SOTANCP4 2018, Galveston, Texas, USA

Study of Clustering in ^{17,18}O via Helium Decays of the Excited States

Neven Soić Ruđer Bošković Institute Zagreb, Croatia

Collaborators

L. Prepolec, L. Grassi, D. Jelavić Malenica, T. Mijatović, S. Szilner, V. Tokić, M. Uroić Ruđer Bošković Institute, Zagreb, Croatia

M. Milin

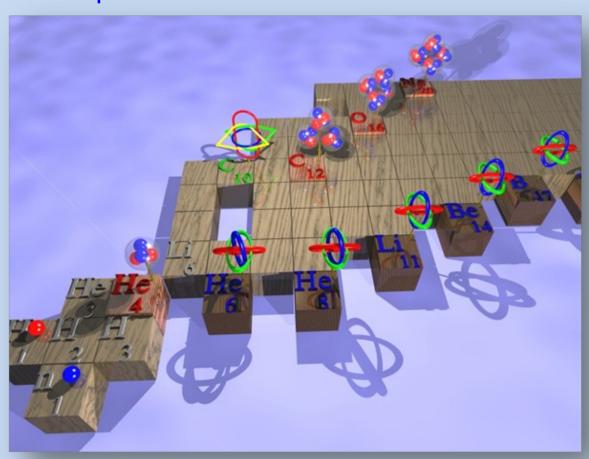
Faculty of Science, University of Zagreb, Croatia

M. Freer, N. I. Ashwood, Tz. Kokalova, C. Wheldon

School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, UK

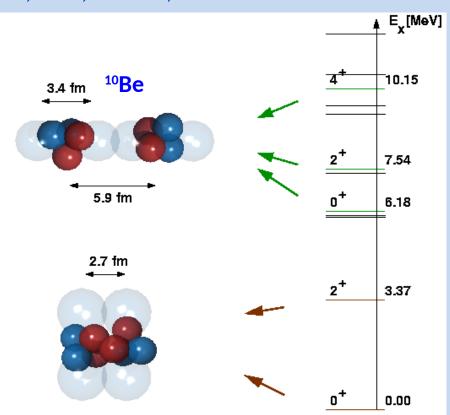
N. L. Achouri, F. Delaunay, J. Gibelin, F. M. Marqués, N. A. Orr

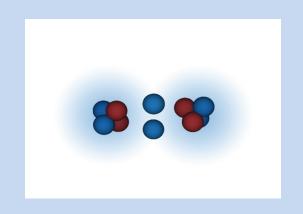
Laboratoire de Physique Corpusculaire ISMRA and Université de Caen IN2P3-CNRS, Caen, France

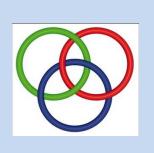

F. Haas

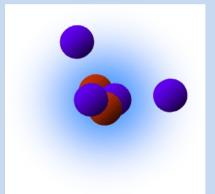
Université de Strasbourg, IN2P3-CNRS Institute Pluridisciplinaire Hubert Curien, Strasbourg, France

M. Fisichella, A. Di Pietro, P. Figuera, M. Lattuada, V. Scuderi


INFN -Laboratori Nazionali del Sud, Catania, Italy


- Advantages of light nuclei
- small number of degrees of freedom
- low density of states at moderate excitations
- tests of basic principles of nuclear structure and interaction starting from individual nucleons
- structure & reactions: single particle correlated pairs clusters
- experimentally found p and n drip lines
- reachness of unusall nuclear configurations: clusters, Borromean (3 and 4 component systems), skin, halo, molecules


Nuclear molecules


valence neutrons exchanged between the cores ^{9,10,12}Be, ^{14,16}C, ^{18,20,22}O, ^{22,24,26}Ne

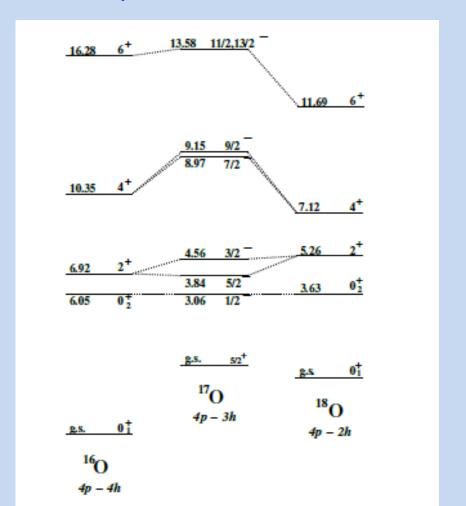
Decay by ⁶He emission: ^{10,12}Be signature of exotic structure - molecular structure

N.Soić *et al*, Europhys.Lett. (1995)

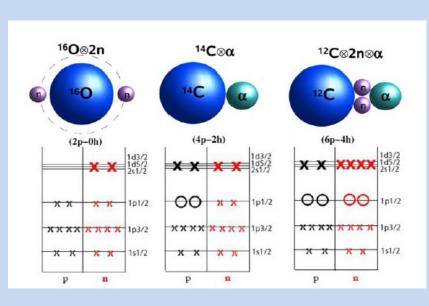
M.Milin *et al*, Europhys.Lett. (1999) M.Milin *et al*, Nucl.Phys. (2005) M.Freer *et al*, Phys.Rev.Lett. (2006)

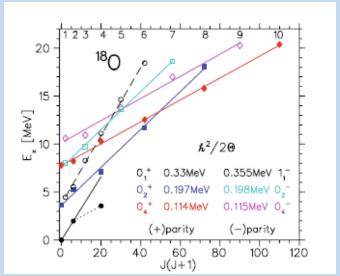
Borromean system neutron halo

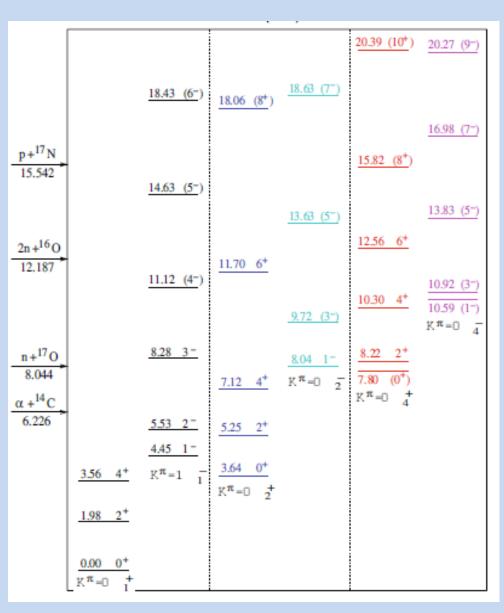
Oxygen isotopes


¹⁶O: double magic ground state, 1^{st} excited state 12 C+α cluster structure, likely 4α cluster structure at high excitations

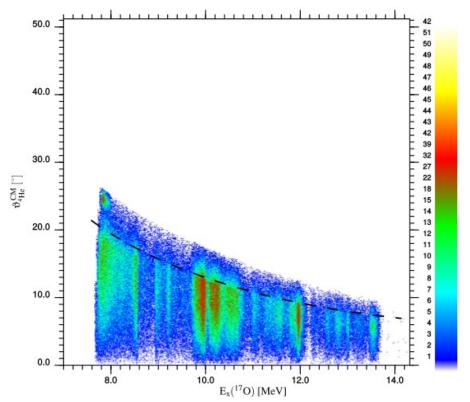
$K^{\pi} = {0^{+} \atop J^{\pi}} {rotational \atop E_{\chi}} {MeV}$ $0^{+} \qquad 6.05$ $2^{+} \qquad 6.92$ $4^{+} \qquad 10.36$ $6^{+} \qquad 16.28$

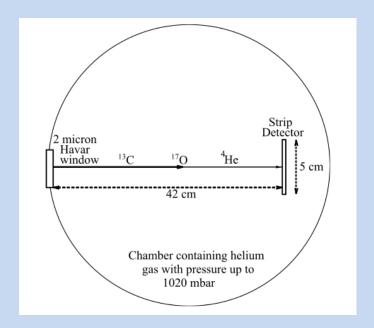

$K^{\pi} = 0^{-}$ rotational band


J^{π}	E_{x} MeV
1-	9.59
3-	11.60
5 ⁻	14.66
7-	20.86


Plot of the 4p-nh states for the ¹⁶⁻¹⁸O

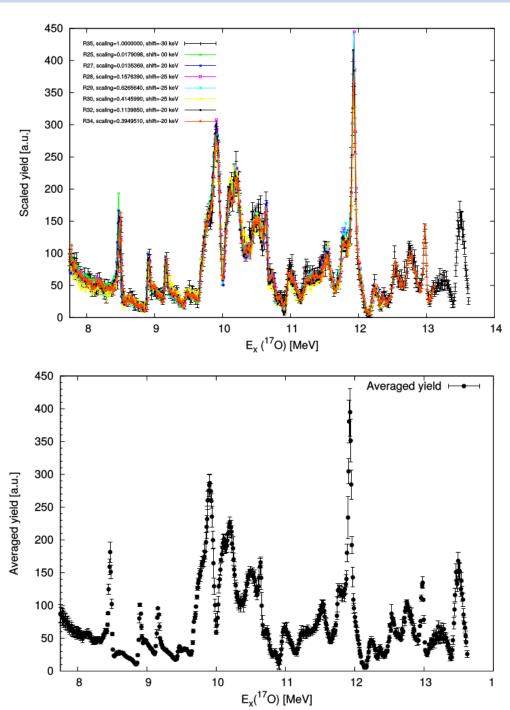
¹⁸O proposed cluster configurations W. von Oertzen et al, Eur. Phys. J. A 43 (2010) 17

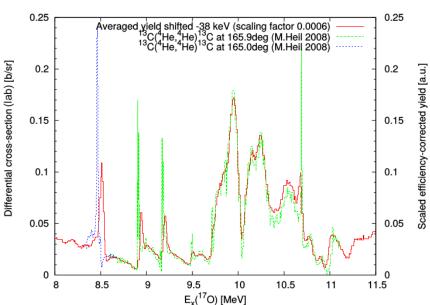




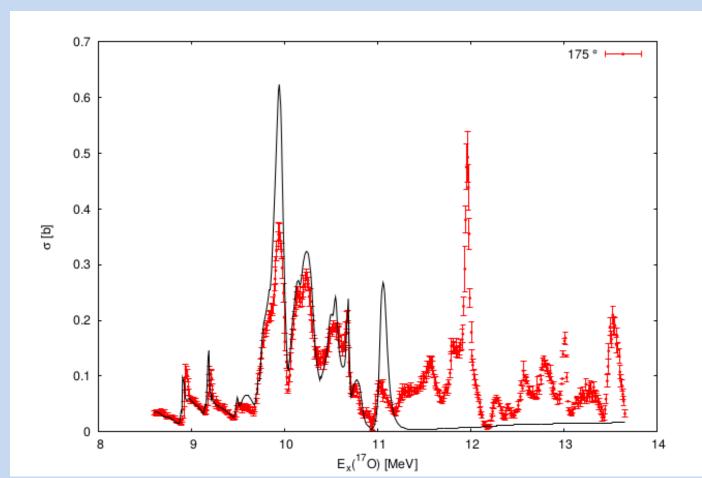
Experiment: Tandem RBI Zagreb Croatia (170)

¹³C+⁴He thick target resonant scattering


$E_{^{13}\text{C}}$ [MeV]	p _{4He} [mbar]	Inelastic-free $E_x(^{17}O)$ range	Run numbers
20.00	312	7.977 – 11.066	25
25.00	461	9.154 – 12.243	27
30.00	591,589,587	10.331 - 13.420	28-30, 32
33.00	699	11.037 – 14.126	33
35.00	720	11.508 - 14.597	35

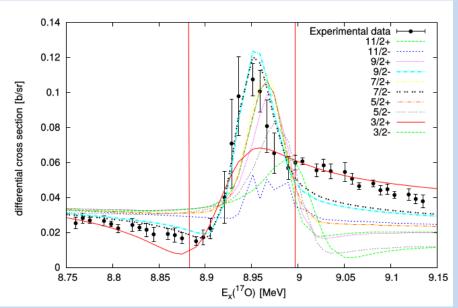

CM angle of scattered 4 He vs. $E_{x}({}^{17}O)$ Assumed elastic scattering

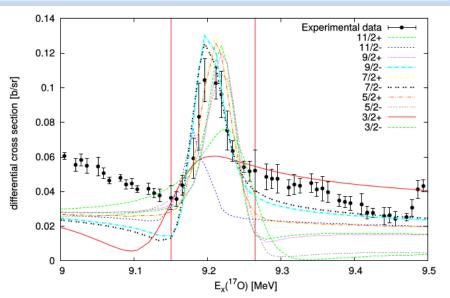
Further steps: detection efficiency correction ($\Theta_{\rm CM}$ < 5 deg), normalization, data averaging for different runs



consistent sets of data, inelastic contribution negligible

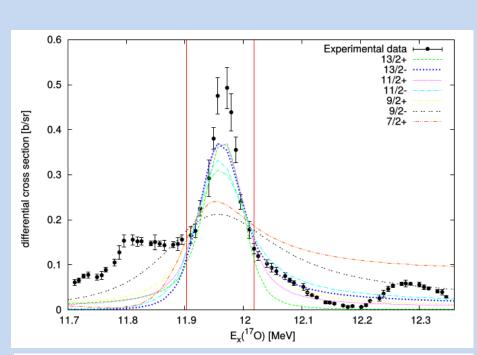
Published data: M Heil et al, PRC 78 (2008) 025803, up to excitation of 11.5 MeV Our data at 175 deg

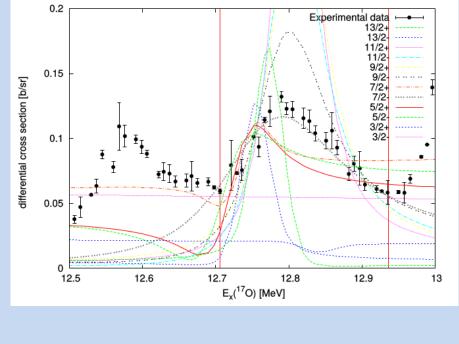


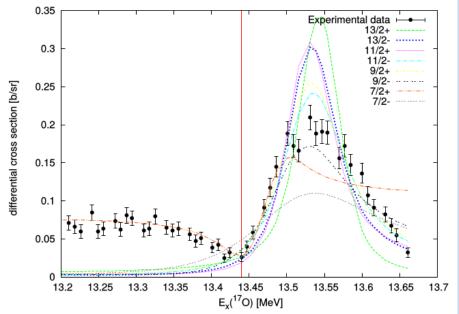

- R-matrix fits using code AZURE2 with resonance parameters from M. Heil et all (70 resonances at excitations 4.55 15.44 MeV obtained using code SAMMY)
- extensive fits of all available data for ¹³C+⁴He elastic scattering at number of angles, elastic and inelastic (1st and 2nd excited state) ¹⁶O+n scattering, ¹³C(⁴He,n) reaction, ¹⁶O(n, ⁴He) reaction
- significant discrepancies between fits and experimental results even for Heil data

Our results for ¹³C+⁴He elastic scattering with R-matrix fit using published resonance parameters

Simplified R-matrix fit: single isolated resonance for single channel and single data set at one angle

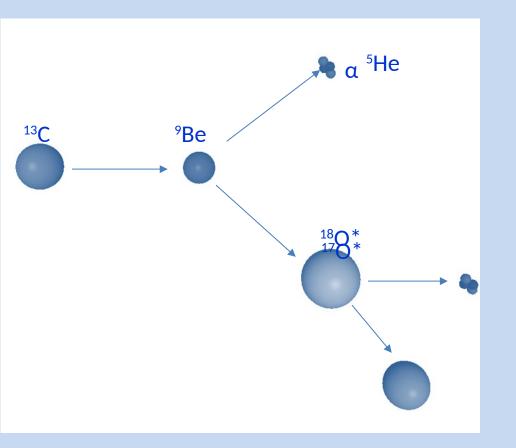



Test fits


	Peak						
	8.9 Me	V	9.2 Me	V			
J^{π}	$\gamma [\mathrm{MeV}^{1/2}]$	θ_W^2	$\gamma [\mathrm{MeV}^{1/2}]$	θ_W^2			
$\frac{9}{2}^{-}$	-0.482501	0.307	0.408232	0.220			
$\frac{7}{2}^{-}$	-0.632510	0.528	0.538238	0.382			

Heil et al results

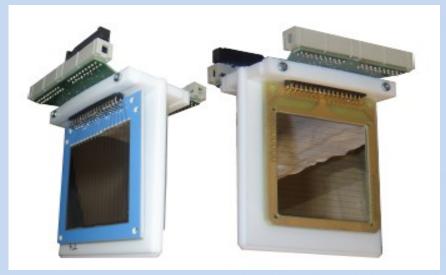
J^{π}	$E_x(^{17}\text{O}) \text{ [MeV]}$	Γ_n [keV]	Γ_{α} [keV]
$\frac{9}{2}^{-}$	8.9029	$-2.3 \cdot 10^{-5}$	-0.45
$\frac{7}{2}^{-}$	9.1737	0.038	3.26



Peak									
12.0 MeV 12.8 MeV 13.6 MeV									
J^{π}	γ [MeV ^{1/2}]	θ_W^2	J^{π}	J^{π} $\gamma [\text{MeV}^{1/2}]$ θ_W^2			$\gamma [\mathrm{MeV}^{1/2}]$	θ_W^2	
$\frac{11}{2}^{+}$	0.339962	0.153	$\frac{7}{2}^{-}$	0.284347	0.107	$\frac{11}{2}^{-}$	0.431423	0.246	
$\frac{13}{2}^{-}$	0.837051	0.925							

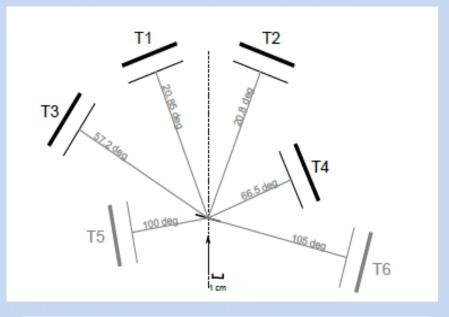
Experiment: Tandem IPN Orsay France (17,18O)

Kinematically complete measurements - coincidences 2 of 3 reaction



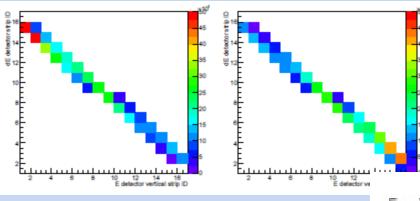
$$^{13}\text{C} + ^{9}\text{Be} \rightarrow ^{5}\text{He} + ^{17}\text{O*}$$

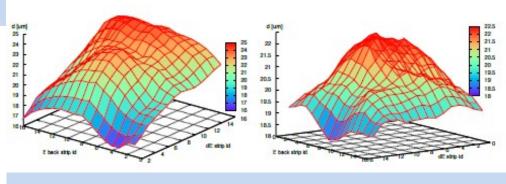
 $^{17}\text{O*} \rightarrow \alpha + ^{13}\text{C}, \ Q = -2.406 \ \text{MeV}$
 $E_{\text{thr}}(\alpha + ^{13}\text{C}) = 6.361 \ \text{MeV}$


13
C + 9 Be $\rightarrow \alpha$ + 18 O*
 18 O* $\rightarrow \alpha$ + 14 C, Q = 6.604 MeV
 18 O* \rightarrow 6 He + 12 C, Q = -5.549 MeV
 $E_{thr}(\alpha + ^{14}$ C) = 6.228 MeV
 $E_{thr}(^{6}$ He + 12 C) = 18.380 MeV

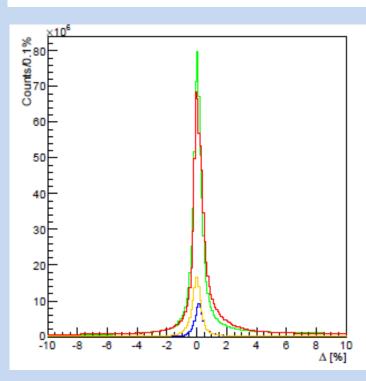
Goal: characterization of the ^{17,18}O resonances decaying by helium emission in excitation energy range 7 - 25 MeV: excitation energy, widths

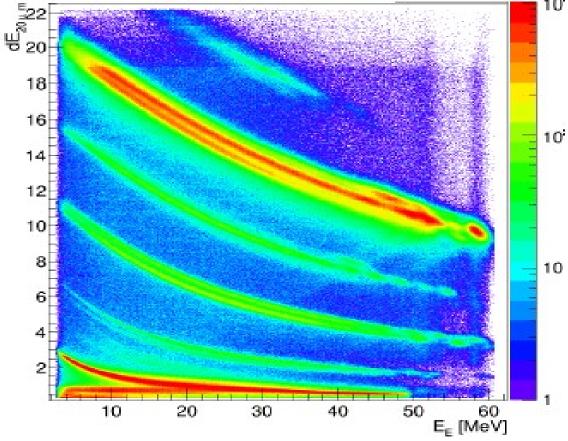
E(13C) beam = 72 MeV, 9Be target thickness 100 μg/cm² 6 telescopes 20 μm SSSD + 1000 DSSSD μm, 50x50 mm² Micron Semiconductor type W1



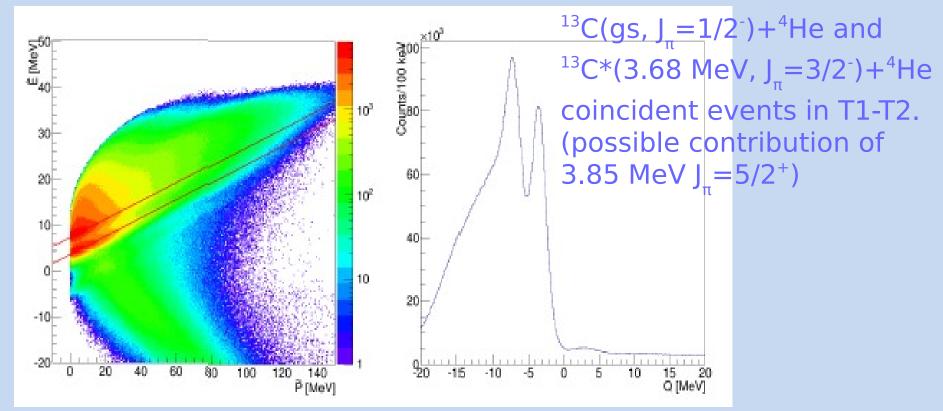


Detector telescope	$\vartheta_{\min}^{\text{in plane}}$ [°]	ϑ ^{in plane} [°]	Δϑ [°]
T1	11.43	30.30	18.9
T2	11.38	30.24	18.9
T3	48.10	66.31	18.2
T4	52.48	80.53	28.1
T5	83.90	116.10	32.2
T6	95.49	114.76	18.8

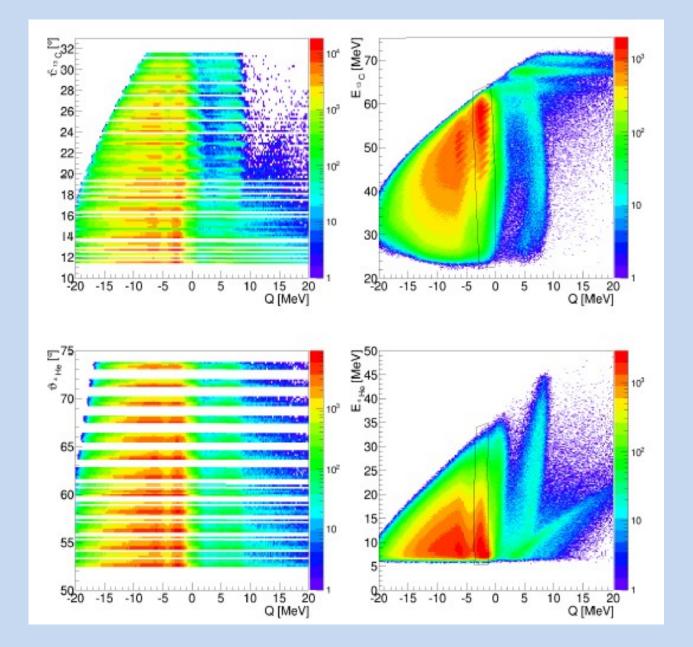

The matching of the ΔE (vertical) strips to the E-detector vertical (front) strips


The ΔE -detector profiles for the T1 and T2.

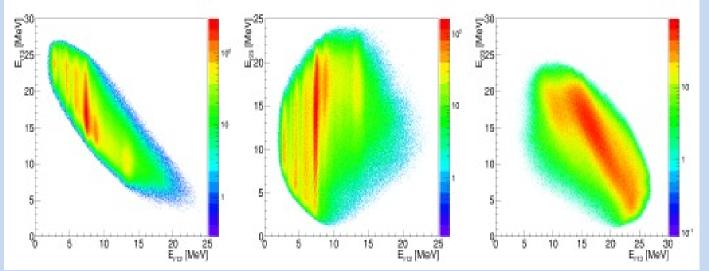
 Δ E-E spectrum for the T1, Δ E-strip 13.

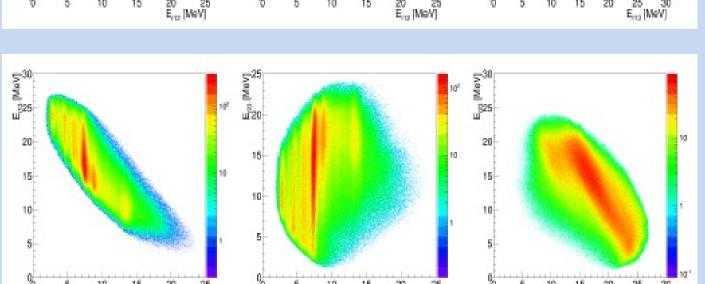


The front-strip vs back-strip energy difference relative to the average. Red line T1. green T2. blue T3. orange T4.


¹⁷O results

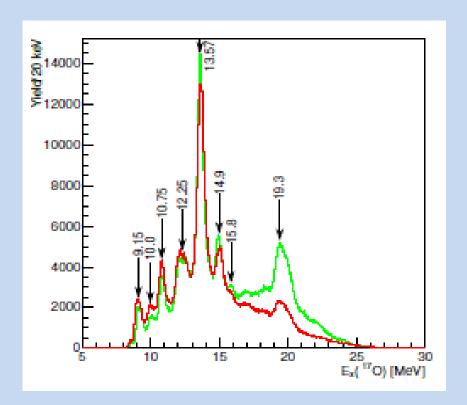
 9 Be+ 13 C→ 13 C+ 4 He+ 5 He reaction 13 C(T1)- 4 He(T2), 13 C(T2)- 4 He(T1), 13 C(T1)- 4 He(T4) and 13 C(T2)- 4 He(T3) coincident events

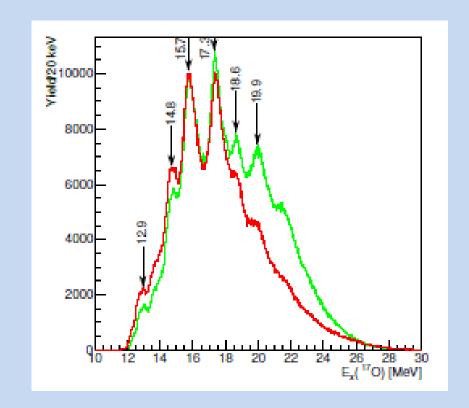



Reaction identification: Catania plot $\hat{E} = P/A_3-Q$, A_3 mass of undetected product

$$\hat{E} = E_p - E_1 - E_2$$
 $P = p_3^2 / (2m_p)$

The Θ_{det} -Q and E_{det} -Q spectra for the 13 C(T1)- 4 He(T4) coincident events. The black line denotes the graphical cuts used to select the ground state reaction channel.

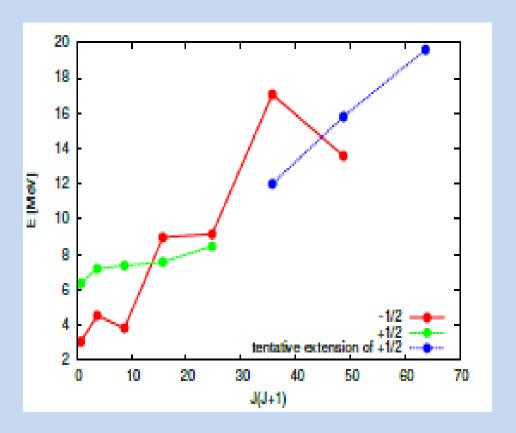

Exit channel
¹³C+⁴He+⁵He


¹⁷O=¹³C+⁴He T1-T2 events

⁹Be=⁴He+⁵He T1-T4, T2-T3 events

¹⁸O=¹³C+⁵He not observed

Relative-energy plots for the ${}^{9}\text{Be}({}^{13}\text{C}, {}^{13}\text{C}^{4}\text{He}){}^{5}\text{He reaction. The } {}^{13}\text{C}(\text{T1/T2}), {}^{4}\text{He}(\text{T2/T1})$ and ${}^{5}\text{He}$ (undetected) are labeled by numbers 1, 2 and 3.


The 17 O excitation energy spectrum reconstructed from the 13 C(gs, J_{π} =1/2 $^{-}$)+ 4 He coincident events in T1-T2 (red) and T2-T1 (green).

The 17 O excitation energy spectrum reconstructed from the 13 C*(3.68 MeV, J_{π} =3/2 $^{-}$)+ 4 He coincident events in T1-T2 (red) and T2-T1 (green). (possible contribution 3.85 MeV J_{π} =5/2 $^{+}$)

No.	¹³ C+	⁴ He res. el.	¹³ C+ ⁹ Be reactions		References	Tilley et.	al. [50]
140.	E_x [MeV]	J^{π}	¹³ C+ ⁴ He coinc.	¹³ C*+ ⁴ He coinc.	References	E_x [MeV]	J^{π}
1	8.9	$\left(\frac{7}{2}^{-}\right)$ or $\left(\frac{9}{2}^{-}\right)$					
2	9.2	$\left(\frac{7}{2}^{-}\right)$ or $\left(\frac{9}{2}^{-}\right)$	9.15		[5], [7], [98], [101], [102]	9.147	$\frac{1}{2}^-$
3	10.0^{\dagger}		10.0		四	9.976	<u>5</u> -
4	10.75 [†]		10.75		[6], [100], [101]	10.777	$\frac{1}{2}^+, \frac{7}{2}^-$
5	12.0	$\left(\frac{11}{2}^+\right)$ or $\left(\frac{13}{2}^-\right)$	12.25 (wide)		61 , [96 , [97], [98]	12.005 ± 15	$> \frac{3}{2}$
6	12.8	,	12.25 (#160)	12.9	[100]	12.93	
7	13.6	$\left(\frac{11}{2}^{-}\right)$	13.57		[4], [5], [98], [100]	13.58	$(\frac{11}{2}, \frac{13}{2})^-$
8		, ,	14.9	14.8	[4], [6], [100]	15.1 ± 0.1	$\left(\frac{9+}{2}, \frac{11}{2}^+\right)$
9			15.8	15.7	4, 6*, 100, 103,	15.95	$\left(\frac{9}{2}^+,\frac{11}{2}^+\right)$
10			(weak peak)	17.3	[3], [6]*, [98], [105]	17.06	11-
11			(weak peak)	18.6	6*	18.72	
12			19.3		6, 4, 104		
13				19.6	3,6*	19.6	$\left(\frac{13}{2}^{+}, \frac{15}{2}^{+}\right)$

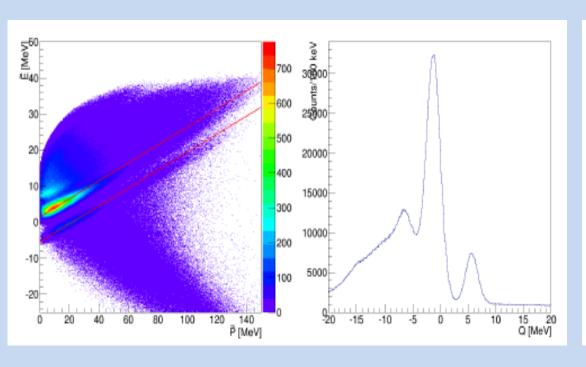
Published results:

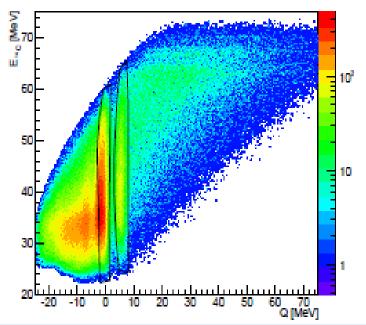
- (6) M. Milin et al, EPJ A 41 (2009) 335, the same reaction
- (7) M. Heil et al, PRC 78 (2008) 025803, the ¹³C+⁴He thick target resonant scattering up to excitation 11.1 MeV

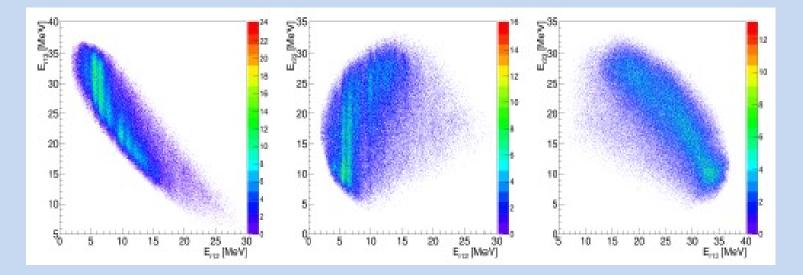
A tentative extension of the proposed ¹⁷O positive-parity rotational band and the negative-parity rotational band [6].

¹⁸O results

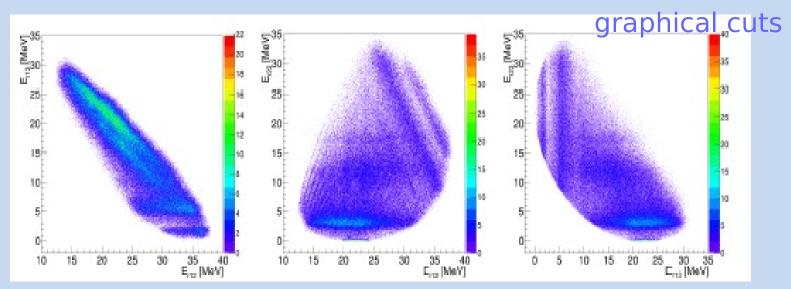
 9 Be+ 13 C→ 4 He+ 18 O* →

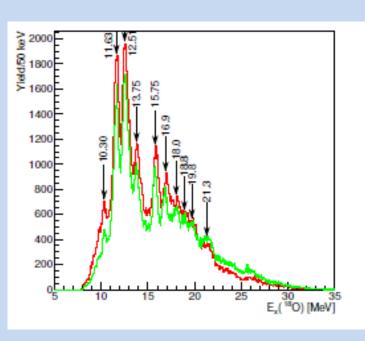

 $^{14}\text{C} + ^{4}\text{He} + ^{4}\text{He}, \ ^{14}\text{C}*(E_{\downarrow} \approx 7 \text{ MeV } 0^{-}, 2^{+}, 2^{-}) + ^{4}\text{He} + ^{4}\text{He}$

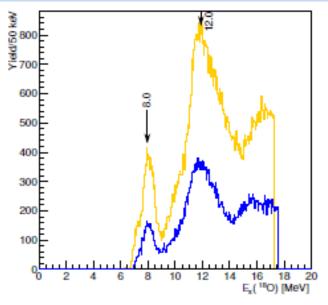

 $^{12}C + ^{6}He + ^{4}He, ^{12}C*(E^{x} = 4.4MeV 2^{+}) + ^{6}He + ^{4}He$


 10 Be+ 8 Be+ 4 He, 10 Be*+ 8 Be+ 4 He (E_x=3.37MeV 2⁺;≈6.2 MeV 2⁺,1⁻,0⁺,2⁻)

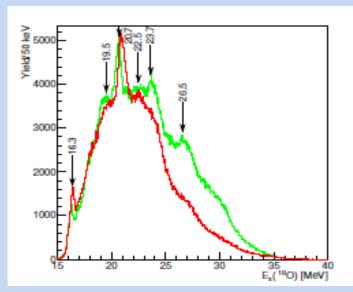
Events for all possible telescope combinations

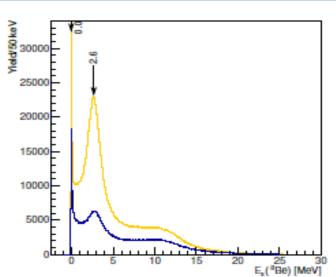

 $^{14}C(T1)^{-4}He(T2)$ $^{14}C(gs, J^{\pi}=0^{+})+^{4}He \text{ and } ^{14}C^{*}(7 \text{ MeV})+^{4}He \text{ in T1-T2}$

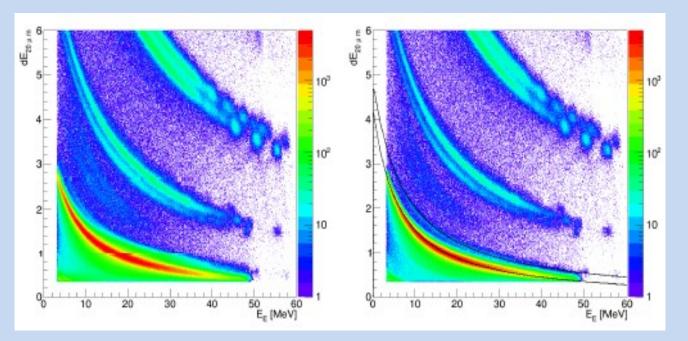


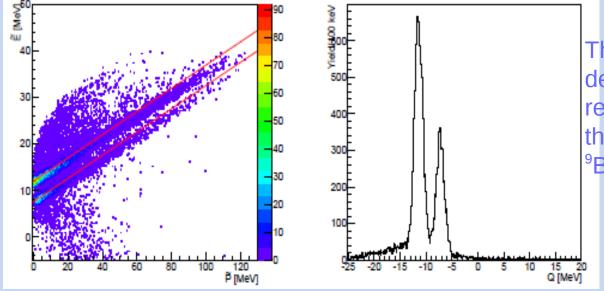


Relative-energy plots for the ⁹Be(¹³C,¹⁴C⁴He)⁴He reaction. The ¹⁴C(T1), ⁴He(T2) and ⁴He (undetected) are labeled by numbers 1, 2 and 3.

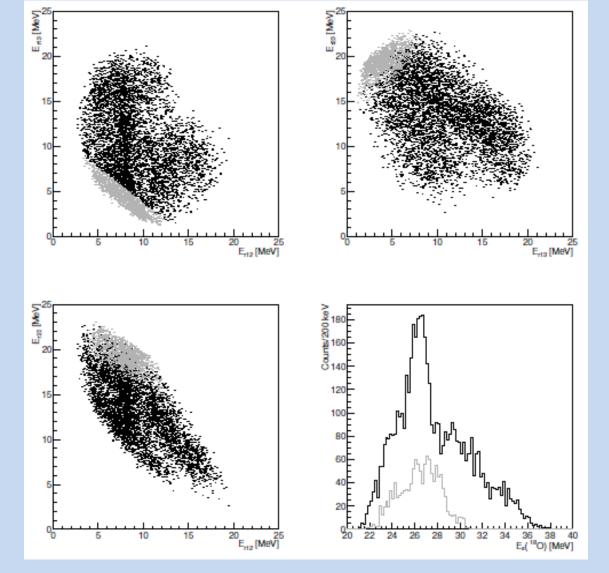



Relative-energy plots for the ⁹Be(¹³C,¹⁴C⁴He)⁴He reaction. The ¹⁴C(T1), ⁴He(T4) and ⁴He (undetected) are labeled by numbers 1, 2 and 3.


The ¹⁸O excitation energy spectrum for the ¹⁴C(gs)+⁴He coincident events in T1-T2 (red), T2-T1 (green), T1-T4 (orange) and T2-T3 (blue).

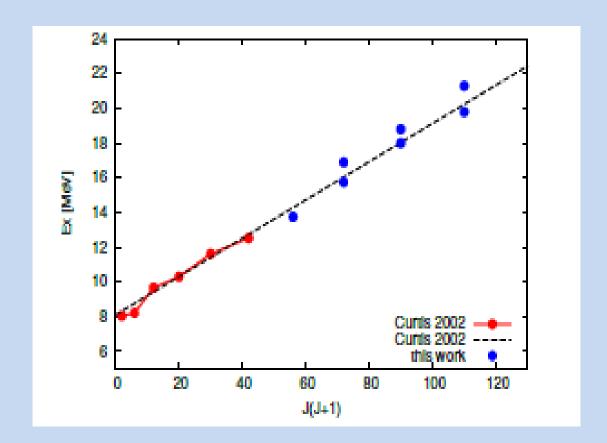


The ¹⁸O excitation energy spectrum for the ¹⁴C*(7 MeV) +⁴He events in T1-T2 (red) and T2-T1 (green); ⁸Be spectrum for T1-T4 (orange) and T2-T3 (blue).


⁹Be+¹³C→¹²C+⁶He+⁴He reaction

Additional ΔE -E spectra filtering to separate ⁶He from ⁴He for the T1, ΔE -strip 8. Black lines show results of simulations for ^{4,6}He in T1

The Catania plot for the ⁶He detected in T1 and ¹²C in T2. The red lines are predicted loci for the ⁹Be(¹³C,⁶He¹²C(gs))⁴He and ⁹Be(¹³C,⁶He¹²C*(4.4 MeV))⁴He.



broad peak at 26.5 MeV, indications of peaks at 29.5 MeV and around 23.5 MeV.

E_r-E_r plots for ⁶He and ¹²C(gs) detected in T1 and T2, labelled as 1 and 2. The last plot is the ¹⁸O excitation energy spectrum for events selected via graphical cut (black dots). The grey dots correspond to events from the ¹⁶O decay. For the ¹²C*(4.4 MeV) + ⁶He events excitation spectrum is structureless.

No.	$E_x(^{18}\text{O})$ from the $^{13}\text{C}+^{9}\text{Be}$ reactions		e reactions	References	Tilley et. al	. 87
1	¹⁴ C+ ⁴ He	¹⁴ C*+ ⁴ He	¹² C+ ⁶ He	References	E_x [MeV]	J^{π}
2	10.30 MeV			[12], [13], [14], [106], [107], [108], [109], [110], [111], [112], [113], [114]	10.290 MeV	4+
3	11.63 MeV			[12], [13], [14], [101], [106], [107], [108], [109], [111], [113]	11.62 MeV	5-
4	12.51 MeV			[12], [13], [14], [106], [107], [108], [109], [111]	12.53 MeV	6+
5	13.75 MeV			[111]	13.8	1-
6	10170 1110 1			[13], [14]	13.82	5-
7	15.75 MeV				15.8	1-
8		16.1 MeV		[12]	16.315	$(3,2)^{-}$
9	16.9 MeV			[107], [109]	16.948	$(2,3)^{-}$
10	18.0 MeV			[115]	18.049	
11	18.8 MeV			[110], [115]	18.68	(4^{-})
12		19.3 MeV				
13	19.8 MeV					
14		20.5 MeV		[110]	20.86	
15	21.3 MeV			[110], [117]	21.42	(4-)
16		22.3 MeV		[110]	22.4	4-
17		23.5 MeV	23.5 MeV	[110], [116]	23.8	1-
18		26.3 MeV	26.5 MeV	[116]	27	1-
19			29.5 MeV	[116]	30	

Published many results, some recent: (14) M. L. Avila et al, PRC 90 (2014) 024327, the ¹⁴C+⁴He thick target resonant scattering (12) N. Curtis et al, PRC 66 (2002) 024315, ¹⁴C(¹⁸O, ¹⁴C⁴He) ¹⁴C

A tentative extension of the proposed ¹⁸O rotational band [12]. In agreement with proposed rotational bands in W. von Oertzen et al, EPJ A 43 (2009) 17

Conclusion of Ref. [14] is that the α -strength is typically not concentrated in one state, but spread among multiple states, making such rotational bands unlikely.

Summary & outlook

- the resonant scattering ¹³C+⁴He experiment and resonant particle spectroscopy experiment with the ¹³C+⁹Be reaction populated excited states with cluster structure in the ¹⁷O and ¹⁸O (RPSE)
- existing results on the ⁴He decays confirmed and extended
- the ⁶He decaying states in ¹⁸O have been observed for the first time the first indication of the molecular structure
- these measurements should be complemented with other technique experiments, for example thick target resonant scattering measurements
- further measurements using different techniques are needed to determine the exact value of spin and parity, with higher resolution and statistics to separate nearby states
- there are strong indications that molecular structure exist in oxygen isotopes but much more experimental dana are required

Thank you!