ± 0.03 and 15.72 ± 0.05 MeV are reported by (87WI1C): There does not appear to be any quenching of the M1 strength. In addition 2⁻ states are observed at 11.58 and 12.08 MeV with B(M2) = 64 ± 13 and $56 \pm 13 \ \mu_{\rm N}^2$ as is a state of unknown J^{π} at $E_{\rm x} \approx 17$ MeV (87WI03). See also (90CR1B), the measurements at $E_{\rm p} = 6.4$ –7.7 MeV (92WI13), measurements at $E_{\rm p} = 60$ –180 MeV (93PLZY), and the earlier work cited in (78AJ03). For reaction (b) see (84CA09, $E_{\rm p} = 101.5$ MeV), (92WI13, $E_{\rm p} = 6.4$ –7.7 MeV), and the earlier experimental and theoretical work cited in (87AJ02). See also (93MU1D).

Theoretical work reported since the previous compilation includes relativistic DWBA calculations on inelastic scattering at $E_{\rm p} = 200-800$ MeV (88JO02), a large-

basis-space microscopic-model analysis of 800-MeV inelastic scattering (91AM1A), studies with a coalescence model of hypernuclear formation and mesonic atom production (89WA14) in high energy collisions (88WA1H, 89SA1R), analysis of 800-MeV inelastic scattering with the Dirac formalism (90PH01, 90PH02, 92DE31). See also the microscopic three-cluster study of 21-nucleon systems presented in (93DE32).

 38.5^{20} Ne(p, π^{\pm})

Experimental data on multiplicity, correlations, and inclusive spectra of mesons and other particles produced in $p + {}^{20}Ne$ reactions at $E_p = 300$ GeV are presented in (92YU1A) and compared with model predictions.

39. ${}^{20}\text{Ne}(\overline{p}, \overline{p}){}^{20}\text{Ne}$

For references to work on antiproton interactions see Table 20.12.5, (20 Ne – general).

40. (a) 20 Ne(d, d') 20 Ne (b) 20 Ne(t, t') 20 Ne

Angular distributions of deuterons have been reported at $E_d = 10.0$ to 52 MeV [see (78AJ03, 83AJ01)] and at $E_d = 52$ MeV (87NU01). Differential cross sections for elastic and inelastic scattering of tritons (reaction b) were measured at $E_t =$ 33.4 MeV by (92HA12) and analyzed by the coupled channels method. Potential parameters, deformation lengths and multipole moments were deduced. See also the calculations for these data described in (92HA18) in which spin, parity and band assignments are discussed. The calculations suggest the assignments of $K^{\pi} = 2^{-}$, 2^{-} and 0^{-} respectively to the $J^{\pi} = 2^{-}$, 3^{-} , 3^{-} states at $E_x = 4.97$, 5.62 and 5.79 MeV. See also (78AJ03, 87AJ02).

41. 20 Ne(3 He, 3 He') 20 Ne

Angular distributions have been measured at $E({}^{3}\text{He}) = 10$ to 35 MeV and at 68 MeV: see (78AJ03). See references cited in (78AJ03). More recently differential cross section for elastic and inelastic scattering of ${}^{3}\text{He}$ were measured at

 $E(^{3}\text{He}) = 33.4 \text{ MeV}$ by (92HA12) and analyzed by the coupled channels method. Comparisons were made with triton scattering. Calculations for these data were described in (92HA18) in which spin, parity and band assignments are discussed. Elastic scattering measurements at $E(^{3}\text{He}) = 30$ and 45 MeV are described in (92NAZQ).

42. (a) ${}^{20}\text{Ne}(\alpha, \alpha'){}^{20}\text{Ne}$ (b) ${}^{20}\text{Ne}(\alpha, 2\alpha){}^{16}\text{O}$ $Q_{\rm m} = -4.730$

Angular distributions have been measured at $E_{\alpha} = 3.8$ to 155 MeV [see references cited in (78AJ03)]. More recently measurements were made at $E_{\alpha} = 54.1$ MeV (87AB03), $E_{\alpha} = 50$ MeV (91FR02) and at $E_{\alpha} = 3.8-11$ MeV (91AB05). Inelastic cross sections were measured at $E_{\alpha} = 5.6-11.0$ MeV (92DA10), $E_{\alpha} = 50$ MeV (91FR02), and $E_{\alpha} = 50.5$ MeV (87BU1E).

For reaction (b) see references cited in (83AJ01, 87AJ02) and the measurements at $E_{\alpha} = 155$ MeV of cross sections and decay branching ratios for several excited states of ²⁰Ne up to the giant quadrupole resonance by (87SU09).

Theoretical studies related to these reactions include: $\alpha + {}^{20}\text{Ne}$ structures of ${}^{24}\text{Mg}$ in a microscopic three-cluster ($\alpha + \alpha + {}^{16}\text{O}$ model (87DE40), distributions of α -particle strengths in light nuclei (88LE05), target clustering and exchange effects in internuclear interactions (88LE06), stationary-state currents in nuclear reactions (88MA30), a DWIA analysis of ${}^{20}\text{Ne}(\alpha, 2\alpha){}^{16}\text{O}$ at $E_{\alpha} = 140$ MeV (88SH05), distortion effects in a microscopic ${}^{16}\text{O} + 2\alpha$ description of ${}^{24}\text{Mg}$ (89DE32), evidence for a parity dependence in the $\alpha + {}^{20}\text{Ne}$ interactions (89MI12), an *l*-dependent representation of a Majorana potential (90CO38), a strong-absorption model analysis of α scattering (92RA21), a calculation of quasimolecular states in ${}^{20}\text{Ne}(\alpha, \alpha)$ (92GR15), optical model analysis of ${}^{20}\text{Ne}(\alpha, \alpha)$ at $E_{\alpha} = 22.9$ MeV (93AOZZ).

43. 20 Ne(⁷Li, ⁷Li')²⁰Ne

Angular distributions have been studied at $E(^{7}\text{Li}) = 36, 68, \text{ and } 89 \text{ MeV}$: see (83AJ01).

44. 20 Ne(9 Be, 9 Be') 20 Ne

For pion production see (85FR1C).

45. (a) ${}^{20}\text{Ne}({}^{10}\text{B}, {}^{10}\text{B}){}^{20}\text{Ne}$ (b) ${}^{20}\text{Ne}({}^{11}\text{B}, {}^{11}\text{B}){}^{20}\text{Ne}$

Elastic angular distributions have been measured at $E(^{10}B) = 65.9$ and $E(^{11}B) = 115$ MeV: see (83AJ01).

46. (a) 20 Ne(12 C, 12 C') 20 Ne (b) 20 Ne(12 C, α^{8} Be) 20 Ne $Q_{\rm m} = -7.366$

Elastic angular distributions have been obtained at $E(^{12}C) = 22.2$ to 77.4 MeV and at $E(^{20}Ne) = 65.9$, 74 and 75.2 MeV [see (78AJ03, 83AJ01)] as well as at $E(^{20}Ne) = 72.6$, 74.0 and 75.2 MeV (82SH29). Elastic and inelastic scattering differential cross sections at $E(^{20}Ne) = 390$ MeV were measured by (93BO28).

For yield, fusion, total reaction cross section and fragmentation studies see the references cited in (87AJ02). More recently fragmentation studies at $E(^{20}\text{Ne}) = 540-1096 \text{ MeV/nucleon}$ were reported by (90WE1A) and at $E(^{20}\text{Ne}) = 400$, 800 MeV/nucleon by (88DU01). See also (87AN1B, 94FU01). For pion production and for reaction (b) see references cited in (87AJ02).

Theoretical studies carried out since the previous compilation include: resonances, heavy-ion radioactivity and new predictions for medium mass collective systems (89CI1C), cascade model study of Λ particle productions in central collisions of light nuclei (88IW1A), comparison of quantized ATDHF and GCM theory applied to the ${}^{12}\text{C} + {}^{20}\text{Ne}$ system (90SL01).

47. 20 Ne(16 O, 16 O') 20 Ne

Angular distributions have been studied at $E(^{20}\text{Ne}) = 50$ and 94.8 MeV involving $^{16}\text{O}_{\text{g.s.}}$ and $^{20}\text{Ne}^*$ (0, 1.63, 4.25) [see (83AJ01)], at $E(^{16}\text{O}) = 25.6$ to 44.5 MeV (elastic; also to $^{20}\text{Ne}^*(1.63)$ at 31.3, 33.3 and 44.5 MeV)) and at $E(^{20}\text{Ne}) = 66.8$, 115, 137 and 156 MeV (elastic) [see (87AJ02) for references]. Yield and fusion cross section measurements have also been reported in several references cited in (87AJ02). Excitation functions at $\theta_{\rm cm} = 90^\circ$ for $E_{\rm cm} = 21.5$ –31.2 MeV were measured by (88HE06) and at $\theta_{\rm lab} = 13^\circ$ for $E_{\rm cm} = 22.8$ to 38.6 MeV by (89SA14). Measurements at projectile energies of 3.6 MeV/nucleon are reported in (87AN1B), and at 4.2 and 4.5 GeV/nucleon by (88BO1D, 88BE2A).

Theoretical studies related to this reaction reported since the previous review include: calculation within the framework of the cascade model (88IW1A), molecular orbital theory for elastic and inelastic scattering (89HE1I), derivation of the parity-independent interaction for ${}^{16}\text{O} + {}^{20}\text{Ne}$ (89GA1L), optical model analysis of resonant structure in ${}^{16}\text{O} + {}^{20}\text{Ne}$ (91GA14), and local representation of a deep parityand *L*-dependent ${}^{16}\text{O} + {}^{20}\text{Ne}$ potential (93AI02).

48. 20 Ne(20 Ne, 20 Ne') 20 Ne

Elastic angular distributions are reported at $E(^{20}\text{Ne}) = 68$, 117, 140, and 156 MeV (83SH25). For yield and fusion measurements see references cited in (83AJ01, 87AJ02). High-spin shape isomers for sd-shell nuclei were studied at $E_{\rm cm}$ near 1.6 times the Coulomb barrier for $^{20}\text{Ne} + ^{20}\text{Ne}$ by (93BAZZ). Studies of the average number of interacting protons in $^{20}\text{Ne} + ^{20}\text{Ne}$ collisions of 36 GeV/nucleon were reported by (87AN1B).

Theoretical work related to the reaction includes: a study of mesonic atom production by a coalescence model (89WA14), a formulation of the mesonic atom production probability with a coalescence model (89SA1R), hypernucleus production by heavy ions by a coalescence process (89BA2N, 89WA14, 89BA1E).

49. (a) 20 Ne(24 Mg, 24 Mg') 20 Ne (b) 20 Ne(26 Mg, 26 Mg') 20 Ne

Elastic angular distributions for reaction (a) have been measured at $E(^{20}\text{Ne}) = 50, 60, 80, 90, \text{ and } 100 \text{ MeV}$ [see (83AJ01)] at 40 MeV (83NA04; S_{α} for the system $^{20}\text{Ne} + ^{24}\text{Mg} = 0.08 \pm 0.02$) and at $E_{\text{lab}} = 55, 80$ and 160 MeV/nucleon (87BE1V). For yield and fusion cross sections for reactions (a) and (b) see references cited in (87AJ02). See also the review of high energy gamma production in heavy ion collisions (89NI1D).

50. ²⁰Ne(²⁷Al, ²⁷Al')²⁰Ne

Elastic angular distributions are reported at $E(^{20}\text{Ne}) = 55.7$, 63, 125, and 151 MeV (83NG01). For yield, fusion and evaporation residue studies see references cited (87AJ02) and the study at $E(^{20}\text{Ne} = 217, 194 \text{ and } 384 \text{ MeV}$ (88GR12, 89BA17, 90BA18). A search for incomplete deep inelastic collisions at $E(^{20}\text{Ne}) = 216 \text{ MeV}$ is reported by (88ZH12). Neutral pion production was studied at $E(^{20}\text{Ne}) = 4 \text{ GeV}$ by (88JU02, 89F007, 89F01G). A description of those data by the cooperative model is discussed in (89GH01). See also the calculation of total reaction cross sections presented in (88JO02).

51. (a) ${}^{20}Ne({}^{28}Si, {}^{28}Si'){}^{20}Ne$ (b) ${}^{20}Ne({}^{29}Si, {}^{29}Si'){}^{20}Ne$

See (83DU13).

52. 20 Ne(40 Ca, 40 Ca') 20 Ne

Angular distributions have been studied at $E(^{20}\text{Ne}) = 44.1$ to 70.4 MeV and at 151 MeV: see (83AJ01). For an evaporation residue study see (82MO15). For yield and fusion measurements see (83AJ01). The breakup of ^{20}Ne at $E(^{20}\text{Ne}) = 92$, 149 and 213 MeV involves $^{20}\text{Ne}^*$ (5.79, 6.73, 7.16, 8.78, 10.26, 11.95) (86SH30).

See also the references cited in (87AJ02) and see the Monte Carlo simulation method calculation for nuclear transfer (88CH28), and the study of alpha clustering and shell effects related to this reaction (89PU1C).

53.
20
Na $(\beta^+){}^{20}$ Ne $Q_{\rm m} = 13.887$

²⁰Na has a half-life of 447.9 ± 2.3 msec: see reaction 1 in ²⁰Na. It decays to a number of states of ²⁰Ne, principally ²⁰Ne* (1.63): see Table 20.26. The ratio of the mirror decays ²⁰Na(β^+)²⁰Ne* (1.63) and ²⁰F(β^-)²⁰Ne* (1.63), (ft)⁺/(ft)⁻ = 1.03 ± 0.02. β - γ correlation measurements, as in the decay of ²⁰F, lead to an upper limit for the second-class contribution to the correlation which is consistent with zero: see (83AJ01). A more recent measurement (88RO10) concluded that the β - γ angular correlations in A = 20 are close to and may be in agreement with conserved vector current theory. β - ν - α triple correlation coefficient measurements for the transitions via the α -unstable 2⁺ states shown in Table 20.26 lead to values of the isospin mixing amplitudes [and to a determination of the vector weak coupling constant] (83CL1A, 89CL02). See also references cited in (87AJ02) and the measurements of (92KUZO, 92KUZQ).

53.5 ²¹Ne(e, e'n)²⁰Ne
$$Q_{\rm m} = -6.761$$

A general expression of the polarized spectral function for the (e, e'n) transitions is used by (94CA27) to model this reaction.

54. ²¹Ne(p, d)²⁰Ne
$$Q_{\rm m} = -4.537$$

Decay to 20 Ne [*]	J^{π}	Branching ratio	ft ^b)	$\log ft$
(keV)		(%)	(s)	
1633.674 ± 0.015	2^{+}	79.44 ± 0.27	$(9.802 \pm 0.068) \times 10^4$	4.99
4966.51 ± 0.20	2^{-}	0.157 ± 0.022	$(9.3\pm1.3)\times10^6$	6.97
6706 ± 47		0.0032 ± 0.0007	$(1.41 \pm 0.32) \times 10^8$	8.15
7421.9 ± 1.2	2^{+}	15.96 ± 0.22	$(1.588 \pm 0.026) \times 10^4$	4.20
7833.4 ± 1.5	2^{+}	0.583 ± 0.010	$(3.019\pm 0.058)\times 10^5$	5.48
8058 ± 8	$(1^-, 2^+, 3^-)$	0.0119 ± 0.0009	$(1.198 \pm 0.092) \times 10^7$	7.08
9196 ± 30	2^{+}	0.0625 ± 0.0064	$(6.63 \pm 0.73) \times 10^5$	5.82
9483 ± 3	2^{+}	0.241 ± 0.005	$(1.190 \pm 0.028) \times 10^5$	5.08
9873 ± 4	3^{+}	0.028 ± 0.014	$(5.9\pm3.0)\times10^5$	5.77
10274 ± 3	2^{+}	2.877 ± 0.042	$(2.983\pm 0.061)\times 10^3$	3.48
10578 ± 4	2^{+}	0.0883 ± 0.0027	$(5.71 \pm 0.20) \times 10^4$	4.76
10840 ± 4	2^{+}	0.174 ± 0.005	$(1.705 \pm 0.058) \times 10^4$	4.23
10884 ± 3	3^{+}	0.117 ± 0.042	$(2.3\pm0.8)\times10^4$	4.36
10941 ± 9	2^{+}	0.0119 ± 0.0015	$(2.00\pm 0.26)\times 10^{5}$	5.30
11116 ± 9	2^{+}	0.0087 ± 0.0011	$(1.81 \pm 0.24) \times 10^5$	5.26
11262.3 ± 1.9	1^{+}	0.205 ± 0.026	$(5.30 \pm 0.68) \times 10^3$	3.72
11295 ± 5	2^{+}	0.0263 ± 0.0017	$(3.78 \pm 0.26) \times 10^4$	4.58
11856 ± 8	2^{+}	0.0016 ± 0.0004	$(9.9\pm2.5)\times10^4$	4.99

Table 20.26 Decay of 20 Na ^a)

^a) (89CL02). See table 3 of that work for references and details.

^b) Allowed decay assumed.

See (78AJ03).

55. ²¹Ne(d, t)²⁰Ne
$$Q_{\rm m} = -0.504$$

The T = 1 states observed in this reaction, and the analog states observed in ²⁰F in the (d, ³He) reaction, are displayed in Table 20.16 of (78AJ03). T = 0 states are presented in Table 20.38 of (78AJ03).

56. ²²Ne(p, t)²⁰Ne
$$Q_{\rm m} = -8.643$$

Angular distributions have been reported at $E_p = 26.9$ to 43.7 MeV: see (78AJ03, 83AJ01). The angular distributions of the tritons to the ground state of ²⁰Ne and

to the first 0⁺, T = 2 state $[E_x = 16.722 \pm 0.025 \text{ MeV}]$ have been fitted by L = 0and the tritons to ²⁰Ne^{*} (18.4) by L = 2. The latter is the first 2⁺, T = 2 state. The 0⁺, T = 2 state [²⁰Ne^{*} (16.73)] decays by $\alpha_0[(6 \pm 5)\%]$, $\alpha_1 + \alpha_2[(35 \pm 12)\%]$, $\alpha_3 + \alpha_4[(29 \pm 12)\%]$, $p_0 + p_1 + p_2[(14 \pm 9)\%]$ and $p_3 + p_4 + p_5[(13 \pm 8)\%]$ [measured branching ratios in percent are given in the brackets] to the final states in ¹⁶O and ¹⁹F. See (78AJ03) for references and additional information.

57. ²³Na(p,
$$\alpha$$
)²⁰Ne $Q_{\rm m} = 2.377$

Angular distributions have been measured at $E_{\rm p} = 10.0$ and 45.5 MeV: see (72AJ02). High resolution measurement at $E_{\rm p} = 1.08$ –4.15 MeV were carried out in a study of 94 resonances in ²⁴Mg by (87VA24) at $E_{\rm p} = 6.25$ –6.55 MeV. A study of ²⁴Mg resonances excited by protons in the range $E_{\rm p} = 6.25$ –6.55 MeV is described in (90MI24, 91MI24). Detailed-balance tests of time reversal invariance are reported in (94DR01, 93MI19, 93MI25). See also (87PA06, 89KA06) which describe analyzing power measurements for this reaction. Measurements of the cross section at $E_{\rm p} \leq 350$ keV were carried out by (89GO1N). Astrophysical implications are discussed. See also references to earlier work cited in (87AJ02).

58. ²³Na(³He, ⁶Li)²⁰Ne
$$Q_{\rm m} = -1.642$$

See (78AJ03).

58.3 ${}^{24}Mg(\gamma, \alpha) {}^{20}Ne \qquad \qquad Q_{\rm m} = -9.316$

Cross sections for this reaction were calculated by (87KA30) in a study of molecular structure of highly-excited states.

58.7 ²⁴Mg(n, n
$$\alpha$$
)²⁰Ne $Q_{\rm m} = -9.316$

Production cross sections for ²⁰Ne were measured at $E_n = 5.20, 7.00, 16.20$ and 19.05 MeV (90LA09). Cross sections were calculated with preequilibrium emission and constant-temperature evaporation models by (93KH09).

59. ²⁴Mg(p, p
$$\alpha$$
)²⁰Ne $Q_{\rm m} = -9.316$

See (84CA09). See also (78AJ03).

60.
$${}^{24}Mg(d, {}^{6}Li){}^{20}Ne$$
 $Q_{\rm m} = -7.841$

Angular distributions have been studied to many states of ²⁰Ne at $E_d = 28$ to 80 MeV [see (78AJ03, 83AJ01)] and at $E_d = 54.2$ MeV (84UM04; to ²⁰Ne* (0, 1.63, 4.25, 5.62)). Table 20.35 in (83AJ01) displays the observed states and S_{α} obtained from several analyses. For newer values of S_{α} see (84UM04, 86OE01). See also (84PA18, 86PAZJ). Measurements at several different incident energies were reported by (88BA1L, 88RA20). Data were analyzed with finite-range DW-BA calculations, and spectroscopic factors were obtained with different potentials. Comparisons with spectroscopic factors from ²⁴Mg(³He, ⁷Be)²⁰Ne were made.

61.
$${}^{24}Mg({}^{3}He, {}^{7}Be){}^{20}Ne \qquad \qquad Q_{\rm m} = -7.730$$

Angular distributions have been studied at $E({}^{3}\text{He}) = 25.5$ and 70 MeV: see (78AJ03). See also (83AJ01) and (86RA15). Measurements at $E({}^{3}\text{He}) = 41$ MeV were reported by (88RA20, 88RA27). Data were analyzed with finite-range DW-BA calculations and spectroscopic factors were obtained with different potentials. Comparisons with spectroscopic factors from ${}^{24}\text{Mg}(d, {}^{6}\text{Li}){}^{20}\text{Ne}$ were made.

62.
$${}^{24}Mg(\alpha, {}^{8}Be){}^{20}Ne \qquad \qquad Q_{\rm m} = -9.407$$

See (83AJ01).

63. ${}^{24}Mg({}^{12}C, {}^{16}O){}^{20}Ne \qquad \qquad Q_m = -2.154$

The angular distribution for the ground state transition has been measured at $E(^{12}C) = 40$ MeV (82LI16) and at $E_{cm} = 25.2$ MeV (90LE12). Coupled-channels calculations were used to study the back angle anomaly. The backward angle yield in the inverse reaction was studied at $E(^{24}Mg) = 90-126$ MeV by (90GL01). See also (83AJ01, 89OB1C).

$$63.3 {}^{24}Mg({}^{16}O, {}^{20}Ne){}^{20}Ne \qquad Q_{\rm m} = -4.586$$

Excitation functions were measured at $\theta_{\rm cm} = 90^{\circ}$, $E_{\rm cm} = 25-34$ MeV by (89LE19). Data were compared with calculations involving the coupling to higher orders between elastic and α -transfer channels. The effect of the dynamic α -transfer polarization potential in discussed in (89FI03).

64. ²⁸Si(
$$\alpha$$
, ¹²C)²⁰Ne $Q_{\rm m} = -12.026$

See (83AJ01).

64.3 ²⁸Si(¹⁶O, ²⁴Mg)²⁰Ne $Q_{\rm m} = -5.255$

This reaction was studied at $E_{\rm cm} = 31.57$ MeV by (89PO1J).

20 Na

(Figs. 20.4 and 20.5)

GENERAL: See table 20.26.5.

 $\mu = 0.3694 \pm 0.0002 \text{ nm} (75\text{SC1A})$

Table 20.26.5 $^{20}\mathrm{Na}$ – General

Reference	Description
Review:	
87RA1D	Nuclear processes and accelerated particles in solar flares
89RA17	Compilation of exp. data on nuclear moments for ground & excited states of nuclei
Other artic	les:
87BA1T	Spin-isospin excitations in nuclei with relativistic heavy ions
89KU15	Exp. determination of ¹⁹ Ne(p, γ) ²⁰ Na reaction rate; breakout problem from hot CNO cycle
90DE34	20 F & 20 Na nuclei and the 19 Ne(p, $\gamma)^{20}$ Na reaction in a microscopic three-cluster model
90PO04	New method of determining masses & quantum characteristics of light nuclei
92AV03	The proton neutron interaction and mass calcs. for nucl. with $Z > N$
93BR12	Nature of the $^{20}\mathrm{Na}$ 2646-keV level and the stellar reaction rate for $^{19}\mathrm{Ne}(\mathrm{p},\gamma)^{20}\mathrm{Na}$

Figure 4: Energy levels of 20 Na. For notation see fig. 1.

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	$\tau_{1/2}$ or $\Gamma_{\rm c.m.}$	Decay	Reactions
0	$2^+; 1$	$\tau_{1/2} = 447.9 \pm 2.3 \text{ ms}$	β^{-}	1, 4, 5
0.596 ± 8	3^{+}		(γ)	4, 5
0.802 ± 7	4^{+}		(γ)	4, 5
0.98425 ± 0.10	1^{+}		(γ)	4, 5, 6
1.346 ± 8	2^{-}		(γ)	4, 5
1.837 ± 7	2^{-}		(γ)	4, 5
1.992 ± 8	3-		(γ)	4, 5
2.057 ± 12	3^{+}		(γ)	5
2.645 ± 6	(1^+)		(γ, p)	4, 5
2.849 ± 6	3^{+}			4, 5
2.983 ± 7	> 3			5
3.001 ± 2	1+	$\Gamma = 19.8 \pm 2 \text{ keV }^{\text{a}})$	р	3, 3.5, 6
3.067 ± 2	(0^+)			3, 4, 5
3.086 ± 2	0^{+}	$\Gamma = 35.9 \pm 2 ~\rm keV$ $^{\rm a})$	р	3.5
3.315 ± 9				5
3.642 ± 16	$(2, 3, 4)^{-}$			4, 5
3.871 ± 9	1^{+}		р	4, 5, 6
4.123 ± 16	1^{+}		р	6
4.150 ± 60	$(4, 2^{-})$			5
4.560 ± 60	(2)			5
≈ 4.800	1+		р	6
5.170 ± 60				5
≈ 5.600	1+			5, 6
6.266 ± 30	1+		р	6
6.534 ± 13	0^{+}		р	6

Table 20.27 Energy Levels of $^{20}\mathrm{Na}$

^a) From (94CO12). See Table 20.27.3.

1.
$${}^{20}\text{Na}(\beta^+){}^{20}\text{Ne}$$
 $Q_{\rm m} = 13.887$

²⁰Na decays by positron emission to ²⁰Ne^{*} (1.63) and to a number of other excited states of ²⁰Ne: see Table 20.26 and reaction 53 in ²⁰Ne. The half-life of ²⁰Na is 447.9 ± 2.3 msec [weighted mean of values quoted in (78AJ03, 83CL1A, 89CL02)]; $J^{\pi} = 2^+$: see (87AJ02). See also (92KUZO, 92KUZQ) and (93BL10; instrumentation). The beta delayed alpha decay of ²⁰Na has been studied by (89CL02) [see reaction 1.3]. See also (93XU1A).

$$1.3 \ {}^{12}C({}^{10}B, nn){}^{20}Na$$
 $Q_m = -10.936$

Extensive measurements of the decay of ²⁰Na nuclei produced in the ¹²C(¹⁰B, nn) reaction were reported by (89CL02). Measurements included β^+ spectra, β delayed alphas, $\beta\nu\alpha$ triple correlation coefficients, branching ratios, ²⁰Ne level energies and the ²⁰Na half-life. Isospin mixing and the weak-vector coupling constant were deduced.

$$1.7 \,{}^{12}C({}^{14}N, {}^{6}He){}^{20}Na \qquad \qquad Q_{m} = -21.576$$

An 82-MeV ¹⁴N beam was used by (93BAZX) to study ²⁰Na states up to $E_x = 4.5$ MeV. The cross section for the $E_x = 2.646$ MeV level was determined and the results suggest that state is not the mirror of the 1⁺ 3.173 MeV state in ²⁰F as had been proposed. The results are consistent with the suggestion that the 2.646 MeV level is the mirror of the 2.966 MeV $J^{\pi} = 3^+$ state in ²⁰F. See also reactions 3 and 5.

2. ¹⁹F(p,
$$\pi^{-}$$
)²⁰Na $Q_{\rm m} = -140.611$

Angular distributions and analyzing powers have been studied at $E_{\rm p} = 199.6$ MeV to ²⁰Na* (0.74, 1.85, 3.01, 4.11) [probably unresolved]: it is suggested that the latter two have J = 6 or 7 (87CA1H).

3. ¹⁹Ne(p,
$$\gamma$$
)²⁰Na $Q_{\rm m} = 2.195$

The dominant process for the breakout from the HCNO cycle during hot hydrogen burning in stars in considered to be ${}^{15}O(\alpha, \gamma){}^{19}Ne(p, \gamma){}^{20}Na$ [see references in the following discussion]. Thus the ${}^{19}Ne(p, \gamma){}^{20}Na$ reaction rate at stellar temperatures is of considerable importance. The nuclear levels above the ${}^{19}Ne(p, \gamma)$ threshold are critical for calculation of the reaction rates and have been the object of several experimental studies by the ${}^{20}Ne({}^{3}He, t)$ reaction (88LAZY, 89KU1D, 89KU15, 89SMZZ, 90LA05, 92SM03) as well as by ${}^{20}Ne(p, n){}^{20}Na$ (89KU15). See reactions 4, 5, 6 and table 20.27.5.

The ²⁰Na state at $E_x = 2.646$ MeV is presumed to be the strongest (p, γ) resonance and it has been the object of several studies [see refs. mentioned above as well as (92GO10, 92KU07, 90DE34). Work by (93BAZX, 93BR12, 93CL1B) strongly suggests that the state has $J^{\pi} = 3^+$ (the analog of the ²⁰F 3⁺ state at $E_x = 2.969$ MeV) rather than 1⁺ as had been assumed in earlier work. More recent work described in (94PA42, 94HU1D) determined a 90% confidence-level upper limit of 18 meV for the resonance strength of this level and provides arguments against the $J^{\pi} = 3^+$ assignment.

 3.5^{19} Ne(p, p)¹⁹Ne

Resonances in ²⁰Na above the proton threshold were studied with radioactive ¹⁹Ne beams scattered off polyethelene targets by (94CO12). Analysis by extended Breit Wigner, R-matrix and K-matrix formalism is described. Results are summarized in Table 20.27.3

J^{π}	Formalism	$E_r \; (\mathrm{keV})$	$\gamma \text{ or } g \text{ (MeV}^{1/2})$	$\Gamma \ (keV)$	$E_{\rm x}~({\rm MeV})$
1+	BW	797		19.8	2.996
	R	797	0.92	$19.8 {\ }^{\rm b})$	
	Κ	797	15.6	19.8	
0^{+}	BW	887		35.9	3.086
	R	887	1.00	35.9 ^c)	
	Κ	887	15.8	35.9	

Table 20.27.3 Resonances in ${}^{1}\mathrm{H}({}^{19}\mathrm{Ne},\,{}^{19}\mathrm{Ne}){}^{1}\mathrm{H}$ $^{\mathrm{a}})$

^a) From Table I of (94CO12). Resonance energies (E_r) and widths (Γ) of the ²⁰Na resonances in the c.m. system; E_r , E_x and Γ are affected by a ± 2 keV uncertainty; γ and g are, respectively, *R*-matrix and *K*-matrix reduced widths amplitudes; Γ_F is the *R*-matrix formal width.

^b) $\Gamma_{\rm F} = 28.8 \text{ keV} (R = 4.5 \text{ fm}).$

^c) $\Gamma_{\rm F} = 55.2 \text{ keV} (R = 4.5 \text{ fm}).$

4. ²⁰Ne(p, n)²⁰Na $Q_{\rm m} = -14.669$

Early work on this reaction is described in (87AJ02). More recently ²⁰Na levels up to $E_x = 3.636$ MeV were studied at $E_p = 35$ MeV by (89KU15). See table 20.27.5.

The ²⁰Ne reaction at $E_{\rm p} = 136$ MeV was used in measurements of Gamow Teller strength (91AN01) and in a study of isovector stretched-state excitation (92TA04).

A review of spin-isospin response in nuclei based on charge exchange reaction data is presented in (89RA1G). See also (87EL14). An analysis leading to total Gamow Teller strength is described in (88MA53).

5. ²⁰Ne(³He, t)²⁰Na
$$Q_{\rm m} = -13.906$$

Early work on this reaction is summarized in (87AJ02). See also (87EL14). More recent measurements include those at $E(^{3}\text{He}) = 55.33$ MeV (88KU23, 89KU15), at $E(^{3}\text{He}) = 25.5$ MeV (88LAZY, 90LA05), at $E(^{3}\text{He}) = 29.7$ MeV (89SMZZ, 92SM03) and at $E(^{3}\text{He}) = 33.4$ MeV (90CL06, 93CL1B). Energy levels and spin parity assignments obtained from these experiments are displayed in Table 20.27.5. See also (89AR1H, 89KU1D). A major concern of this work was the ²⁰Na level at $E_{\rm x} = 2.646$ MeV, which is presumed to be the strongest (p, γ) resonance in ¹⁹Ne(p, γ) [see reaction 3]. Detailed comparison of data on ²⁰Ne(³He, t)²⁰Na and the analogue reaction ²⁰Ne(t, ³He)²⁰F by (93BR12) and (93CL1B) has led to the conclusion that the 2.646 MeV state in ²⁰Na is to be identified with the $J^{\pi} = 3^{+}$ state at $E_{\rm x} = 2.966$ MeV in ²⁰F. This conclusion is supported by the work of (93BAZX) [see however the discussion of reaction 3].

$$5.3^{20}$$
Ne $({}^{12}C, {}^{12}B)^{20}$ Na $Q_{\rm m} = -27.256$

A study of the response of nuclei to spin-isospin excitation displayed through charge exchange reactions such as 20 Ne(12 C, 12 B) 20 Na is described in (88RO17).

5.5 ²⁰Na(p,
$$\gamma$$
)²¹Mg $Q_{\rm m} = 3.222$

To estimate the stellar reaction rate of 20 Na(p, γ) 21 Mg, the nuclear structure of 21 Mg was studied by the 24 Mg(3 He, 6 He) 21 Mg reaction at 74 MeV by (92KU02).

6.
$${}^{20}\text{Mg}(\beta^+){}^{20}\text{Na}$$
 $Q_{\rm m} = 10.726$

(₅He, t) d)	E× (MeV±heV)									2.646±9	2.857±9	2.986±9	3.056±9						
(•)	٤	2+	+e	4+	(1 [±])	2-	2-	$(3^{\pm}, 2^{-})$	(3,4,5 [±])	(1 ±)	(3, 4 [±])		(>3 ⁻ ,>4 ⁺)	(23,4±)	(2,3-,4±)	$(4^{\mp}, 2^{-})$	(2±)		
(} °H€)	E_{κ} (MeV $\pm heV$)	00	0.595±20	0.801 ± 20	0996±20	1.350 ± 20	1.819 ± 26	1.992 ± 20	2.10 ± 40	2.64 ± 20	2.86±20		3.01 ± 20	3.29±20	3.69±60	4.15±60	4.56±60	5.17±60	5.43±60
	ж,		+n	4+	+1 +1	2-	2±	 ന	(5 3) 1	+1	+e)			(1, 2)+					
(³ He, t) ^b)	E_{κ} (MeV \pm heV)		0.606±13	0.808±11	0.996±12	1.338 ± 14	1.841 ± 11	1.998 ± 12	2.064±16	2.649±16	2.836 ± 12	2.972 ± 13	3.035±15 2.400±44	0.000±13 3.324±11					
č	K.,	(1, 2, 3)+	(ନୁ 4 5) +	(3,45)+	(1, 2.3)+	(234)−	(234)-	(234)-	(j, 4 5)+	(ī [^])	(3,4,5)+		(1,23)+	(4, 5, 6) -	((23,4)-)				
ં (કે અન્મ દુ)	E_{\star} (MeV $\pm heV$)	00	0.600 ± 15	0.802 ± 15	0.990 ± 15	1.347 ± 15	1.832 ± 15	1967 ± 20	2.034 ± 20	2.637 ± 15	2842 ± 15	2.967 ± 20	3.046 ± 20	3,302 ± 30	3.644 ± 30				
	K.,	2+	+ 60	4+	1+	(2_)	(2_)	() ()		++	(J 3) ⁺								
(m. (m. (d)	E_{κ} (MeV \pm heV)	0.0	0.580±15	0.790±15	0.993±15	1.353 ± 15	1.843 ± 15	2.016±20		2.651 ± 20	2.852±20		3.053±20		3.636± 20				

Table 20.27.5 Table 30.27.5 Levels in $^{20}\rm Ns,$ from $^{20}\rm Ne(p,\,n)$ and $^{20}\rm Ne(^3He,\,t)$

(89KU15). (90LA05). (90CL1B). (92SM03).

<u>s</u>

T 2

$E_{\rm x}(^{20}{\rm Na})~({\rm keV})$	Branch (%) $^{\rm b}$)	$\log ft$	B(GT) ^c)	J^{π}
984.25 ± 0.10	69.7 ± 1.2	3.83 ± 0.02	0.579 ± 0.030	1^{+}
2645	≤ 0.1	≥ 6.24	≤ 0.002	?
3001 ± 2	11.5 ± 1.4	4.08 ± 0.06	0.33 ± 0.05	1^{+}
3874 ± 15	4.8 ± 0.6	4.17 ± 0.06	0.27 ± 0.04	1^{+}
4123 ± 16	2.7 ± 0.3	4.33 ± 0.06	0.18 ± 0.03	1^{+}
$\approx 4800 \text{ d})$	$\geq 1.9 \; [3.6 \pm 0.5]$	$\leq 4.23 \; [3.95 \pm 0.06]$	$\geq 0.23 \left[0.45 \pm 0.07 \right]$	1^{+}
≈ 5600 ^d)	$\geq 1.5 \ [2.8 \pm 0.4]$	$\leq 3.97 \; [3.70 \pm 0.06]$	$\geq 0.42 [0.79 \pm 0.10]$	1^{+}
6266 ± 30	1.2 ± 0.1	3.72 ± 0.06	0.75 ± 0.11	1^{+}
6521 ± 30	3.3 ± 0.4	3.13 ± 0.06	$B({\rm F}) 4.57 \pm 0.68$	0^{+}
6770 ± 100	≥ 0.03	≤ 5.01	≥ 0.04	(1^+)
6920 ± 100	≥ 0.01	≤ 5.39	≥ 0.03	(1^+)
7440 ± 100	≥ 0.01	≤ 4.99	≥ 0.04	(1^+)

Table 20.27.8 Branching in $^{20}{\rm Mg}(\beta^+)^{20}{\rm Na}$ a)

^a) From Table 4 of (95PI03). The asterisk symbol indicates broad or unresolved states, for which the branching percentage could be determined only from proton emission to excited ¹⁹Ne levels. For those states the numbers in square brackets indicate the estimated branch, log ft and B(GT) values under inclusion of the 3% branching to the ¹⁹Ne ground state. ^b) It is noted in (95PI03) that these branching ratios refer to the number of implanted ²⁰Mg atoms as 100%. For details on branching of the proton decay into ¹⁹Ne levels see (95PI03). ^c) Gamow-Teller strength.

^d) Unresolved levels.

The ²⁰Mg decay to ²⁰Na has been studied through β -delayed proton and γ -ray measurements. For the earlier work see (79MO1B, 87AJ02). More recent studies are described in (92KU07, 92GO10, 92PI10, 95PI03). Half-lives measured for this decay are 95 ± 3 ms (95PI03), 82 ± 4 ms (92GO10), 114 ± 17 ms (92KU07), 95⁺⁸⁰₋₅₀ ms (79MO1B). See Table 20.27.8 for β -decay branching ratios and log ft values. A compilation of ²⁰Na levels as observed in beta decay and other experiments is provided in (95PI03), and serves as the basis for Table 20.27 here.

7.
$${}^{27}\text{Al}({}^{20}\text{Ne}, {}^{27}\text{Mg}){}^{20}\text{Na}$$
 $Q_{\rm m} = -16.497$

The Δ resonance is very strongly excited in this reaction at $E(^{20}\text{Ne}) = 950 \text{ MeV}/A$ (86BA1P).

^{20}Mg

(Fig. 20.5)

²⁰Mg has been populated in the ²⁴Mg(α , ⁸He) reaction at $E_{\alpha} = 127$ and 156 MeV, in the ²⁰Ne(³He, 3n) reaction at $E(^{3}\text{He}) = 70$ MeV, and more recently in projectile fragmentation reactions. Reviews of proton rich nuclei and methods of production are presented in (89AY1B, 93SO13). See also (90PO04). The super-allowed decay of ²⁰Mg to the first T = 2 ($J^{\pi} = 0^{+}$) state of ²⁰Na ($E_{x} = 6.450 \pm 0.020$ MeV (92PI1O)] has been reported in early work (79MO1B, 87AJ02) and more recently by (92KU07, 92PI1O, 92GO10, 95PI03), who also observed β decay to other protonunstable ²⁰Na states [see ²⁰Na, reaction 6]. Lifetime measurements for ²⁰Mg have given $\tau_{1/2} = 95^{+80}_{-50}$ ms (79MO1B), 114 ± 17 ms (92KU07), 82 ± 4 ms (92GO10), and 95 ± 3 ms (95PI03).

In related theoretical work, shell model calculations for isospin-forbidden β delayed proton emission are described in (90BR26); also see the mass calculation (92AV03).

²⁰Al, etc. (Not observed)

See (72AJ02, 83ANZQ, 86AN07).

Figure 5: Isobar diagram, A = 20. The diagrams for individual isobars have been shifted vertically to eliminate the neutron-proton mass difference and the Coulomb energy, taken as $E_c = 0.60Z(Z - 1)/A^{1/3}$. Energies in square brackets represent the (approximate) nuclear energy, $E_N = M(Z, A) - ZM(H) - NM(n) - E_c$, minus the corresponding quantity for ²⁰Ne: here M represents the atomic mass excess in MeV. Levels which are presumed to be isospin multiplets are connected with dashed lines.

References

(Closed September 15, 1995)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author's name and then by two additional characters. Most of the references appear in National Nuclear Data Center files and have NNDC key numbers ending in numeric characters. Otherwise, TUNL key numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requests for more informative citations, we have, when possible, included up to 10 authors per paper and added the initials of all authors.

- 59AJ76 F. Ajzenberg and T. Lauritsen, Nucl. Phys. 11 (1959) 1
- 68SP01 P. Spilling, H. Gruppelaar, H.F. De vries and A.M.J. Spits, Nucl.Phys. A113 (1968) 395
- 70PA1A A.D. Panagiotou, Phys. Lett. B31 (1970) 361
- 72AJ02 F. Ajzenberg-Selove, Nucl. Phys. A190 (1972) 1
- 73MA14 R.L. Macklin and R.R. Winters, Phys. Rev. C7 (1973) 1766
- 73WA19 E.K. Warburton, P. Gorodetzky and J.A. Becker, Phys. Rev. C8 (1973) 418
- 74TH01 C. Thibault and R. Klapisch, Phys. Rev. C9 (1974) 793
- 75HO15 R.E. Horstman, J.L. Eberhardt, H.A. Doubt, C.M.E. Otten and G. Van Middelkoop, Nucl. Phys. A248 (1975) 291
- 75ME04 L.R. Medsker, H.T. Fortune, R.R. Betts and R. Middleton, Phys. Rev. C11 (1975) 1880
- 75SC1A Scweickert et al, Nucl. Phys. A246 (1975) 187
- 76GA1A Garber and Kinsey, BNL 325 (1976)
- 76KL03 H.V. Klapdor, H. Reiss and G. Rosner, Nucl. Phys. A262 (1976) 157
- 76MA01 R.E. Marrs, E.G. Adelberger, K.A. Snover and M.D. Cooper, Nucl. Phys. A256 (1976)
- 77CE1A Cerny and Hardy, Ann. Rev. Nucl. Sci. 27 (1977) 333
- 77FO11 H.T. Fortune and J.N. Bishop, Nucl. Phys. A293 (1977) 221
- 77FR1A Frey et al, Z. Phys. A281 (1977) 211
- 77MA07 R.E. Marrs, E.G. Adelberger and K.A.Snover, Nucl. Phys. A277 (1977) 429
- 78AJ03 F. Ajzenberg-Selove, Nucl. Phys. A300 (1978) 1
- 78GR06 E.E. Gross, T.P. Cleary, J.L.C. Ford, D.C. Hensley and K.S. Toth, Phys. Rev. C17 (1978) 1665
- 78LE19 J.C. Legg, D.J. Crozier, G.G. Seaman and H.T. Fortune, Phys. Rev. C18 (1978) 2202
- 78LEZA C.M. Lederer, V.S. Shirley, E. Browne, J.M. Dairiki, R.E. Doebler, A.A. Shihab-Eldin, L.J. Jardine, J.K. Tuli and A.B. Buyrn, Table of Isotopes 7th ed. (New York: John Wiley & Sons, 1978)

- 79BI10 J.H. Billen, Phys. Rev. C20 (1979) 1648
- 79BR03 H.S. Bradlow, W.D.M. Rae, P.S. Fisher, N.S. Godwin, G. Proudfoot and D. Sinclair, Nucl. Phys. A314 (1979) 171
- 79FO17 H.T. Fortune, L. Bland, R. Middleton, W. Chung and B.H. Wildenthal, Phys. Lett. B87 (1979) 29
- 79GL12 H. Glattli, G.L. Bacchella, M. Fourmond, A. Malinovski, P. Meriel, M. Pinot, P. Roubeau and A.Abragam, J. Physique 40 (1979) 629
- 79KO26 L. Koester, K. Knopf and W. Waschkowski, Z. Phys. A292 (1979) 95
- 79LA04 S. LaFrance, H.T. Fortune, S. Mordechai and R. Middleton, J. Phys. G5 (1979) L59
- 79LA18 S. LaFrance, H.T. Fortune, S. Mordechai, M.E. Cobern, G.E. Moore, R. Middleton,
 W. Chung, B.H.Wildenthal, Phys. Rev. C20 (1979) 1673
- 79MO1B Moltz et al, Phys. Rev. Lett. 42 (1979) 43
- 79PI01 A.A. Pilt, M.A.M. Shahabuddin and J.A. Kuehner, Phys. Rev. C19 (1979) 20
- 79YO04 K.C. Young, Jr., R.W. Zurmuhle, J.M. Lind and D.P. Balamuth, Nucl. Phys. A330 (1979) 452
- 80FI01 L.K. Fifield, M.J. Hurst, E.F. Garman, T.J.M. Symons, F. Watt and K.W. Allen, Nucl. Phys. A334 (1980) 109
- 81MA04 C.J. Martoff, J.A. Bistirlich, K.M. Crowe, M. Koike, J.P. Miller, S.S. Rosenblum, W.A. Zajc, H.W.Baer, A.H.Wapstra, G.Strassner et al, Phys. Rev. Lett. 46 (1981) 891
- 82AN12 M.S. Antony, J. Phys. G8 (1982) 1659
- 82AR20 K.P. Artemov, V.Z. Goldberg, I.P. Petrov, V.P. Rudakov, I.N. Serikov and V.A. Timofeev, Yad.Fiz. 36 (1982) 1345; Sov. J. Nucl. Phys. 36 (1982) 779
- 82DE30 L.C. Dennis, K.M. Abdo, A.D. Frawley and K.W. Kemper, Phys. Rev. C26 (1982) 981
- 82DE39 P.A. DeYoung, J.J.Kolata, L.J.Satkowiak and M.A.Xapsos, Phys. Rev. C26 (1982) 1482
- M. Hugi, J. Lang, R. Muller, J. Sromicki, E. Ungricht, K. Bodek, L. Jarczyk, B. Kamys,
 A. Strzalkowski and H. Witala, Phys. Rev. C25 (1982) 2403
- 82KA12 O. Karban, A.K. Basak, P.M. Lewis and S. Roman, Phys. Lett. B112 (1982) 433
- 82KO1C Kolata, Proc. Fifth Oaxtepec Symp. on Nucl. Phys., 1982, Unam 5, No. 2 (1982) 99
- 82KO1D Kondo and Tamura, Bad Honnef Symp. 1981, Springer-Verlag(1982) 314
- 82LI16 R. Lichtenthaler, Jr., A. Lepine-Szily, A.C.C. Villari, W. Mittig, V.J.G. Porto and C.V. Acquadro, Phys. Rev. C26 (1982) 2487
- 82MA25 G. Mairle, G.J. Wagner, P. Grabmayr, K.T. Knopfle, Liu Ken Pao and H. Riedesel, K. Schindler, V.Bechtold, L.Friedrich, P.Ziegler, Nucl. Phys. A382 (1982) 173
- 82MO15 H. Morgenstern, W. Bohne, K. Grabisch, D.G. Kovar and H. Lehr, Phys. Lett. B113 (1982) 463
- 82SA1A Sargood, Phys. Rep. 93 (1982) 61
- 82SH29 D. Shapira, J.L.C. Ford, Jr. and J. Gomez del Campo, Phys. Rev. C26 (1982) 2470
- 83AJ01 F. Ajzenberg-Selove, Nucl. Phys. A392 (1983) 1
- 83ANZQ Y. Ando, M. Uno and M. Yamada, JAERI-M-83-025 (1983)
- 83BE19 U.E.P. Berg, K. Ackermann, K. Bangert, R. Stock and K. Wienhard, Phys. Rev. C27 (1983) 2981
- 83CA1F Caskey, Ph.D. Thesis, U. Wisconsin (1983)
- 83CL1A Clifford et al, Phys. Rev. Lett. 50 (1983) 23
- 83CS1A Csikai, Florence (1983) 451
- 83DEZW L.C. Dennis, A.D. Frawle and J.F. Mateja, Bull. Am. Phys. Soc. 28 (1983) 669
- 83DU13 G.G. Dussel, A.O. Gattone and E.E. Maqueda, Phys. Rev. Lett. 51 (1983) 2366
- 83FI02 L.K. Fifield, W.N. Catford, S.H. Chew, E.F. Garman, D.M. Pringle, K.W. Allen and J. Lowe, Nucl. Phys. A394 (1983) 1
- 83FR14 A.D. Frawley, J.D. Fox, L.C. Dennis, K.W. Kemper and N.R. Fletcher, Phys. Rev. C27 (1983) 2482
- 83HI06 M.M. Hindi, J.H. Thomas, D.C. Radford and P.D. Parker, Phys. Rev. C27 (1983) 2902
- P. Hungerford, T. von Egidy, H.H. Schmidt, S.A. Kerr, H.G. Borner and E. Monnand,
 Z. Phys. A313 (1983) 339
- 83JA09 L. Jarczyk, B. Kamys, Z. Rudy, A. Strzalkowski, H. Witala, M. Hugi, J. Lang, R. Muller, J. Sromicki and H.H. Wolter. Phys. Rev. C28 (1983) 700
- 83JI04 C. Jiang, S. Han, Q. Guo and Q. Li, Chin. J. Nucl. Phys. 5 (1983) 8
- 83KA1E Kane, Bull. Am. Phys. Soc. 28 (1983) 661
- 83KN01 N.Kniest, E. Huttel, J. Gunzl, G. Clausnitzer, P.G. Bizzeti, P.R. Maurenzig and N. Taccetti, Phys. Rev. C27 (1983) 906
- 83KN05 W. Knupfer and B.C. Metsch, Phys. Rev. C27 (1983) 2487
- 83LE03 P.M. Lewis, A.K. Basak, J.D. Brown, P.V. Drumm, O. Karban, E.C. Pollacco and S. Roman, Nucl. Phys. A395 (1983) 204
- 83LE28 J.R. Letaw, R. Silberberg and C.H. Tsao, Astrophys. J. 51 (1983) 271
- 83LI1D Lister, Brooks and Nelson, Bull. Am. Phys. Soc. 28 (1983) 658
- 83ME13 M.C. Mermaz, F. Auger and B. Fernandez, Phys. Rev. C28 (1983) 1587
- 83MI22 F. Michel, J. Albinski, P. Belery, Th. Delbar, Gh. Gregoire, B. Tasiaux and G. Reidemeister, Phys. Rev. C28 (1983) 1904
- 83NA04 W.J. Naude, H.S. Bradlow, O. Dietzsch, A.A. Pilt, W.D.M. Rae and D. Sinclair, Z. Phys. A311 (1983) 297
- 83NG01 Nguyen Van Sen, R. Darves-Blanc, J.C. Gondrand and F. Merchez, Phys. Rev. C27 (1983) 194
- Babilita D. Shapira, D. DiGregorio, J. Gomez del Campo, R.A. Dayras, J.L.C. Ford, Jr., A.H. Snell, P.H. Stelson, R.G.Stokstad and F.Pougheon, Phys. Rev. C28 (1983) 1148
- 83SH26 T. Shimoda, S. Shimoura, T. Fukuda, M. Tanaka, H. Ogata, I. Miura, E. Takada, M.-K. Tanaka, K. Takimoto and K.Katori, J. Phys. G9 (1983) L199
- 84AP03 B. Apagyi and W. Scheid, J. Phys. G10 (1984) 791
- 84BA1R Baturin et al, PANIC (1984) I11
- 84BE26 U.E.P. Berg, K. Ackermann, K. Bangert, C. Blasing, W. Naatz, R. Stock, K. Wienhard,
 M.K. Brussel, T.E.Chapuran and B.H.Wildenthal, Phys. Lett. B140 (1984) 191

- 84BL14 G.S. Blanpied, G.A. Balchin, G.E. Langston, B.G. Ritchie, M.L. Barlett, G.W. Hoffmann, J.A. McGill, M.A.Franey, M.Gazzaly and B.H.Wildenthal, Phys. Rev. C30 (1984) 1233
- 84BR15 T. Bright, D. Ballon, R.J. Saxena, Y. Niv and N. Benczer-Koller, Phys. Rev. C30 (1984) 696
- 84BU01 V.V. Burov, V.M. Dubovik, S.G. Kadmensky, Yu.M. Tchuvilsky and L.A. Tosunyan, J. Phys. G10 (1984) L21
- 84CA08 W.N. Catford, E.F. Garman and L.K. Fifield, Nucl. Phys. A417 (1984) 77
- 84CA09 T.A. Carey, P.G. Roos, N.S. Chant, A. Nadasen and H.L. Chen, Phys. Rev. C29 (1984) 1273
- 84DE1A P. De Bievre, M. Gallet, N.E. Holden and I.L. Barnes, J. Phys. Chem Ref. Data 13 (1984) 809
- 84FO1A Fowler, Rev. Mod. Phys. 56 (1984) 149
- 84IN04 T.Inoue, J. Phys. Soc. Jpn. 53 (1984) 4158
- 84KN1A Kniest et al, PANIC (1984) H9
- 84KO13 Y. Kondo and T. Tamura, Phys. Rev. C30 (1984) 97
- 84LE19 R.J. Ledoux, C.E. Ordonez, M.J. Bechara, H.A. Al-Juwair, G. Lavelle and E.R. Cosman, Phys. Rev. C30 (1984) 866
- 84ME10 M.C. Mermaz, Nuovo Cim. A81 (1984) 291
- 84MO08 S. Mordechai and H.T. Fortune, Phys. Rev. C29 (1984) 1765
- 84MU04 T. Murakami, E. Ungricht, N. Takahashi, Y.-W. Lui, Y. Mihara, R.E. Neese, E. Takada, D.M. Tanner, R.E.Tribble and K.Nagatani, Phys. Rev. C29 (1984) 847
- 84PA18 G. Palla and W. Oelert, Phys. Rev. C30 (1984) 1331
- 84RI01 H.T. Richards, Phys. Rev. C29 (1984) 276
- 84RI06 S.R. Riedhauser, Phys. Rev. C29 (1984) 1961
- 84RI07 H.T. Richards, G. Caskey, J.H. Billen, S.R. Riedhauser and D.J. Stec, Phys. Rev. C29 (1984) 2332
- 84RO04 R.G.H. Robertson, P. Dyer, R.C. Melin, T.J. Bowles, A.B. McDonald, G.C. Ball, W.G. Davies and E.D. Earle, Phys. Rev. C29 (1984) 755
- K. Umeda, T. Yamaya, T. Suehiro, K. Takimoto, R. Wada, E. Takada, S. Shimoura,
 A. Sakaguchi, S. Murakami, M.Fukada et al, Nucl. Phys. A429 (1984) 88
- 85AJ01 F. Ajzenberg-Selove, Nucl. Phys. A449 (1985) 1
- 85AN17 M.S. Antony, J. Britz, J.B. Bueb and V.B. Ndocko-Ndongue, Nuovo Cim. A88 (1985) 265
- 85BE37 C. Beck, R.M. Freeman, F. Haas, B. Heusch and J.J. Kolata, Nucl. Phys. A443 (1985) 157
- 85BR29 B.A. Brown and B.H. Wildenthal, At. Data Nucl. Data Tables 33 (1985) 347
- 85CA09 G.Caskey, Phys. Rev. C31 (1985) 717
- 85CA41 G.R. Caughlan, W. A. Fowler, M.J. Harris and B.A. Zimmerman, At. Data Nucl. Data Tables 32 (1985) 197
- 85CU1A Cujec, Lecture Notes in Phys. 219 (1985) 108

- 85F007 H.T.Fortune and R.Eckman, Phys. Rev. C31 (1985) 2076
- 85FR1C K.A. Frankel, J.A. Bistirlich, R. Bossingham, H.R. Bowman, K.M. Crowe, C.J. Martoff,
 D.L. Murphy, J.O. Rasmussen, J.P. Sullivan, E. Yoo et al, Phys. Rev. C32 (1985) 975
 85IS1A Islamov et al, Leningrad (1985) 323
- 85JA17 R.A.Jarjis, Nucl. Instrum. Methods Phys. Res. B12 (1985) 331
- 85MU14 T. Murakami, E. Ungricht, Y.-W. Lui, Y. Mihara, E. Takada and R.E. Tribble, Phys. Rev. C32 (1985) 1558
- 85OU01 S. Ouichaoui, H. Beaumevieille, N. Bendjaballah, A.C. Chami, A. Dauchy, B. Chambon, D. Drain and C. Pastor, Nuovo Cim. A86 (1985) 170
- 85RA08 C. Rangacharyulu, E.J. Ansaldo, D. Stockhausen, D. Bender, S. Muller, A. Richter, N. Lo Iudice and F. Palumbo, Phys. Rev. C31 (1985) 1656
- 85ST1B Stokstad, Treatise on Heavy-Ion Sci. 3 (1985) 83
- 85UH01 M. Uhrmacher, K. Pampus, F.J. Bergmeister, D. Purschke and K.P. Lieb, Nucl. Instr. and Meth. B9 (1985) 234
- 85WA1L Wang et al, Bull. Am. Phys. Soc. 30 (1985) 1248
- 85XI1B Y. Xie, G. Wu, Y. Zhu, R. Miao, E. Fong, X. Yin, H. Miao, J. Cai, W. Sheng, S. Sun et al, Phys. Energ. Fortis & Phys. Nucl. 9 (1985) 71
- 86AN07 M.S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables 34 (1986) 279
- 86BA1M Baba et al, Santa Fe (1986) 223
- 86BA1N Bauhoff, At. Data Nucl. Data Tables 35 (1986) 429
- 86BA1P Bachelier et al, Phys. Lett. B172 (1986) 23
- 86BE19 B. Bendyk, L. Jarczyk, B. Kamys, A. Strzalkowski and H. Witala, Phys. Rev. C34 (1986) 753
- 86CA19 W.N. Catford, D.M. Pringle, D.G. Lewis, A.E. Smith, E.F. Garman, I.F. Wright and J. Lukasiak, Nucl. Instrum. Methods Phys. Res. A247 (1986) 367
- 86CA24 B.O. Carragher, J. Carter, R.G. Clarkson, V. Hnizdo and J.P.F. Sellschop, Nucl. Phys. A460 (1986) 341
- 86CH1T M.A. Chaudhri, Santa Fe 85 (1986) 819
- 86CO15 S.G. Cooper, J. Phys. G12 (1986) 371
- 86CU02 B. Cujec, B. Dasmahapatra, Q. Haider, F. Lahlou and R.A. Dayras, Nucl. Phys. A453 (1986) 505
- 86GR1C K.A. Gridnev, N.Z. Darvish, V.B. Subbotin and S.N. Fadeev, Ivz. Akad. Nauk SSSR, Ser. Fiz. 50 (1986) 1991; Bull. Russ. Acad. Sci. 50:10 (1986) 117
- 86KA1U Kamanin, P7-86-322, DUBNA (1986) 55
- 86KA36 Y. Kadota, K. Ogino, K. Obori, Y. Taniguchi, T. Tanabe, M. Yasue and J. Schimizu, Nucl. Phys. A458 (1986) 523
- 86KN1C Kniest et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 1034
- 86LE1H Leavitt, Nucl. Instr. and Meth. B15 (1986) 296
- 86MA13 J.F. Mateja, A.D. Frawley, R.A. Parker and K. Sartor, Phys. Rev. C33 (1986) 1307

- 86MA48 D.M. Manley, B.L. Berman, W. Bertozzi, J.M. Finn, F.W. Hersman, C.E. Hyde-Wright,
 M.V. Hynes, J.J. Kelly, M.A. Kovash, S. Kowalski et al, Phys. Rev. C34 (1986) 1214
- 86OE01 W. Oelert, Nucl. Phys. A449 (1986) 395
- 86OU01 S. Ouichaoui, H. Beaumevielle, N. Bendjaballah and A. Genoux-Lubain, Nuovo Cim. A94 (1986) 133
- 86OUZZ S. Ouichaoui, H. Beaumevieille, N. Bendjaballah and G.J. Costa, Proc.Intern.Nuclear Physics Conference, Harrogate, U.K. (1986) 105
- 86PA10 C.T. Papadopoulos, R. Vlastou, E.N. Gazis, P.A. Assimakopoulos, C.A. Kalfas, S. Kossionides and A.C. Xenoulis, Phys. Rev. C34 (1986) 196
- 86PAZJ G. Palla, Proc. Int..Nucl. Phys. Conf., Harrogate, U.K. (1986) 407
- 86RA15 Md.A. Rahman and H.M. Sen Gupta, Nuovo Cim. A93 (1986) 236
- 86SA1F Samosvat, Sov. J. Part. & Nucl. 17 (1986) 313
- 86SC1E Schmid, Hammaren and Grummer, AIP Conf. Proc. 142 (1986) 327
- 86SE1B N. Seichert, W. Assmann, H. Clement, G. Graw, C. Hategan, H. Kader, F. Merz and P. Schiemenz, J. Phys. Soc. Jpn. Suppl. 55 (1986) 646
- 86SH30 T. Shimoda, K. Katori, T. Fukuda, H. Ogata, S. Shimoura, M. Tanaka and E. Takada, J. Phys. Soc. Japan 55 (1986) 3021
- 86TR08 W. Trolenberg, F. Hagelberg, H.J. Simonis, P.N. Tandon, K.-H. Speidel, M. Knopp and J. Gerber, Nucl. Phys. A458 (1986) 95
- 86WO1A Woosley and Weaver, Ann. Rev. Astron. Astrophys. 24 (1986) 205
- B7AB03 H. Abele, H.J. Hauser, A. Korber, W. Leitner, R. Neu, H. Plappert, T. Rohwer, G. Staudt, M. Strasser, S. Welte et al, Z. Phys. A326 (1987) 373
- 87AJ02 F. Ajzenberg-Selove, Nucl. Phys. A475 (1987) 1
- 87AL06 D.E. Alburger, G. Wang and E.K. Warburton, Phys. Rev. C35 (1987) 1479
- 87AN1B Ankinia et al (Dubna-Bucharest-Warsaw-Tbilisi-Alma Ata-Moscow Collaboration SKM-200), Yad. Fiz. 45 (1987) 1680; Sov. J. Nucl. Phys. 45 (1987) 1040
- 87AR13 A.E. Aravantinos and A.C. Xenoulis, Phys. Rev. C35 (1987) 1746
- 87BA1T D. Bachelier, J.L. Boyard, D. Contardo, V. Datar, P. Dekker, C. Ellegaard, C. Gaarde, J.Y. Grossiord, A. Guichard, T. Hennino et al, Eleventh Int. Conf. on Particles and Nuclei (1987) 268
- 87BA2G F. Balestra, M.P. Bussa, L. Busso, L. Fava, L. Ferrero, D. Panzieri, G. Piragino, F. Tosello, G. Bendiscioli, A. Rotondi et al, Phys. Lett. B194 (1987) 192
- 87BAZI D. Bazin, R. Anne, D. Guerreau, D. Guillemaud-Mueller, A.C. Mueller, M.G. Saint-Laurent, W.D. Schmidt-Ott, V. Borrel, J.C. Jacmart, F. Pougheon et al, Contrib. Proc. 5th Int. Conf. Nuclei far from Stability, Rosseau Lake, Canada, (1987) K7
- 87BE1F B. Berthier, R. Boisgard, J. Julien, J.M. Hisleur, R. Lucas, C. Mazur, C. Ngô, M. Ribrag and C. Cerruti, Phys. Lett. B193 (1987) 417
- 87BE1G U.E.P. Berg and U. Kneissl, Ann. Rev. Nucl. Part. Sci. 37 (1987) 33
- 87BE1V P. Belery, P. Cohilis, Th. Delbar, Y. El Masri and Gh. Grègoire, Phys. Rev. C36 (1994) 1335

- 87BL18 R. Blumel and K. Dietrich, Nucl. Phys. A471 (1987) 453
- 87BO23 R. Bougault, D. Horn, C.B. Chitwood, D.J. Fields, C.K. Gelbke, D.R. Klesch, W.G. Lynch, M.B. Tsang, Phys. Rev. C36 (1987) 830
- 87BU07 M. Bürgel, H. Fuchs, H. Homeyer, G. Ingold, U. Jahnke and G. Thoma, Phys. Rev. C36 (1987) 90
- 87BU1E N.T. Burtebaev, A.D. Duisebaev, V.S. Sadkovskii and G.A. Feofilov, Izv. Akad. Nauk SSSR Ser. Fiz. 51 (1987) 615; Bull. Acad. Sci. USSR 51:3 (1987) 191
- 87CA1H Cao et al, Phys. Rev. C35 (1987) 625
- 87CH1J W.H. Chung, Singapore J. Phys. 4 (1987) 15
- 87CO31 P.D. Cottle and K.W. Kemper, Phys. Rev. C36 (1987) 2034
- 87DA12 O.D. Dal'karov, V.A. Karmanov and A.V. Trukhov, Sov. J. Nucl. Phys. 45 (1987) 430;
 Yad. Fiz. 45 (1987) 688
- 87DA1D O.D. Dal'karov and V.A. Karmanov, Fiz. Elem. Chastits At. Yadra 18 (1987) 1399 Sov. J. Part. Nucl. 18:6 (1987) 599
- 87DA1L B.V. Danilin and M.V. Zhukov, Fiz. Elem. Chastits At. Yadra 18 (1987) 205 Sov. J.
 Part. Nucl. 18:2 (1987) 83
- 87DE10 Detraz, Dubna (1987) 42
- 87DE40 P. Descouvement and D. Baye, Nucl. Phys. A475 (1987) 219
- 87DI07 Th. Diaco, C. Friedli and Lerch, Radiochim. Acta 42 (1987) 1
- 87DUZU J.P. Dufour, R. Del Moral, F. Hubert, D. Jean, M.S. Pravikoff, A. Fleury, H. Delagrange, A. Mueller, K.-H. Schmidt, E. Hanelt et al, Contrib. Proc. 5th Int. Conf. Nuclei far from Stability, Rosseau Lake, Canada, (1987) D1
- 87DW1A R. Dwyer and P. Meyer, Astrophys. J. 322 (1987) 981
- 87EL14 Ellegaard, Can. J. Phys. 65 (1987) 600
- 87ER1B Erb, Symp. in honor of D. Allan Bromley, Yale Univ. (1987) 54
- 87EV01 E.J. Evers, J.W. de Vries, G.A.P. Engelbertink and C. van der Leun, Nucl. Instrum. Methods Phys. Res. A257 (1987) 91
- 87FI01 L.K.Fifield, D.M.Pringle and W.J.Vermeer, Nucl. Phys. A463 (1987) 644
- 87FU12 R.J. Furnstahl, C.E. Price and G.E. Walker, Phys. Rev. C36 (1987) 2590
- A. Gillebert, W. Mittig, L. Bianchi, A. Cunsolo, B. Fernandez, A. Foti, J. Gastebois,
 C. Grègoire, Y. Schutz and C. Stephan, Phys. Lett. B192 (1987) 39
- 87GO12 M.S. Golovkov and V.Z. Gol'dberg, Ivz. Akad. Nauk SSSR Ser. Fiz. 51 (1987) 129
- 87HA16 P. Halse, Phys. Rev. C36 (1987) 372
- K.H. Hahn, K.H. Chang, T.R. Donoghue and B.W. Filippone, Phys. Rev. C36 (1987) 892
- 87HA41 P. Halse and J.N. Ginocchio, Phys. Rev. C36 (1987) 2611
- 87HE1D J. Herberz, G. Fricke, T. Hennemann, G. Mallot, M. Reuter, R. Jacot-Guillarmod, C. Piller, L.A. Schaller, L. Schellenberg and W. Reichart, Eleventh Int. Conf. on Particles and Nuclei (1987) 640
- 87HI08 M. Hino, K. Muto and T. Oda, J. Phys. G13 (1987) 1119

- 87KA24 H. Kazama, Prog. Theor. Phys. 77 (1987) 1178
- 87KA2B S.A. Karamyan, Yad. Fiz. 46 (1987) 1338; Sov. J. Nucl. Phys. 46 (1987) 786
- 87KA30 K. Kato and H. Tanaka, Fizika (Zagreb) Supplement 1 (1987) 11
- 87KE09 T.J. Kennett, W.V. Prestwich and J.S. Tsai, Can. J. Phys. 65 (1987) 1111
- 87KR08 A.J. Kreiner and C. Pomar, Phys. Rev. C36 (1987) 436
- 87LE1G V.E. Lewis and T.B. Ryves, Nucl. Instrum. Methods Phys. Res. A257 (1987) 462
- 87LI1F X.-Y. Li, S.-H. Yao and Q.-Y. Zhang, High Energy Phys. Nucl. Phys. 11 (1987) 397
- 87LI26 H. Liu and L. Zamick, Phys. Rev. C36 (1987) 2057
- 87LI34 Y. Ling and Z. Qui, Chin. J. Nucl. Phys. 9 (1987) 329
- 87LY04 W.G. Lynch, Nucl. Phys. A471 (1987) 309c
- 87MI07 F. Michel, G. Reidemeister and S. Ohkubo, Phys. Rev. C35 (1987) 1961
- 87MU03 Yu.A. Muzychka and B.I. Pustyl'nik, Yad. Fiz. 45 (1987) 90; Sov. J. Nucl. Phys. 45 (1987) 57
- 87MU16 H. Müther, R. Machleidt and R. Brockmann, Phys. Lett. B198 (1987) 45
- 87NU01 J. Nurzynski, T. Kihm, K.T. Knopfle, G. Mairle and H. Clement, Nucl. Phys. A465 (1987) 365
- 87PA06 H. Paetz gen Schieck, N.O. Gaiser, K.R. Nyga, R.M. Prior and S.E. Darden, Nucl. Instrum. Methods Phys. Res. A254 (1987) 616
- 87PA29 W. Pannert, P. Ring and J. Boguta, Phys. Rev. Lett. 59 (1987) 2420
- 87PR03 C.E. Price and G.E. Walker, Phys. Rev. C36 (1987) 354
- 87RA01 S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor, Jr. and P.H. Stelson, At. Data Nucl. Data Tables 36 (1987) 1
- 87RA02 W.D.M. Rae, P.R. Keeling and S.C. Allcock, Phys. Lett. B184 (1987) 133
- 87RA1D R. Ramaty and R.J. Murphy, Space Sci. Rev. 45 (1987) 213
- 87RA23 J. Räisänen, T. Witting and J. Keinonen, Nucl. Instrum. Methods Phys. Res. B28 (1987) 199
- 87RE04 P.-G. Reinhard and K. Goeke, Rep. Prog. Phys. 50 (1987) 1
- 87RO1D Rolfs, Trautvetter and Rodney, Rep. Prog. Phys. 50 (1987) 233
- 87SA1P S. Sarkar, K. Kar and V.K.B. Kota, Phys. Rev. C36 (1987) 2700
- 87SA1Q T. Sakuda and H. Bando, Prog. Theor. Phys. 78 (1987) 1317
- 87SA55 S.M. Saad, V.B. Subbotin, K.A. Gridnev, E.F. Hefter and V.M. Semjonov, Nuovo Cim. A98 (1987) 529
- 87SC1J K.W. Schmid and F. Grümmer, Rep. Prog. Phys. 50 (1987) 731
- 87SE17 H.M. Sen Gupta, M.S. Chowdhury, F. Watt and M.J. Hurst, Nuovo Cim. A98 (1987) 715
- 87SH23 W. Shen, Y. Zhu, W. Zhan, Z. Guo, S. Yin, W. Qiao and X. Yu, Nucl. Phys. A472 (1987) 358
- 87SI1E Simenog, Yurmala (1987) 167
- 87SM1B V.M. Smirnov, N.G. Triumfov, O.S. Tsvetkov and P.P. Chinenov, Atomnaya Energiya
 63:2 (1987) 136; Sov. At. Energ. 63 (1987) 645

- 87SN1A K. Sneppen, Nucl. Phys. A470 (1987) 213
- 87SO1D L.G. Sobotka, D.G. Sarantites, Z. Li, E.L. Dines, M.L. Halbert, D.C. Hensley, J.C. Lisle, R.P. Schmitt, Z. Majka, G. Nebbia et al, Phys. Rev. C36 (1987) 2713
- 87SU03 T. Sugimitsu, H. Inoue, H. Fujita, N. Kato, K. Kimura, T. Tachikawa, K. Anai, Y. Ikeda and Y. Nakajima, Nucl. Phys. A464 (1987) 415
- 87SU07 T. Suomijärvi, B. Berthier, R. Lucas, M.C. Mermaz, J.P. Coffin, G. Guillaume, B. Heusch, F. Jundt and F. Rami, Phys. Rev. C36 (1987) 181
- 87SU09 C. Sukosd, C. Mayer-Böricke, M. Rogge, P. Turek, K.T. Knöpfle, H. Riedesel, K. Schindler and G.J. Wagner, Nucl. Phys. A467 (1987) 365
- 87SU13 Y. Suzuki, Nucl. Phys. A470 (1987) 119
- 87SU11 J.P. Sullivan, Phys. Rev. C36 (1987) 1200
- 87TA1C Y.C. Tang, AIP Conf. Proc. 162 (1987) 174
- 87VA24 J.R. Vanhoy, E.G. Bilpuch, C.R. Westerfeldt and G.E. Mitchell, Phys. Rev. C36 (1987) 920
- 87VI1B V.E. Viola, Nucl. Phys. A471 (1987) 53c
- 87VI1D Vigdor, Jacobs and Korkmaz, Phys. Rev. Lett. 58 (1987) 840
- 87WA1P S. Wang, P.B. Price, S.W. Barwick, K.J. Moody and E.K. Hulet, Phys. Rev. C36 (1987) 2717
- 87WI03 A. Willis, M. Morlet, N. Marty, C. Djalali, G.M. Crawley, A. Galonsky, V. Rotberg and B.A. Brown, Nucl. Phys. A464 (1987) 315
- 87YI1A S.-Z. Yin, Y.-T. Zhu, W.-Q. Shen, Z.-Y. Guo, W.-L. Zhan, W.-M. Qiao, E.-C. Wu and Z.-H. Zheng, Phys. Energ. Fortis and Phys. Nucl. 11 (1987) 259
- 88AI1A J. Aichelin, G. Peilert, A. Boohnet, A. Rosenhauer, H. Stöcker and W. Greiner, Phys. Rev. C37 (1988) 2451
- 88AL07 S.C. Allcock, W.D.M. Rae, P.R. Keeling, A.E. Smith, B.R. Fulton and D.W. Banes, Phys. Lett. B201 (1988) 201
- 88AP1A J.H. Applegate, Phys. Rep. 163 (1988) 141
- 88AP1B J.H. Applegate, AIP Conf. Proc. 176 (1988) 988
- 88AR24 K.P. Artemov, M.S. Golovkov, V.Z. Gold'berg, V.V. Pankratov, V.P. Rudakov, I.N. Serikov and V.A. Timofeev, Yad. Fiz. 48 (1988) 1236; Sov. J. Nucl. Phys. 48 (1988) 784
- 88ARZU K.P. Artemov, M.S. Golovkov, V.Z. Goldberg, V.P. Rudakov, I.N. Serikov, V.A. Timofeev, J. Schmider, M. Madeya and Ya. Yakel, Program & Theses, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nucl., Baku (1988) 381
- 88AU03 F. Auger and B. Fernandez, Nucl. Phys. A481 (1988) 577
- 88BA12 Z. Basrak, W. Tiereth and H. Voit, Phys. Rev. C37 (1988) 1511
- 88BA16 E.B. Balbutsev and I.N. Mikhailov, J. Phys. G14 (1988) 545
- 88BA1H J.N. Bahcall and R.K. Ulrich, Rev. Mod. Phys. 60 (1988) 297
- 88BA1J D. Bazin, R. Anne, D. Guerreau, D. Guillemaud-Mueller, A.C. Mueller, M.G. Saint-Laurent and W.D. Schmidt-Ott, AIP Conf. Proc. 164 (1988) 722
- 88BA66 D. Baye and P. Descouvemont, Phys. Rev. C38 (1988) 2463

- 88BA80 E.B. Bal'butsev and I. Piperova, Izv. Akad. Nauk SSSR Ser. Fiz. 52 (1988) 2132; Bull.
 Acad. Sci. USSR Phys. Ser. 52:11 (1988) 52
- 88BA82 H. Bando, Nucl. Phys. A478 (1988) 697c
- 88BE1J Belyaeva and Zelenskaya, Baku (1988) 449
- 88BE2A Besliu and Jipa, Rev. Roum. Phys. 33 (1988) 409
- 88BL11 R. Blendowske and H. Walliser, Phys. Rev. Lett. 61 (1988) 1930
- 88BL13 G.S. Blanpied, B.G. Ritchie, M.L. Barlett, R.W. Fergerson, G.W. Hoffmann, J.A. McGill and B.H. Wildenthal, Phys. Rev C38 (1988) 2180
- 88BO1D J. Bogdanowicz, Nucl. Phys. A479 (1988) 323c
- 88BO27 D.H. Boal and J.N. Glosli, Phys. Rev. C38 (1988) 1870
- 88BR11 B.A. Brown, W.A. Richter, R.E. Julies and B.H. Wildenthal, Ann. Phys. 182 (1988) 191
- 88BR1D B.A. Brown and B.H. Wildenthal, MSUCL-637 (1988)
- 88BR1P B.A. Brown and B.H. Wildenthal, Ann. Rev. Nucl. Part. Soc. 38 (1988) 29
- 88BU01 L. Buchman, J.M. D'Auria and P. McCorquodale, Astrophys. J. 324 (1988) 953
- 88CA09 M. Carchidi and B.H. Wildenthal, Phys. Rev. C37 (1988) 1681
- 88CA1G G. Cardella, M. Papa, G. Pappalardo, F. Rizzo, A. De Rosa, G. Inglima, M. Sandoli,
 G. Fortuna, G. Montagnoli, A.M. Stefanini et al, Nucl. Phys. A482 (1988) 235c
- 88CA1N G.R. Caughlan and W.A. Fowler, At. Data Nucl. Data Tables 40 (1988) 283
- 88CAZV D.D. Caussyn, N.R. Fletcher, G.L. Gentry, J.A. Liendo, K.L. Lamkin, J.D. Fox, A.D. Frawley, E.G. Myers and J.F. Mateja, Bull. Am. Phys. Soc. 33:8 (1988) 1562 (AC11)
- 88CE01 C. Cerruti, J. Desbois, R. Boisgard, C. Ngô, J. Natowitz and J. Nemeth, Nucl. Phys. A476 (1988) 74
- 88CH28 A.K. Chaudhuri, S. Bhattacharya and K. Krishan, Nucl. Phys. A485 (1988) 181
- 88CO12 M.E. Colin and C. Friedli, Radiochim. Acta. 43 (1988) 139
- 88CS01 J. Cseh and G. Lèvai, Phys. Rev. C38 (1988) 972
- 88CU03 J. Cugnon, P. Deneye and J. Vandermeulen, Phys. Rev. C38 (1988) 795
- 88CU1A A.C. Cummings, E.R. Christian and E.C. Stone, Bull. Am. Phys. Soc. 33 (1988) 1069
- 88CU1D J. Cugnon, AIP Conf. Proc. 176 (1988) 378
- 88DE18 B. Dechant and E. Kuhlmann, Z. Phys. A330 (1988) 93
- 88DI02 S.S. Dietrich and B.L. Berman, At. Data Nucl. Data Tables 38 (1988) 199
- 88DI08 J. Ding and G. He, J. Phys. G14 (1988) 1315
- 88DO17 C. Dorso and J. Randrup, Phys. Lett. B215 (1988) 611
- P. Dupieux, J.P. Alard, J. Augerat, R. Babinet, N. Bastid, F. Brochard, P. Charmensat,
 N. De Marco, H. Fanet, Z. Fodor et al, Phys. Lett. B200 (1988) 17
- 88DU1C J.P. Dufour, R. Del Moral, F. Hubert, D. Jean, M.S. Pravikoff, A. Fleury, H. Delagrange, A.C. Mueller, K.-H. Schmidt, E. Hanelt et al, AIP Conf. Proc. 164 (1988) 344
- 88EL06 A.J.R. El Hassani, J.-F. Gilot, P.F.A. Goudsmit, H.J. Leisi and St. Thomann, Helv. Phys. Acta 61 (1988) 1130

- 88ET01 M.C. Etchegoyen, A. Etchegoyen, B.H. Wildenthal, B.A. Brown and J. Keinonen, Phys. Rev. C38 (1988) 1382
- 88FI01 J. Fiase, A. Hamoudi, J.M. Irvine and F. Yazici, J. Phys. G14 (1988) 27
- 88FO1E D.J. Forrest and R.J. Murphy, Solar Phys. 118 (1988) 123
- 88FR02 E. Friedman, A. Gal, G. Kalbermann and C.J. Batty, Phys. Lett. B200 (1988) 251
- 88GA19 C. Gao, P. Ning and G. He, Nucl. Phys. A485 (1988) 282
- 88GA1K J. Galin, Nucl. Phys. A488 (1988) 297c
- 88GA1L C. Gao and G. He, Chin. Phys. 8 (1988) 987
- 88GO1G Goryonov et al, 38th Meeting on Nucl. Spectroscopy and the Structure of the At. Nucl., Baku, USSR, 12-14 April 1988 (Nauka, 1988) 366
- 88GR12 K.A. Griffioen, E.A. Bakkum, P. Decowski, R.J. Meijer and R. Kamermans, Phys. Rev. C37 (1988) 2502
- 88GR11 K.A. Gridnev, N.Z. Darwish, V.B. Subbotin and S.N. Fadeiv, Proc. Indian Natn. Sci. Acad. 54 (1988) 917
- 88GU12 I.S. Gul'karov, Fiz. Elem. Chastis At. Yadra 19 (1988) 345; Sov. J. Part. Nucl. 19 (1988) 149
- 88HA12 S.S. Hanna, J. Phys. G14 (1988) S283
- 88HE06 D.F. Hebbard, J. Nurzynski, T.R. Ophel, P.V. Drumm, Y. Kondo, B.A. Robson and R. Smith, Nucl. Phys. A481 (1988) 161
- 88HE1I T. Hennino, AIP Conf. Proc. 176 (1988) 663
- 88HI05 M. Hino, K. Muto and T. Oda, Phys. Rev. C37 (1988) 1328
- 88IV02 M. Ivascu and I. Silisteanu, Nucl. Phys. A485 (1988) 93
- 88IW1A H. Iwe and E. Okonov, Phys. Lett. B215 (1988) 465
- 88JO02 J.I. Johansson, E.D. Cooper and H.S. Sherif, Nucl. Phys. A476 (1988) 663
- 88JO1B G. A. Jones, Interact. and Struct. in Nucl., Proc. in honor of D.H. Wilkinson, Sussex, 9/87; Adam Hilger Publ. (1988) 9
- J. Julien, M. Bolore, H. Dabrowski, J.M. Hisleur, V. Bellini, A.S. Figuera, R. Fonte,
 A. Insolia, G.F. Palama, G.V. Russo et al, Z. Phys. A330 (1988) 83
- 88KA1Z K. Kato, K. Fukatsu and H. Tanaka, Prog. Theor. Phys. 80 (1988) 663
- 88KO18 L. Koester, W. Waschkowski, J. Meier, G. Rau and M. Salehi, Z. Phys. A330 (1988) 387
- 88KU07 R. Kuchta, Nucl. Phys. A483 (1988) 92
- 88KU08 P.M. Kurjan, J.R. Calarco, G.A. Fisher and S.S. Hanna, Phys. Rev. C37 (1988) 2281
- 88KU17 R. Kuchta, Phys. Rev. C38 (1988) 1460
- 88KU22 R. Kuchta, Z. Phys. A331 (1988) 243
- 88KU23 Kubono et al, Z. Phys. A331 (1988) 359
- 88LAZY L.O. Lamm, C.P. Browne, J. Görres, S. Graff, M. Wiescher and A.A. Rolleson, Bull. Am. Phys. Soc. 33 (1988) 1563
- 88LE05 G. Lèvai and J. Cseh, J. Phys. G14 (1988) 467
- 88LE06 M. LeMere and Y.C. Tang, Phys. Rev. C37 (1988) 1369

- 88LI10 G.-B. Liu and H.T. Fortune, Phys. Rev. C37 (1988) 1818
- 88LI28 G.-B. Liu and H.T. Fortune, Phys. Rev. C38 (1988) 2134
- 88MA1Q L. Majling, J. Zofka, T. Sakuda and H. Bando, PROG. THEOR. PHYS. 79 (1988) 561
- 88MA1U R.A. Malaney and W.A. Fowler, Astrophys. J. 333 (1988) 14
- 88MA30 R.S. Mackintosh, A.A. Ioannides and S.G. Cooper, Nucl. Phys. A483 (1988) 173
- 88MA53 G. Mairle, K.T. Knöpfle and M. Seeger, Nucl. Phys. A490 (1988) 371
- 88MCZT V. McLane, C.L. Dunford and P.F. Rose, Neutron Cross Sections, Vol. 2 (Academic Press, Inc. 1988)
- 88ME09 A.C. Merchant and M.P. Isidro Filho, Phys. Rev. C38 (1988) 1911
- 88MI11 M. Mishra, M. Satpathy and L. Satpathy, J. Phys. G14 (1988) 1115
- 88MU08 A.C. Mueller, D. Bazin, W.D. Schmidt-Ott, R. Anne, D. Guerreau, D. Guillemaud-Mueller, M.G. Saint-Laurent, V. Borrel, J.D. Jacmart, F. Pougheon et al, Z. Phys. A330 (1988) 63
- 88MU10 H. Müther, T. Taigel and T.T.S. Kuo, Nucl. Phys. A482 (1988) 601
- 88PO1E N.A.F.M. Poppelier, J.H. de Vries, A.A. Wolters and P.W.M. Glaudemans, AIP Conf. Proc. 164 (1988) 334
- 88RA1G W.D.M. Rae, Int. J. Mod. Phys. A3 (1988) 1343
- 88RA20 Md.A. Rahman, S.N. Rahman, H.M. Sen Gupta, H.-J. Trost, P. Lezoch and U. Strohbusch, Nuovo Cim. A99 (1988) 317
- 88RA27 Md.A. Rahman, Nuovo Cim. A100 (1988) 419
- 88RE1F D.V. Reames, R. Ramaty and T.T. von Rosenvinge, Astrophys. J. 332 (1988) L87
- 88RO10 Rosa et al, Phys. Rev. C37 (1988) 2722
- 88RO17 Roy-Stephan, Nucl. Phys. A488 (1988) 187c
- 88RO19 A.S. Rosenthal, Prog. Theor. Phys. 80 (1988) 359
- 88RO1H M. Roy-Stephan, Nucl. Phys. A488 (1988) 187c
- 88SH05 N.R. Sharma, B.K. Jain and R. Shyam, Phys. Rev. C37 (1988) 873
- 88SI1E Simons, Phys. Scr. T22 (1988) 90
- 88SM1B A.R. Smith, J.C. Hill, J.A. Winger and P.J. Karol, Phys. Rev. C38 (1988) 210
- 88ST04 B. Strohmaier and S.M. Grimes, Z. Phys. A329 (1988) 431; Erratum Z. Phys. A331 (1988) 114
- 88UT02 H. Utsunomiya and R.P. Schmitt, Nucl. Phys. A487 (1988) 162
- 88VI1D D.J. Vieira, J.M. Wouters and the TOFI Collaboration, AIP Conf. Proc. 164 (1988) 1
- 88WA13 T.R. Wang, W. Haeverli, S.W. Wissink and S.S. Hanna, Phys. Rev. C37 (1988) 2301
- 88WA1H M. Wakai, H. Bando and M. Sano, Phys. Rev. C38 (1988) 748
- 88WO09 J.M. Wouters, R.H. Kraus, Jr., D.J. Vieira, G.W. Butler and K.E.G. Löbner, Z. Phys. A331 (1988) 229
- 88WO1C S.E. Woosley and W.C. Haxton, Nature 334 (1988) 45
- 88ZH09 J.-K. Zhang and D.S. Onley, Phys. Lett. B209 (1988) 145

- 88ZH12 Y. Zhu, W. Shen, X. Hu, Y. Xie, W. Zhan, X. Zhu and S. Li, Nucl. Phys. A488 (1988) 409c
- 88ZH1F Zhao, Li, Chen and Wang, Kexue Tongbao 33 (1988) 1423
- M. Aderholz, M.M. Aggarwal, H. Akbari, P.P. Allport, P.V.K.S. Baba, S.K. Badyal,
 M. Barth, J.P. Baton, H.H. Bingham, E.B. Brucker et al, Phys. Rev. Lett. 63 (1989)
 2349
- 89AN12 I. Angeli, Z. Phys. A334 (1989) 377
- 89AR1H Arima, Tokyo (1988) 407
- 89AR1R W.D. Arnett, J.N. Bahcall, R.P. Kirshner and S.E. Woosley, Ann. Rev. Astron. Astrophys. 27 (1989) 629
- 89AY1B J. Äysto and J. Cerny, Treatise on Heavy-Ion Sci. 8 (1989) 207
- F. Balestra, S. Bossolasco, M.P. Bussa, L. Busso, L. Ferrero, D. Panzieri, G. Piragino,
 F. Tosello, R. Barbieri, G. Bendiscioli et al, Nucl. Phys. A491 (1989) 541
- 89BA17 E.A. Bakkum, P. Decowski, K.A. Friffioen, R.J. Meijer and R. Kamermans, Phys. Rev. C39 (1989) 2094
- 89BA1E H. Bando, M. Sano, J. Zoofka and M. Wakai, Nucl. Phys. A501 (1989) 900
- F. Balestra, S. Bossolasco, M.P. Bussa, L. Busso, L. Ferrero, D. Panzieri, G. Piragino,
 F. Tosello, R. Barbieri, G. Bendiscioli et al, Phys. Lett. B217 (1989) 43
- 89BA2N H. Bando, Nuovo Cim. A102 (1989) 627
- 89BE17 C. Beck, D.G. Kovar, S.J. Sanders, B.D. Wilkins, D.J. Henderson, R.V.F. Janssens,
 W.C. Ma, M.F. Vineyard, T.F. Wang, C.F. Maguire et al, Phys. Rev. C39 (1989) 2202
- 89BE1T Belyaeva, Bogdanova and Zelenskaya, Tashkent (1989) 432
- 89BE2H D. Bencivenni, V. Castellani, A. Tornambè and A. Weiss, Astrophys. J. Suppl. Ser. 71 (1989) 109
- 89BE51 T.L. Belyaeva and N.S. Zelenskaya, Ukr. Fiz. Zh. 34 (1989) 1635
- 89BR1G C. Brechtmann, W. Heinrich and E.V. Benton, Phys. Rev. C39 (1989) 2222
- M. Burlein, H.T. Fortune, W.M. Amos, T.L. Ekenberg, A. Kotwal, P.H. Kutt, J.M. O'Donnell, J.D. Silk, B. Boyer, A. Fuentes et al, Phys. Rev. C40 (1989) 785
- 89CA05 O. Castaños and J.P. Draayer, Nucl. Phys. A491 (1989) 349
- 89CA15 S. Cavallaro, S.Z. Yin, G. Prete and G. Viesti, Phys. Rev. C40 (1989) 98
- 89CI1C N. Cindro and M. Bozin, Heavy Ions in Nucl. and Atomic Phys., 1988 Mikolajki Summer School on Nucl. Phys. (1989) 239
- 89CL02 Clifford et al, Nucl. Phys. A493 (1989) 293
- 89CO22 M.E. Colin, C. Friedli and P. Lerch, Radiochim. Acta. 46 (1989) 13
- 89CU06 J. Cugnon and J. Vandermeulen, Ann. Phys. 14 (1989) 49
- 89DE12 Y.D. Devi, V.K.B. Kota and J.A. Sheikh, Phys. Rev. C39 (1989) 2057
- 89DE32 P. Descouvemont and D. Baye, Phys. Lett. B228 (1989) 6
- 89ET01 A. Etchegoyen, M.C. Etchegoyan and B.H. Wildenthal, Phys. Rev. C39 (1989) 680
- R. Lichtenthäler Filho, A. Lèpine-Szily, A.C.C. Villari and O. Portezan Filho, Phys. Rev. C39 (1989) 680

- 89FI04 J. Fink, V. Blum, P.-G. Reinhard, J.A. Maruhn and W. Greiner, Phys. Lett. B218 (1989) 277
- 89FI05 D.E. Fields, K. Kwiatkowski, D. Bonser, R.W. Viola, W.G. Lynch, M.J. Pochodzalla,
 M.B. Tsang, C.K. Gelbke, D.J. Fields and S.M. Austin, Phys. Lett. B220 (1989) 356
- 89FO07 R. Fonte, A. Insolia, G. Palamá and G.V. Russo, Nucl. Phys. A495 (1989) 43c
- 89FO1G Fonte, Insolia, Palama and Russo, Sao Paulo (1989) 415
- 89GA05 C. Gao and Y. Kondo, Phys. Lett. B219 (1989) 40
- 89GA09 C. García-Recio, M.J. López, J. Navarro and F. Roig, Phys. Lett. B222 (1989) 329
- 89GA16 Y.K. Gambhir and P. Ring, Pramana 32 (1989) 389
- 89GA1L Gao and Kondo, Sao Paulo (1989) 317
- 89GE10 P.M. Gensini, Nuovo Cim. A102 (1989) 1563
- 89GH01 B. Ghosh and R. Shyam, J. Phys. G15 (1989) L185
- 89GO1N J. Görres, M. Wiescher and C. Rolfs, Astrophys. J. 343 (1989) 365
- 89GU1I N. Guessoum and R.J. Gould, Astrophys. J. 345 (1989) 356
- 89GU1J N. Guessoum, Astrophys. J. 345 (1989) 363
- 89GU1Q M. Gupta and W.R. Webber, Astrophys. J. 340 (1989) 1124
- 89HE11 D.W. Hetherington, A. Alousi and R.B. Moore, Nucl. Phys. A494 (1989) 1
- 89HE1I He and Gao, Sao Paulo (1989) 320
- 89HE1N R.B.C. Henry, Monthly Notice Royal Astron. Soc. 241 (1989) 453
- 89HO16 E. Hourani, M. Hussonnois and D.N. Poenaru, Ann. Physique 14 (1989) 311
- 89HU1E Hubert et al, Proc. 1989 Int. Nucl. Phys. Conf., Sao Paulo, Brasil, 20-26 August 1989 (World Sci., 1989) 147
- 89JI1A L. Jin, W.D. Arnett and S.K. Chakrabarti, Astrophys. J. 336 (1989) 572
- 89KA06 O. Karban, W.C. Hardy, K.A. Connell, S.E. Darden, C.O. Blyth, H.D. Choi, S.J. Hall,
 S. Roman and G. Tungate, Nucl. Instrum. Methods Phys. Res. A274 (1989) 4
- 89KA37 G. Kalbermann, E. Friedman, A. Gal and C.J. Batty, Nucl. Phys. A503 (1989) 632
- 89KI13 A. Kiss, F. Deák, Z. Seres, G. Caskey, A. Galonsky, B. Remington and L. Heilbronn, Nucl. Phys. A499 (1989) 131
- 89KN01 J.M. Knox and J.F. Harmon, Nucl. Instrum. Methods Phys. Res. B44 (1989) 40
- 89KO13 W. Koepf and P. Ring, Nucl. Phys. A493 (1989) 61
- 89KU15 S. Kubono, H. Orihara, S. Kato and T. Kajino, Astrophys. J. 344 (1989) 460
- 89KU1D Kubono et al, Tokyo (1988) 83
- 89LE16 M. Lewitowicz, Yu.E. Penionzhkevich, A.G. Artukh, A.M. Kalinin, V.V. Kamanin, S.M. Lukyanov, Nguyen Hoai Chau, A.C. Mueller, D. Guillemaud-Mueller, R. Anne et al, Nucl. Phys. A496 (1989) 477
- A. Lèpine-Szily, R. Lichtenthäler Filho, M.M. Obuti, J. Martins de Oliveira, Jr., O. Portezan Filho, W. Sciani and A.C.C. Villari, Phys. Rev. C40 (1989) 681
- 89MA1U P. Marage, P.P. Allport, N. Armenise, J.P. Baton, M. Berggren, W. Burkot, M. Calicchio, T. Coghen, A.M. Cooper-Sarkar, O. Erriquez et al, Z. Phys. C43 (1989) 523

- 89MA45 Z. Majka, V. Abenante, Z. Li, N.G. Nicolis, D.G. Sarantites, T.M. Semkow, L.G. Sobotka, D.W. Stracener, J.R. Beene, D.C. Hensley et al, Phys. Rev. C40 (1989) 2124
- 89MC03 V.A. McGlone, Nucl. Instrum. Methods Phys. Res. A274 (1989) 601
- 89MC04 V.A. McGlone, Nucl. Instrum. Methods Phys. Res. B42 (1989) 143
- 89ME1C R.A. Mewaldt and E.C. Stone, Astrophys. J. 337 (1989) 959
- 89MI12 F. Michel and G. Reidemeister, Z. Phys. A333 (1989) 331
- 89MI18 H.G. Miller, B.J. Cole and R.M. Quick, Phys. Rev. Lett. 63 (1989) 1922
- 89MI1M Miller, Cole and Quick, Sao Paulo (1989) 96
- 89MOZY C.P. Montoya, R. Butsch, M.G. Herman, D.J. Hofman, M. Thoennessen and P. Paul, Bull. Am. Phys. Soc. 34 (1989) 1155
- 89NI1D H. Nifenecker and J.A. Pinston, Prog. Part. Nucl. Phys. 23 (1989) 271
- 89OB1C Obuti et al, Sao Paulo (1989) 324
- 89OR02 W.E. Ormand and B.A. Brown, Nucl. Phys. A491 (1989) 1
- 89OR03 N.A. Orr, W.N. Catford, L.K. Fifield, M.A.C. Hotchkis, T.R. Ophel, D.C. Weisser and C.L. Woods, Nucl. Phys. A491 (1989) 443
- 89OS02 A. Osman and A.A. Farra, J. Phys. G15 (1989) 871
- 89PA06 D.J. Parker, J.J. Hogan and J. Asher, Phys. Rev. C39 (1989) 2256
- 89PE04 R. Pepelnik, Nucl. Instrum. Methods Phys. Res. B40/41 (1989) 1205
- 89PO04 A. Poves, J. Retamosa and E. Moya de Guerra, Phys. Rev. C39 (1989) 1639
- 89PO05 I.V. Poplavskii, Yad. Fiz. 49 (1989) 408; Sov. J. Nucl. Phys. 49 (1989) 253
- 89PO1J Portezan, Lepine-Szily, Lichtenthaler and Villari, Sao Paulo (1989) 323
- 89PU1C Puri, Chattopadhyay and Gupta, Sao Paulo (1989) 322
- 89QU01 R.M. Quick, H.G. Miller and B.J. Cole, Phys. Rev. C40 (1989) 993
- 89QU1A J.F.H. Quick, R.M. Quick and H.G. Miller, J. Comput. Phys. 80 (1989) 243
- 89RA16 S. Raman, C.W. Nestor, Jr., S. Kahane and K.H. Bhatt, At. Data Nucl. Data Tables 42 (1989) 1
- 89RA17 P. Raghavan, At. Data Nucl. Data Tables 42 (1989) 189
- 89RA1G J. Rapaport, Fundamental Symmetries and Nucl. Structure, eds. J.N. Ginocchio & S.
 P. Rosen, Santa Fe, NM, 1988 (World Sci. 1989) 186
- 89RI1D Ring, "Fundamental Symmetries and Nucl. Structure," edited by Ginocchio & Rosen, Santa Fe, New Mexico, 1988 (World Sci., 1989) 140
- 89RO01 G. Royer and J. Mignen, J. Phys. G15 (1989) L1
- 89RO1G Rosensteel, Sao Paulo (1989) 87
- 89RU08 J.H. Ruza, T.V. Guseva, Yu.Ya. Tamberg, J.A.C. Alcaras, L.Y. Sabalyauskas and V.V. Vanagus, Ukr. Fiz. Zh. 34 (1989) 1458
- 89SA10 M.G. Saint-Laurent, R. Anne, D. Bazin, D. Guillemaud-Mueller, U. Jahnke, Jin Gen-Ming, A.C. Mueller, J.F. Bruandet, F. Glasser, S. Kox et al, Z. Phys. A332 (1989) 457
- 89SA14 A. Sarma and R. Singh, Z. Phys. A333 (1989) 299
- 89SA1R M. Sano, M. Wakai and H. Bando, Phys. Lett. B224 (1989) 359

- 89SA26 S. Sarkar and K. Kar, Phys. Rev. C40 (1989) 1826
- 89SC14 K.W. Schmid, R. Zheng, F. Grümmer and A. Faessler, Nucl. Phys. A499 (1989) 63
- 89SH1N A. Shor, E.F. Barasch, J.B. Carroll, T. Hallman, G. Igo, G. Kalnins, P. Kirk, G.F. Krebs, P. Linstrom, M.A. McMahan et al, Phys. Rev. Lett. 63 (1989) 2192
- 89SMZZ M.S. Smith, P.V. Magnus, K.I. Hahn, A.J. Howard, P.D. Parker, A.E. Champagne and Z.Q. Mao, Bull. Am. Phys. Soc. 34 (1989) 1802
- 89SO1C G. Soff and J. Rafelski, Z. Phys. D14 (1989) 187
- 89SP01 R.H. Spear, At. Data Nucl. Data Tables 42 (1989) 55
- 89SZ01 A. Szanto de Toledo, M.M. Coimbra, N. Added, R.M. Anjos, N. Carlin Filho, L. Fante, Jr., M.C.S. Figueira, V. Guimarães and E.M. Szanto, Phys. Rev. Lett. 62 (1989) 1255
- 89TA1N C. Tan, Y. Xia, H. Yang, X. Sun, J. Liu, Z. Zheng and P. Zhu, Nucl. Instrum. Methods Phys. Res. B42 (1989) 1
- 89TA26 M. Takahara, M. Hino, T. Oda, K. Muto, A.A. Wolters, P.W.M. Glaudemans and K. Sato, Nucl. Phys. A504 (1989) 167
- 89TO05 Y. Tosaka, Y. Suzuki and K. Ikeda, Prog. Theor. Phys. 81 (1989) 379
- 89TO1D F. Tosello, Nuovo Cim. A102 (1989) 663
- 89VAZN V.V. Vanagas, Ya.Kh. Ruzha, T.V. Guseva and Yu.Ya. Tamberg, Program and Thesis, Proc.39th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Tashkent (1989) 159
- 89VO1F V.V. Volkov, Treatise on Heavy-Ion Sci. 8 (1989) 101
- 89WA14 M. Wakai, H. Bando and M. Sano, Z. Phys. A333 (1989) 213
- 89WUZZ A.H. Wuosmaa and R.W. Zurmühle, Bull. Am. Phys. Soc. 34 (1989) 1187
- 89YO02 A. Yokoyama, T. Saito, H. Baba, K. Hata, Y. Nagame, S. Ichikawa, S. Baba, A. Shinohara and N. Imanishi, Z. Phys. A332 (1989) 71
- 89YO09 W. Yokota, T. Nakagawa, M. Ogihara, T. Komatsubara, Y. Fukuchi, K. Suzuki, W. Galster, Y. Nagashima, K. Furuno, S.M. Lee et al, Z. Phys. A333 (1989) 379
- 89ZH05 R.-R. Zheng, K.W. Schmid, F. Grümmer and A. Faessler, Nucl. Phys. A494 (1989) 214
- 89ZU02 M.D. Zubkov and A.V. Pozdnyakov, Yad. Fiz. 49 (1989) 1005; Sov. J. Nucl. Phys. 49 (1989) 625
- 90AM01 K. Amos and C. Steward, Phys. Rev. C41 (1990) 335
- 90AR10 M. Arnould and M. Rayet, Ann. Physique 15 (1990) 183
- 90BA01 B.F. Bayman, S.M. Lenzi and E.E. Maqueda, Phys. Rev. C41 (1990) 109
- 90BA18 E.A. Bakkum, P. Decowski, K.A. Friggioen, R.J. Meijer and R. Kamermans, Nucl. Phys. A511 (1990) 117
- 90BEYY A.V. Belozerov, I. Vintsour, R.G. Kalpakchieva, I.V. Kuznetsov, Yu.E. Penionahkevich and Sh. Piskorzh, Prog. & Thesis, Proc. 40th Ann. Conf. Nucl. Spectrosc. Struct. At. Nucl., Leningrad (1990) 359
- 90BL09 Blunden and Horowitz, Phys. Lett. B240 (1990) 6
- 90BL1K O. Blaes, R. Blandford, P. Madau and S. Koonin, Astrophys. J. 363 (1990 612

90BO01	W. Bohne, H. Morgenstern, K. Grabisch, T. Nakagawa and S. Proschitzki, Phys. Rev.
	C41 (1990) R5
90BO04	J. Boger, S. Kox, G. Auger, J.M. Alexander, A. Narayanan, M.A. McMahan, D.J.
	Moses, M. Kaplan and G.P. Gilfoyle, Phys. Rev. C41 (1990) R801
90BO16	R. Bonetti, E. Fioretto, C. Migliorino, A. Pasinetti, F. Barranco, E. Vigezzi and R.A.
	Broglia, Phys. Lett. B241 (1990) 179
90BR26	B.A. Brown, Phys. Rev. Lett. 65 (1990) 2753
90CA07	J.A. Caballero and E. Moya de Guerra, Nucl. Phys. A509 (1990) 117
90CH09	S.K. Charagi and S.K. Gupta, Phys. Rev. C41 (1990) 1610
90CH13	H.C. Chiang, E. Oset and P. Fernández de Córdoba, Nucl. Phys. A510 (1990) 591
90CL06	Clarke et al, J. Phys. G16 (1990) 1547
90CO04	B.J. Cole, H.G. Miller and R.M. Quick, Phys. Rev. C41 (1990) 789
90CO1N	M.A. Coplan, K.W. Ogilvie, P. Bochsler and J. Geiss, Solar Phys. 128 (1990) 195
90CO38	S.G. Cooper and R.S. Mackintosh, Z. Phys. A337 (1990) 357
90CU01	J. Cugnon, P. Deneye and J. Vandermeulen, Phys. Rev. C41 (1990) 1701
90CU04	J. Cugnon, P. Deneye and J. Vandermeulen, Nucl. Phys. A517 (1990) 533
90DE1I	D. Deprospo, M. Kalelkar, M. Lauko and P. Stamer, Bull. Am. Phys. Soc. 35 (1990)
00DE94	952 December of the December of 17 (1000) 142
90DE34	Descouvement and Baye, Nucl. Phys. A517 (1990) 143
90DE45	J. Deutsch, M. Lebrun and R. Prielis, Nucl. Phys. A518 (1990) 149
90D112	V.I. Dimitrov and B. Slavov, Phys. Lett. B252 (1990) 1
90FO04	S. Fortier, S. Gales, S.M. Austin, W. Benenson, G.M. Crawley, C. Djalali, J.S. Winfield
000 1 00	and G. Yoo, Phys. Rev. C41 (1990) 2689
90GA09	C. Garcia-Recio, T.W. Donnelly and E. Moya de Guerra, Nucl. Phys. A509 (1990) 221
90GA10	Y.K. Gambhir, P. Ring and A. Thimet, Ann. Phys. 198 (1990) 132
90GL01	A. Glaesner, W. Dunnweber, M. Bantel, W. Hering, D. Konnerth, R. Ritzka, W.
00/01109	Trautmann, W. Trombik and W. Zipper, Nucl. Phys. A509 (1990) 331 D. Guillemand Muellen, L.C. Jacmant, E. Kachy, A. Latimian, A.C. Muellen, F.
906002	D. Guinemaud-Muener, J.C. Jacmart, E. Kashy, A. Latinner, A.C. Muener, F.
	Pougheon, A. Kichard, Yu.E. Penioliziikevich, A.G. Artukii, A.V. Belozyorov et al,
0001108	Phys. Rev. 041 (1990) 937 H Å Custafason B. Jakobason A. Kristiansson A. Oskarsson M. Westenjus P. Arvo
300008	I. Holgosson, I. Wosterborg, K. Aleklett, A. I. Kordvasz, et al. Phys. Lett. B241 (1000)
	J. Heigesson, L. Westerberg, K. Alekiett, A.J. Kordyasz et al, Filys. Lett. D241 (1990)
90GU10	I.S. Gul'karov, Yad. Fiz. 51 (1990) 97; Sov. J. Nucl. Phys. 51 (1990) 61
90GU35	I.S. Gul'karov, V.I. Kuprikov, V.N. Tarasov and M.M. Mansurov, Izv. Akad. Nauk
	SSSR, Ser. Fiz. 54 (1990) 2207; Bull. Acad. Sci. USSR 54:11 (1990) 120
90GUZV	I.S. Gulkarov, V.I. Kuprikov and V.N. Tarasov, Prog. & Thesis, Proc. 40th Ann. Conf.
	Nucl. Spectrosc. Struct. At. Nucl., Leningrad (1990) 163
90HA07	W.C. Haxton, Nucl. Phys. A507 (1990) 179c
90HA38	S. Hara, K.T. Hecht and Y. Suzuki, Prog. Theor. Phys. 84 (1990) 254

- 90HE1G R.S. Henderson, B.W. Pointon, O. Häusser, A. Celler, R.L. Helmer, K.P. Jackson, B.W. Larson, C.A. Miller and M.C. Vetterli, Nucl. Instrum. Methods Phys. Res. A286 (1990) 41
- 90HUZY W. Huang, C.D. Goodman, G.C. Kiang, Y. Wang, T. Carey, R. Byrd, L. Rybarcyk, T. Taddeucci, D. Marchlenski, E. Sugarbaker et al, Bull. Am. Phys. Soc. 35 (1990) 1059
- 90KH05 S.A. Khan and W.P. Beres, Phys. Rev. C42 (1990) 1768
- 90KN01 N. Kniest, E. Huttel, E. Pfaff, G. Reiter and G. Clausnitzer, Phys. Rev. C41 (1990) R1336
- 90KOZG F. Komori, S. Katsumoto, S. Kobayashi, S. Ikehata, N. Ikeda, O. Hashimoto, T. Fukuda, T. Nomura and T. Yamazaki, Inst. Nucl. Study, Univ. Tokyo, 1989 Ann. Rept. (1990) 27
- 90LA05 Lamm et al, Nucl. Phys. A510 (1990) 503
- 90LA09 B. Lavielle, H. Sauvageon, P. Bertin and G. Haouat, Phys. Rev. C42 (1990) 305
- 90LA1M M. Lauko, D. Deprospo, M. Kalelkar and P. Stamer, Bull. Am. Phys. Soc. 35 (1990) 952
- 90LE06 J.A. Leavitt, L.C. McIntyre, Jr., M.D. Ashbaugh, J.G. Oder, Z. Lin and B. Dezfouly-Arjomandy, Nucl. Instrum. Methods Phys. Res. B44 (1990) 260
- 90LE12 A. Lèpine-Szily, M.M. Obuti, R. Lichtenthäler Filho, J.M. Oliveira, Jr. and A.C.C. Villari, Phys. Lett. B243 (1990) 23
- 90LO11 R.J. Lombard, J. Phys. G16 (1990) 1311
- 90MA1Z R.A. Malaney, Wksp. on Primordial Nucleosynthesis, Chapel Hill, NC, 1989 (World Sci., 1990) 49
- 90MA63 S.E. Massen, J. Phys. G16 (1990) 1713
- 90MI24 T.N. Mikhaleva, Izv. Akad. Nauk. SSSR, Ser. Fiz. 54 (1990) 586; Bull. Acad. Sci. USSR 54:3 (1990) 207
- 90MO1J Moya de Guerra, PANIC XII (1990) Paper I-82
- 90MU06 A.C. Mueller, D. Guillemaud-Mueller, J.C. Jacmart, E. Kashy, F. Pougheon, A. Richard, A. Staudt, H.V. Klapdor-Kleingrothaus, M. Lewitowicz, R. Anne et al, Nucl. Phys. A513 (1990) 1
- 90MU1H R.J. Murphy, G.H. Share, J.R. Letaw and D.J. Forrest, Astrophys. J. 358 (1990) 298
- 90NA1E T. Nakagawa, T. Asami and T. Yoshida, JAERI-M 90-099
- 90OS03 A. Osman and A.A. Farra, Nuovo Cim. A103 (1990) 1693
- 90OS1B A. Osman and S.S. Abdel-Aziz, Ind. J. Pure Appl. Phys. 28 (1990) 226
- 90PH01 D.L. Pham and R. de Swiniarski, Z. Phys. A335 (1990) 37
- 90PH02 D.L. Pham and R. de Swiniarski, Nuovo Cim. A103 (1990) 375
- 90PO04 I.V. Poplavskii, Yad. Fiz. 51 (1990) 1258; Sov. J. Nucl. Phys. 51 (1990) 799
- 90PR1B S. Prasad, S.N. Chatterjee and B.N. Roy, Indian J. Pure Appl. Phys. 28 (1990) 40
- 90RE06 J. Retamosa, J.M. Udías, A. Poves and E. Moya de Guerra, Nucl. Phys. A511 (1990) 221
- 90SC1N D.N. Schramm and J.W. Truran, Phys. Rep. 189 (1990) 89

- 90SH12 S.D. Sharma and A. Sharma, J. Phys. G16 (1990) 701
- 90SI1A R. Silberberg and C.H. Tsao, Astrophys. J. 352 (1990) L49
- 90SI1D R. Silberberg and C.H. Tsao, Phys. Rep. 191 (1990) 351
- 90SK04 L.D. Skouras and J.C. Varvitsiotis, Nucl. Phys. A513 (1990) 239
- 90SL01 B. Slavov, F. Grümmer, K. Goeke, R. Gissler, V.I. Dimitrov and Ts. Venkova, J. Phys. G16 (1990) 395
- 90ST08 A. Staudt, E. Bender, K. Muto and H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 44 (1990) 79
- 90TH1C F.-K. Thielemann, M.-A. Hashimoto and K. Nomoto, Astrophys. J. 349 (1990) 222
- 90TH1E F.-K. Thielemann and M. Wiescher, Wksp. on Primordial Nucleosynthesis, Chapel Hill, NC, 1989, (World Sci, 1990) 92
- 90VA14 V. Vanagas, O. Katkevicius, J.A. Castilho Alcarás, J. Tambergs and J. Ruza, Fizika 22 (1990) 101
- 90WA10 S. wa Kitwanga, P. Leleux, P. Lipnik and J. Vanhorenbeeck, Phys. Rev. C42 (1990) 748
- 90WE1A W.R. Webber, J.C. Kish and D.A. Schrier, Phys. Rev. C41 (1990) 520
- 90WE1I W.R. Webber, A. Soutoul, P. Ferrando and M. Gupta, Astrophys. J. 348 (1990) 611
- 90YA08 T. Yamada, Phys. Rev. C42 (1990) 1432
- 90YE02 S.J. Yennello, K. Kwiatkowski, S. Rose, L.W. Woo, S.H. Zhou and V.E. Viola, Phys. Rev. C41 (1990) 79
- 90ZH01 D.-C. Zheng, L. Zamick and N. Auerbach, Ann. Phys. 197 (1990) 343
- 91AB05 R. Abegg and C.A. Davis, Phys. Rev. C43 (1991) 2523
- 91AJ01 F. Ajzenberg-Selove, Nucl. Phys. A523 (1991) 1
- 91AM1A K. Amos, L. Berge, C. Steward and R. de Swiniarski, Aust. J. Phys. 44 (1991) 217
- 91AM1B A.I. Amelin, I.L. Kiselevich, S.V. Lapushkin, V.I. Mikhailichenko, S.Yu. Panitkin, A.K. Ponosov, N.O. Poroshin, F.M. Sergeev and M.Yu. Tel'nov, Yad. Fiz. 54 (1991) 1021; Sov. J. Nucl. Phys. 54 (1991) 616
- 91AN01 Anderson et al, Phys. Rev. C43 (1991) 50
- 91BA18 F. Balestra, Yu.A. Batusov, G. Bendiscioli, S. Bossolasco, F.O. Breivik, M.P. Bussa,
 L. Busso, K.M. Danielsen, C. Guaraldo, I.V. Falomkin et al, Nucl. Phys. A526 (1991)
 415
- 91BA25 E.B. Bal'butsev, I.V. Molodtsova and I. Piperova, Yad. Fiz. 53 (1991) 670; Sov. J.
 Nucl. Phys. 53 (1991) 419
- 91BA49 F. Balestra, G. Bendiscioli, V. Filippini, A. Rotondi, P. Salvini, A. Zenoni, S. Bossolasco, M.P. Bussa, L. Busso, L. Fava et al, Phys. Scr. 44 (1991) 323
- 91BO45 D. Bonatsos, L.D. Skouras, P. Van Isacker and M.A. Nagarajan, J. Phys. G17 (1991) 1803
- 91CI08 A. Cieply, M. Gmitro, R. Mach and S.S. Kamalov, Phys. Rev. C44 (1991) 713
- 91CI11 A. Cieply, M. Gmitro and R. Mach, Czech. J. Phys. B41 (1991) 1091
- 91CS01 J. Cseh, G. Levai and K. Kato, Phys. Rev. C43 (1991) 165

- 91DU05 J. Dukelsky, A. Poves and J. Retamosa, Phys. Rev. C44 (1991) 2872
- 91FR02 J. Fritze, R. Neu, H. Abele, F. Hoyler, G. Staudt, P.D. Eversheim, F. Hinterberger and H. Müther, Phys. Rev. C43 (1991) 2307
- 91GA14 C. Gao, Y. Kondo and B.A. Robson, Nucl. Phys. A529 (1991) 234
- 91GO21 P.F.A. Goudsmit, H.J. Leisi and E. Matsinos, Phys. Lett. B271 (1991) 209
- 91HE16 H. Herndl, H. Abele, G. Staudt, B. Bach, K. Grün, H. Scsribany, H. Oberhummer and G. Raimann, Phys. Rev. C44 (1991) R952
- 91HI23 P.Z. Hien, T.K. Mai, T.X. Quang, N.V. Loc and T.N. Thuy, J. Radioanal. Nucl. Chem. 153 (1991) 169
- 91IG1A M. Igashira, H. Kitazawa, S. Kitamura, H. Anze and M. Horiguchi, AIP Conf. Proc. 238 (1991) 624
- 91KH09 D.E. Kharzeev and M.G. Sapozhnikov, Nuovo Cim. A104 (1991) 1509
- 91LE33 J.A. Leavitt and L.C. McIntyre Jr., Nucl. Instr. and Meth. B56/57 (1991) 734
- 91LI33 G. Li, D.T. Khoa, T. Maruyama, S.W. Huang, N. Ohtsuka, A. Faessler and J. Aichelin, Nucl. Phys. A534 (1991) 697
- 91MA1D P. Marage, M. Aderholz, P.P. Allport, N. Armenise, J.P. Baton, M. Berggren, W. Burkot, V. Burtovoy, M. Calicchio, E.F. Clayton et al, Z. Phys. C49 (1991) 385
- 91MA41 E. Maglione and L.S. Ferreira, Phys. Lett. B262 (1991) 179
- 91MI24 T.N. Mikhaleva, Izv. Akad. Nauk SSSR, Ser. Fiz. 55:1 (1991) 120; Bull. Acad. Sci. USSR, Phys. Ser. 55 (1991) 112
- 91MU19 A.C. Mueller and R. Anne, Nucl. Instrum. Methods Phys. Res. B56/57 (1991) 559
- 91OM03 Kh.M. Omar, S.S. Saad and N.Z. Darwish, Appl. Radiat. Isot. 42 (1991) 823
- 91OR01 N.A. Orr, W. Mittig, L.K. Fifield, M. Lewitowicz, E. Plagnol, Y. Schutz, W.L. Zhan,
 L. Bianchi, A. Gillibert, A.V. Belozyorov et al, Phys. Lett. B258 (1991) 29
- 91PI09 C.N. Pinder, C.O. Blyth, N.M. Clarke, D. Barker, J.B.A. England, B.R. Fulton, O. Karban, M.C. Mannion, J.M. Nelson, C.A. Ogilvie et al, Nucl. Phys. A533 (1991) 25
- 91PO11 V. Potbhare and N. Tressler, Nucl. Phys. A530 (1991) 171
- 91PO14 B.W. Pointon, O. Häusser, R. Henderson, A. Celler, K. Hicks, K.P. Jackson, R. Jeppesen, B. Larson, J. Mildenberger, A. Trudel et al, Phys. Rev. C44 (1991) 2430
- 91RA1C C.M. Raiteri, M. Busso, R. Gallino and G. Picchio, Astrophys. J. 371 (1991) 665
- 91RE02 P.L. Reeder, R.A. Warner, W.K. Hensley, D.J. Vieira and J.M. Wouters, Phys. Rev. C44 (1991) 1435
- 91RE10 G. Reffo, M.H. Mac Gregor and T. Komoto, Nucl. Instrum. Methods Phys. Res. A307 (1991) 380
- 91SU15 T. Sugimitsu and N. Hori, Nucl. Instrum. Methods Phys. Res. A309 (1991) 218
- 91SZ02 A. Szczurek, A. Budzanowski, L. Jarczyk, A. Magiera, K. Möhring, R. Siudak and T. Srokowski, Z. Phys. A338 (1991) 187
- 91WA11 K.-X. Wang, G.-Z. Liu, D.F. Collinson, D.H. Feng and C.-L. Wu, Phys. Rev. C43 (1991) 2268
- 91YA08 Yamaguchi, Phys. Rev. C44 (1991) 1171

- 91ZH02 J.-K. Zhang and D.S. Onley, Phys. Rev. C43 (1991) R942
- 91ZH05 Z.Y. Zhu, H.J. Mang and P. Ring, Phys. Lett. B254 (1991) 325
- 91ZH06 J.-K. Zhang and D.S. Onley, Nucl. Phys. A526 (1991) 245
- 92AN1F A.N. Antonov, E.N. Nikolov, I.Z. Petkov, P.E. Hodgson and G.A. Lalazissis, Bulg. J. Phys. 19 (1992) 11
- 92AR11 K.P. Artemov, M.S. Golovkov, V.V. Pankratov and V.P. Rudakov, Sov. J. Nucl. Phys. 55 (1992) 326
- 92AR18 K.P. Artemov, M.S. Golovkov, V.Z. Goldberg, V.V. Pankratov, A.E. Pakhomov, I.N. Serikov and V.A. Timofeev, Sov. J. Nucl. Phys. 55 (1992) 1460
- 92ARZX K.P. Artemov, V.Z. Goldverg, M.S. Golovkov, V.P. Rudakov, I.N. Serikov, V.A. Timofeev, R.W. Zurmuhle, D.R. Benton, Z. Liu, S.P. Barrow, et al, Proc. Int. Conf. Nuclear Structure and Nuclear Reactions at Low and Intermediate Energies, Dubna (1992) 49
- 92AV03 M.P. Avotina, K.I. Erokhina and I.Kh. Lemberg, Sov. J. Nucl. Phys. 55 (1992) 1777
- 92BE14 A.N. Behkami and Z. Kargar, J. Phys. G18 (1992) 1023
- 92CA05 J.A. Carr, S.D. Bloom, R. Petrovich and R.J. Philpott, Phys. Rev. C45 (1992) 1145
- 92CA19 N. Canosa, R. Rossignoli and H.G. Miller, Phys. Rev. C45 (1992) 3027
- 92CA1J R. Canal, J. Isern and J. Labay, Astrophys. J. 398 (1992) L49
- 92CH39 M.S. Chowdhury, M.A. Zaman and H.M. Sen Gupta, Phys. Rev. C46 (1992) 2273
- 92CS03 J. Cseh and W. Scheid, J. Phys. G18 (1992) 1419
- 92DA10 C.A. Davis, Phys. Rev. C45 (1992) 2693
- 92DE10 W. De Coster, B. Brijs, J. Goemans and W. Vandervorst, Nucl. Instrum. Methods Phys. Res. B64 (1992) 417
- 92DE31 De Swiniarski, Pham and Raynal, Z. Phys. A343 (1992) 179
- 92EGZZ Egelhof et al, Univ. Mainz, 1991 Ann. Rep. (1992) 20
- 92FR01 G. Fricke, J. Herberz, Th. Hennemann, G. Mallot, L.A. Schaller, L. Schellenberg, C. Piller and R. Jacot-Guillarmod, Phys. Rev. C45 (1992) 80
- 92GO10 J. Görres, M. Wiescher, K. Scheller, D.J. Morrissey, B.M. Sherrill, D. Bazin and J.A. Winger, Phys. Rev. C46 (1992) R833
- 92GR11 Grimes, Z. Phys. A343 (1992) 125
- 92GR15 C. Grama, N. Grama and I. Zamfirescu, Rev. Roum. Phys. 37 (1992) 161
- 92GU02 Gutekunst and Muther, Phys. Lett. B277 (1992) 227
- 92HA12 P.R. Hayes, N.M. Clarke, K.I. Pearce, M.B. Becha, R.S. Mackintosh, J.B.A. England,
 L. Zybert, G.M. Field and S. Roman, Nucl. Phys. A540 (1992) 171
- 92HA18 P.R. Hayes and N.M. Clarke, J. Phys. G18 (1992) 1119
- 92HA1N S. Hara, K. Ogawa and Y. Suzuki, Prog. Theor. Phys. 88 (1992) 329
- 92HJ01 M. Hjorth-Jensen, E. Osnes and H. Muther, Ann. Phys. 213 (1992) 102
- 92JI04 M.F. Jiang, R. Machleidt, D.B. Stout and T.T.S. Kuo, Phys. Rev. C46 (1992) 910
- 92JO07 C.W. Johnson, S.E. Koonin, G.H. Land and W.E. Ormand, Phys. Rev. Lett. 69 (1992) 3157

- 92KI1C I.L. Kiselevich, V.I. Mikhailichenko, S.Yu. Panitkin, A.K. Ponosov, F.M. Sergeev and M. Yu. Tel'nov, Sov. J. Nucl. Phys. 55 (1992) 2100
- 92KN06 O.M. Knyaz'kov and Yu.A. Matusov, Bull. Russ. Acad. Sci. Phys. 56 (1992) 1756
- 92KR12 M. Kruglanski and D. Baye, Nucl. Phys. A548 (1992) 39
- 92KU02 S. Kubono, N. Ikeda, Y. Funatsu, M.H. Tanaka, T. Nomura, H. Orihara, S. Kato, M. Ohura, T. Kubo, N. Inabe et al, Nucl. Phys. A537 (1992) 153
- 92KU07 S. Kubono, N. Ikeda, Y. Funatsu, M.H. Tanaka, T. Nomura, H. Orihara, S. Kato, M. Ohura, T. Kubo, N. Inabe et al, Phys. Rev. C46 (1992) 361
- 92KUZO S. Kubono, Y. Funatsu, N. Ikeda, M.H. Tanaka, T. Nomura, H. Orihara, S. Kato, M. Ohura, T. Kubo, N. Inabe et al, RIKEN-91 (1992) 39
- 92KUZQ S. Kubono, Y. Funatsu, N. Ikeda, M.H. Tanaka, T. Nomura, H. Orihara, S. Kato, M. Ohura, T. Kubo, N. Inabe et al, RIKEN-91 (1992) 11
- 92LA01 C.M. Laymon, K.D. Brown and D.P. Balamuth, Phys. Rev. C45 (1992) R576
- 92MA29 A. Majhofer and Z. Szymanski, Acta. Phys. Pol. B23 (1992) 701
- 92ME09 A.C. Merchant and W.D.M. Rae, Phys. Rev. C46 (1992) 2096
- 92ME11 A.C. Merchant and W.D.M. Rae, Nucl. Phys. A549 (1992) 431
- 92MU01 M.G. Mustafa, M. Blann, A.V. Ignatyuk and S.M. Grimes, Phys. Rev. C45 (1992) 1078
- 92PI10 A. Piechaczek, M.F. Mohar, R. Anne, V. Borrel, J.M. Core, D. Guillemaud-Mueller, M. Ishihara, H. Keller, S. Kubono, V. Kunze et al, IOP Conf. Ser. 132, Proc. of the Sixth Int. Conf. on Nucl. Far From Stability and the Ninth Int. Conf. on At. Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992 (1993) 851
- 92PY1A P. Pyykkö, Z. Naturforsch A47 (1992) 189
- 92QU02 R.M. Quick, B.J. Cole and H.G. Miller, Nuovo Cim. A105 (1992) 913
- 92RA21 MD.A. Rahman, S.C. Paul, H.M. Sen Gupta and M. Rahman, Nuovo Cim. A105 (1992) 851
- 92RA22 M.A. Rahman, M. Mecking and U. Strohbusch, Nuovo Cim. A105 (1992) 859
- 92RE11 P.L. Reeder, H.S. Miley, W.K. Hensley, R.A. Warner, H.L. Seifert, D.J. Vieira, J.M. Wouters and Z.Y. Zhou, IOP Conf. Ser. 132, Proc. of the Sixth Int. Conf. on Nucl. Far From Stability and the Ninth Int. Conf. on At. Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992 (1993) 623
- 92RO06 R. Rossignoli, R.M. Quick and H.G. Miller, Phys. Lett. B277 (1992) 18
- 92RO08 P. Rochford and J.P. Draayer, Ann. Phys. 214 (1992) 341
- 92RO09 Romanov and Grechukhin, Z. Phys. D22 (1992) 667
- 92RO16 G. Rosensteel, Phys. Rev. C46 (1992) 1818
- 92SM03 M.S. Smith, P.V. Magnus, K.I. Hahn, A.J. Howard, P.D. Parker, A.E. Champagne and Z.Q. Mao, Nucl. Phys. A536 (1992) 333
- 92TA04 N. Tamimi, B.D. Anderson, A.R. Baldwin, T. Chittrakarn, M. Elaasar, R. Madey, D.M. Manley, M. Mostajabodda'vati, J.W. Watson, W.M. Zhang et al, Phys. Rev. C45 (1992) 1005

- 92WA04 T.F. Wang, R.N. Boyd, G.J. Mathews, M.L. Roberts, K.E. Sale, M.M. Farrell, M.S. Islam and G.W. Kolnicki, Nucl. Phys. A536 (1992) 159
- 92WA22 E.K. Warburton and B.A. Brown, Phys. Rev. C46 (1992) 923
- 92WI13 J.F. Wilkerson, T.M. Mooney, R.E. Fauber, T.B. Clegg, H.J. Karwowski, E.J. Ludwig and W.J. Thompson, Nucl. Phys. A549 (1992) 223
- 92WO1G J.M. Wouters, X.L. Tu, X.G. Zhou, D.J. Vieira, H.L. Sekfert, K.E.G. Löbner, Z.Y. Zhou, V.G. Lind and G.W. Butler, IOP Conf. Ser. 132, Proc. of the Sixth Int. Conf. on Nucl. Far From Stability and the Ninth Int. Conf. on At. Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July, 1992 (1993) 25
- 92YU1A B.S. Yuldashev, M.A. Alimov, M.L. Allaberdin, Kh.Kh. Artykov, S.O.Edgorov, Sh.V. Inogamov, A.V. Khaneles, S.L. Lutpullaev, N. Rasulov, T.P. Rodionova et al, Phys. Rev. D46 (1992) 45
- 92ZA10 L. Zamick and D.C. Zheng, Phys. Rev. C46 (1992) 2106
- 93AB02 H. Abele and G. Staudt, Phys. Rev. C47 (1993) 742
- 93AI02 S. Ait-Tahar, R.S. Mackintosh and S.G. Cooper, Nucl. Phys. A561 (1993) 285
- 93AM08 A. Amusa, Phys. Rev. C48 (1993) 2302
- 93AOZZ Y. Aoki, M. Masaki, S. Nakagawa, Y. Tagishi, K. Kato and T. Nakamoto, Univ. Tsukuba, Tandem Accel. Center Ann. Rep. 1992 (1993) 29
- 93AU01 N. Auerbach, D.C. Zheng, L. Zamick and B.A. Brown, Phys. Lett. B304 (1993) 17
- 93AU05 G. Audi and A.H. Wapstra, Nucl. Phys. A565 (1993) 1
- 93BAZX N. Bateman, B. Lund, S. Utku and P. Parker, Bull. Amer. Phys. Soc. 38 (1993) 982
- 93BAZZ S. Barrow, R. Zurmuhle, J. Murgatroyd, N. Wilmer, K. Pohl, Y. Miao, R. Betts, B. Glagola, A. Wuosmaa and M. Freer, Bull. Amer. Phys. Soc. 38 (1993) 926
- 93BL10 B. Blank, C. Marchand, R. Del Moral, J.P. Dufour, L. Faux, A. Fleury and M.S. Pravikoff, Nucl. Instrum. Methods Phys. Res. A330 (1993) 83
- 93BO28 H.G. Bohlen, E. Stiliaris, B. Gebauer, W. von Oertzen, M. Wilpert, Th. Wilpert, A. Ostrowski, D.T. Khoa, A.S. Demyanova and A.A. Ogloblin, Z. Phys. A346 (1993) 189
- 93BR12 B.A. Brown, A.E. Champagne, H.T. Fortune and R. Sherr, Phys. Rev. C48 (1993) 1456
- 93BY03 A.V. Bystrenko and I.P. Okhrimenko, Phys. At. Nucl. 56 (1993) 601
- 93CH2C H.S. Cheng, H. Shen, J.Y. Tang and F. Yang, Nucl. Instrum. Methods Phys. Res. B83 (1993) 449
- 93CL1B N.M. Clarke, S. Roman, C.N. Pinder and P.R. Hayes, J. Phys. G19 (1993) 1411
- 93CS03 J. Cseh, J. Phys. G19 (1993) L63
- 93CSZU J. Cseh, ATOMKI Ann. Rep. 1992 (1993) 41
- 93DA1N K.M. Danielsen, T. Jacobsen, A. Haatuft, A. Halsteinslid, K. Myklebost, J.M. Olsen,
 F. Balestra, G. Bendiscioli, V. Filippini, A. Rotondi et al, Phys. Scr. 48 (1993) 653
- 93DA23 S.O.F. Dababneh, K. Toukan and I. Khubeis, Nucl. Instrum. Methods Phys. Res. B83 (1993) 319
- 93DE32 P. Descouvemont, Phys. Rev. C48 (1993) 2746
- 93EN03 P.M. Endt, At. Data Nucl. Data Tables 55 (1993) 171

- 93ES01 M.A. Eswaran, S. Kumar, E.T. Mirgule, D.R. Chakrabarty, V.M. Datar, N.L. Ragoowansi and U.K. Pal, Phys. Rev. C47 (1993) 1418
- 93ES03 M.A. Eswaran and S. Kumar, Phys. Rev. C48 (1993) 2120
- 93GA02 D.L. Gay and L.C. Dennis, Phys. Rev. C47 (1993) 329
- 93HA1D W.C. Haxton, Nucl. Phys. A553 (1993) C397
- 93HO14 M. Horoi and G. Clausnitzer, Phys. Rev. C48 (1993) R522
- 93HO1N M. Horoi and G. Clausnitzer, Building Blocks of Nuclear Structure, 4th Int. Spring Seminar on Nucl. Phys., Amalfi, Italy, 18-22 1992 (World Scientific, 1993) 143
- 93KH09 R.S. Khanchi, S.L. Bansal, S. Aggarwal, S. Khurana and R.K. Mohindra, Indian J.Pure Appl.Phys. 31 (1993) 371
- 93KU1F K. Kumar, Int. J. Mod. Phys. E2 Supp. (1993) 71
- 93LA24 G.H. Lang, C.W. Johnson, S.E. Koonin and W.E. Ormand, Phys. Rev. C48 (1993) 1518
- 93LE1J J.S. Levinger, Phys. At. Nucl. 56 (1993) 988
- 93LI25 Q.R. Li and Y.X. Yang, Nucl. Phys. A561 (1993) 181
- 93MI19 G.E. Mitchell, E.G. Bilpuch, C.R. Bybee, J.M. Drake and J.F. Shriner, Jr., Nucl. Phys. A560 (1993) 483
- 93MI25 G.E. Mitchell, E.G. Bilpuch, C.R. Bybee, J.M. Drake and J.F. Shriner, Jr., Nucl. Instrum. Methods Phys. Res. B79 (1993) 290
- 93MU1D M.M. Muminov, I. Suvanov and B.S. Yuldashev, Izv. Akad. Nauk Ser. Fiz. 57:4 (1993)
 63; Bull. Acad. Russ. Sci. 57 (1993) 634
- 93NA08 S. Nakamura, K. Muto and T. Oda, Phys. Lett. B311 (1993) 15
- 93PA14 S.K. Patra, Nucl. Phys. A559 (1993) 173
- 93PA25 S.K. Patra and C.R. Praharaj, Nucl. Phys. A565 (1993) 442
- 93PE09 R.J. Peterson, Phys. Rev. C48 (1993) 1128
- 93PE18 A. Petrovici, K.W. Schmid and A. Faessler, Z. Phys. A347 (1993) 87
- 93PI1E S. Pittel and P. Federman, Int. J. Mod. Phys. E2 Supp. (1993) 3
- 93PLZY A.V. Plavko, M.S. Onegin, K. Olmer and P. Schwandt, Prog. & Thesis, Proc. 43rd Ann. Conf. Nucl. Spectrosc. Struct. At. Nucl., Dubna (1993) 206
- 93PO11 N.A.F.M. Poppelier, A.A. Wolters and P.W.M. Glaudemans, Z. Phys. A346 (1993) 11
- 93RA1G W.D.M. Rae and A.C. Merchant, Mod. Phys. Lett. A8 (1993) 2435
- 93REZX Reeder et al, Proc. 6th Int. Conf. Nuclei far from Stability + 9th Int. Conf. Atomic Masses and Fundamental Constants, Bernkastel-Kues, Germany, 19-24 July 1992 (1993) 623
- 93RO22 S. Roth, F. Grass, F. De Corte, L. Moens and K. Buchtela, J. Radioanal. Nucl. Chem. 169 (1993) 159
- 93RUZX J. Ruza, T. Guseva, J. Tambergs, O. Katkevicius and J.A. Castilho Alcaras, Program and Thesis, Proc. 43rd Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Dubna (1993) 43
- 93SA16 H. Sagawa, I. Hamamoto and M. Ishihara, Phys. Lett. B303 (1993) 215

- 93SA31 S. Sarangi and J.C. Parikh, Pramana J. Phys. 40 (1993) 43
- 93SO13 O. Sorlin, J. Phys. G19 (1993) S127
- 93SO19 V.I. Soroka, M.V. Artsimovich, I.Y. Lobach, I.F. Mogilnik, V.N. Pavlovich, V.V. Tokarevsky, E.M. Kudriavtsev and B.N. Romanjuk, Nucl. Instrum. Methods Phys. Res. B83 (1993) 311
- 93ST10 B. Strohmaier, Ann. Nucl. Energy 20 (1993) 533
- 93SZ02 A. Szanto de Toledo, E.M. Szanto, M. Wotfe, B.V. Carlson, R. Donangelo, W. Bohne,
 K. Grabish, H. Morgenstern and S. Proshitzki, Phys. Rev. Lett. 70 (1993) 2070
- 93TI07 D.R. Tilley, H.R. Weller and C.M. Cheves, Nucl. Phys. A564 (1993) 1
- 93VA07 K. Varga and J. Cseh, Phys. Rev. C48 (1993) 602
- 93VO01 P. Vogel and W.E. Ormand, Phys. Rev. C47 (1993) 623
- 93XU1A X. Xu, J. Guo, Z. Hu, X. Zhou, R. Ma, H. Liu, G. Li and Y. Du, High Energy Phys. Nucl. Phys. 17 (1993) 577
- 93YA08 Y.X. Yang and Q.R. Li, Europhys. Lett. 21 (1993) 657
- 93YA18 Y. Yamashita and Y. Kudo, Prog. Theor. Phys. 90 (1993) 1303
- 93ZA01 V.P. Zavarzina and A.V. Stepanov, Phys. At. Nucl. 56 (1993) 260; Yad. Fiz. 56 (1993) 206
- 93ZH18 Z. Zhu, Chin. J. Nucl. Phys. 14 (1993) 1
- 93ZH21 J. Zhang, A.C. Merchant and W.D.M. Rae, Phys. Rev. C48 (1993) 2117
- 93ZH22 J. Zhang and W.D.M. Rae, Nucl. Phys. A564 (1993) 252
- 94CA27 J.A. Caballero, T.W. Donnelly, G.I. Poulis, E. Garrido and E.M. Deguerra, Nucl. Phys. A577 (1994) 528
- 94CI02 O. Civitarese and M. Schvellinger, Phys. Rev. C49 (1994) 1976
- 94CO12 R. Coszach, Th. Delbar, W. Galster, P. Leleux, I. Licot, E. Liènard, P. Lipnik, C. Michotte, A. Ninane, J. Vervier et al, Phys. Rev. C50 (1994) 1695
- 94DR01 J.M. Drake, E.G. Bilpuch, G.E. Mitchell and J.F. Shriner, Jr., Phys. Rev. C49 (1994) 411
- 94DU09 M. Dufour, P. Descouvemont and D. Baye, Phys. Rev. C50 (1994) 795
- 94FU01 B.R. Fulton, S.J. Bennett, J.T. Murgatroyd, N.S. Jarvis, D.L. Watson, W.D.M. Rae,
 Y. Chan, D. DiGregorio, J. Scarpaci, J. Suro Perez et al, J. Phys. G20 (1994) 151
- 94GO16 J. Görres, J. Meissner, J.G. Ross, K.W. Scheller, S. Vouzoukas, M. Wiescher and D. Hinnefeld, Phys. Rev. C50 (1994) R1270
- 94HA39 I. Hamamoto, Nucl. Phys. A577 (1994) 19
- 94HE1A D.M. Headly, R.K. Sheline and I. Ragnarsson, Phys. Rev. C49 (1994) 222
- 94KU18 S. Kumar, M.A. Eswaran, E.T. Mirgule, D.R. Chakrabarty, V.M. Datar, N.L. Ragoowansi, U.K. Pal and H.H. Oza, Phys. Rev. C50 (1994) 1535
- 94ME18 A.C. Merchant and W.D.M. Rae, Z. Phys. A349 (1994) 243
- 94MI05 H.G. Miller, R.M. Quick, R.R. Rossignoli and G.D. Yen, Nucl. Phys. A570 (1994) C217
- 94OR02 W.E. Ormand, Nucl. Phys. A569 (1994) 63C

- 94OS05 A. Osman and A.A. Farra, Can. J. Phys. 72 (1994) 175; Erratum, Can. J. Phys. 72 (1994) 686
- 94PA42 R.D. Page, G. Vancraeynest, A.C. Shotter, M. Huyse, C.R. Bain, F. Binon, R. Coszach,
 T. Davinson, P. Decrock, T. Delbar et al, Phys. Rev. Lett. 73 (1994) 3066
- 94RA03 W.D.M. Rae, A.C. Merchant and J. Zhang, Phys. Lett. B321 (1994) 1
- 94RA04 W.D.M. Rae, S.C. Allcock and J. Zhang, Nucl. Phys. A568 (1994) 271
- 94SH35 H. Shen, H. Cheng, J. Tang and F. Yang, Nucl. Instrum. Methods Phys. Res. B90 (1994) 593
- 94TO04 A. Tohsaki, Phys. Rev. C49 (1994) 1814
- 94VE04 J. Vernotte, G. Berrier-Ronsin, J. Kalifa, R. Tamisier and B.H. Wildenthal, Nucl. Phys. A571 (1994) 1
- 94ZH03 J.-K. Zhang and D.S. Onley, Phys. Rev. C49 (1994) 762
- 94ZU1B R.W. Zurmühle, Z. Liu, D.R. Benton, S. Barrow, N. Wimer, Y. Miao, C. Lee, J.T. Murgatroyd, X. Li, V.Z. Goldberg et al, Phys. Rev. C49 (1994) 2549
- 95BU01 M. Burlein, H.T. Fortune, W.M. Amos, T.L. Ekenberg, A. Kotwal, P.H. Kutt, J.M.
 O'Donnell, J.D. Silk, B. Boyer, A. Fuentes et al, Phys. Rev. C51 (1995) 88
- 95IG1A A.V. Ignatenko, V.M. Lebedev, N.V. Orlova and A.V. Spasskii, Yad. Fiz. 58 (1995)
 208; Phys. At. Nucl. 58 (1995) 166
- 95KA1F Y. Kanadaenyo and H. Horiuchi, Prog. Theor. Phys. 93 (1995) 115
- 95KU1H R. Kunz, A. Denker, H.W. Drotleff, M. Grosse, H. Knee, S. Kuchler, R. Seidel, M. Soine, J.W. Hammer, Proc. SPIE Int. Soc. Opt. Eng. 2339 (1995) 38
- 95MA1A Z.Q. Mao, H.T. Fortune and A.G. Lacaze, Phys. Rev. Lett. 74 (1995) 3760
- 95MI1B F. Michel, G. Reidemeister and Y. Kondo, Phys. Rev. C51 (1995) 3290
- 95PI03 A. Piechaczek, M.F. Mohar, R. Anne, V. Borrel, B.A. Brown, J.M. Corre, D. Guillemaud-Mueller, R. Hue, H. Keller, S. Kubono et al, Nucl. Phys. A584 (1995) 509
- 95SU06 T. Sugimitsu, N. Hori, H. Fujita, Y. Funatsu, N. Kato, K. Kimura, M. Matsuo, S. Mitsuoka, T. Mukae, S. Niiya et al, Nucl. Phys. A586 (1995) 190
- 95TI1C D.R. Tilley, H.R. Weller, C.M. Cheves and R.M. Chasteler, Nucl. Phys. A595 (1995) 1
- 96RA04 S.Raman, E.K.Warburton, J.W.Starner, E.T.Jurney, J.E.Lynn, P.Tikkanen and J.Keinonen, Phys. Rev. C53 (1996) 616